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The Lighthouse Problem∗

Navigating by Lighthouses in Geometric Domains

Bengt J. Nilsson† Paweł Żyliński‡

Abstract

We study the computational properties of placing a min-
imum number of lighthouses in different geometric do-
mains and under different notions of visibility, enabling
a vehicle placed anywhere in the domain to navigate to
a given specific target. This problem shares common
elements with the art gallery problem in that the whole
domain must be covered with as few lighthouses as pos-
sible. Our main result is an algorithm that places a
minimum set of strip lighthouses in a simple rectilinear
polygon. These correspond to sliding cameras in art
gallery vernacular.

Unfortunately, at the time of presentation of
these results, the authors encountered a coun-
terexample to Lemma 4, thus invalidating the
results claimed up to and including Theorem 7.

1 Introduction

We consider a problem lying in the intersection of rout-
ing amongst obstacles and the art gallery problem. Our
problem is that of placing as few landmarks in a do-
main as possible such that a vehicle (being a ship, an
airplane or a drone) can safely navigate the domain to
reach a specified target. It is related to the routing prob-
lem since the vehicle should be guaranteed to avoid the
obstacles while following a simple routing protocol to
reach the target. At the same time, the landmarks must
“cover” the whole domain to ensure that the vehicle can
begin to navigate from any point in the domain, thus
connecting our problem to the art gallery problem [18].

Beacon-based direct-visibility routing was used in the
early days of aviation to guide (badly equipped) air-
planes. The airplane would fly in the direction of the
beacon until a beacon closer to the target could be seen
from the plane. The plane would then continue in the
direction of the new beacon, hopping from beacon to
beacon until it reached the target [19]. Minimizing the
number of beacons to place in a domain was therefore
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important to make beacon-based direct-visibility rout-
ing practically feasible. Herein, we consider the two-
dimensional variant of this problem and to emphasize
this, we use the concepts of lighthouses and ships rather
than beacons and airplanes or drones.

Our navigation protocol for the ships is very sim-
ple but places certain restrictions on the placement of
the lighthouses in the domains, sometimes making our
placement problem computationally easier than the cor-
responding art gallery problem. Each lighthouse has
an associated identifying number that is transmitted
through the lighthouse signal. Thus, each ship can
identify the lighthouse it is moving towards. Our stan-
dard navigation protocol specifies that the ship should
move towards the lighthouse with the smallest identi-
fying number that it has currently seen. The target
always has identifying number 0 while the other light-
houses should have successively larger numbers as we
move away from the target in the domain.

The Lighthouse Problem (LP)
Given a domain and a target t in the domain, deter-
mine the minimum number of lighthouses, together
with their locations and identifying numbers, en-
suring that a ship starting from any position in the
domain can travel to t with the standard naviga-
tion protocol: move towards the lighthouse with
the smallest identifying number that is visible.

We can thus identify models of lighthouse problems
by specifying different domain, lighthouse, and visibility
types. We consider two general variants in this paper,
defined by the domain type: in Section 2, we consider
the lighthouse problem in grid domains, while in Sec-
tion 3 — in rectilinear polygons, in both cases with strip
lighthouses that define the lighthouse type and the visi-
bility (the SLP problem for short). A strip lighthouse is
an axis-aligned line segment l that can guide/attract/is
visible to a point p in the domain, if the perpendicu-
lar projection of p onto l is not exterior to the domain.
Finally, we also give some basic results for edge light-
houses in rectilinear polygons and for laser lighthouses
in grids. A laser is a point that can illuminate in exactly
one of the four compass directions.

Background. Our lighthouse problem is a variant of
the art gallery problem, originally posed by Klee in 1973
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Figure 1: An example of a grid.

as the question of determining the minimum number of
guards sufficient to see every point of the interior of
a simple polygon; for more details, see O’Rourke [18],
Shermer [20], Urrutia [21] — combined with the concept
of cooperative guards [13, 15, 22] in which visibility-
based connectivity between guards is required. We state
this crucial property more formally.

Property 1 If L is a solution to LP in some domain,
then the visibility graph of L (under the visibility model
considered) is connected.

The visibility model we consider, immediately relates
our lighthouse problem to the Minimum Sliding Cam-
eras (MSC) problem introduced by Katz and Morgen-
stern [14] and then studied in [3, 4, 5, 6, 7, 8, 9, 12]. For
that problem, combinatorial lower and upper bounds on
the minimum number of sliding cameras are provided
in [5, 12] and it is shown that the MSC problem is NP-
hard in polygons with holes [5, 8] but admits a PTAS in
simple polygons [3] — but so far NP-hardness in simple
polygons still remains an open problem, although there
exist linear-time exact algorithms with some additional
assumptions either on the input polygon or the solution
itself [4, 12].

For this visibility model, we may always assume that
the strip lighthouses are maximal (within the domain)
and furthermore, Property 1 translates to the fact that
the union of strip lighthouses that together allow to nav-
igate within the domain is a connected set.

2 Navigating in Grids

A grid is an arrangement of distinct vertical and hor-
izontal closed line segments in the plane, where every
two collinear line segments are disjoint and their union is
connected; the grid can be thought of as a polygon with
holes, representing a region of intersecting very thin cor-
ridors, see Figure 1 for an example. So a strip lighthouse
in a grid is a subsegment of a grid segment and visibility
is considered to be perpendicular to its direction along
the grid segments intersecting that subsegment. Recall
that a strip lighthouse is always assumed to be maximal
and therefore we may identify it with the correspond-
ing grid segment. Also, we assume that the target is a
complete grid segment, to avoid issues with objects on
that grid segment but not on the target.

Observe that for any feasible solution to the LP prob-
lem in a grid G, any grid segment must be intersected
by at least one lighthouse, so strip lighthouses must con-
stitute a complete cover of G. Since the union of strip
lighthouses that together allow to navigate within G is
a connected set, it follows from [15] that the LP prob-
lem in G can be solved by reduction to the minimum
cooperative mobile guard set problem in the grid ob-
tained from G by adding a new grid segment intersect-
ing only the target segment (to force that target segment
to be included in the optimal solution; identifying num-
ber may be then assigned in a greedy DFS-like manner,
starting with 0 for the target segment). On the other
hand, the minimum cooperative mobile guard set prob-
lem in G can be solved by reduction to the LP problem
in that grid (by taking the best solution over those re-
sulting from checking each of the grid segments as a pos-
sible candidate for the target segment). Consequently,
as the problem of finding a minimum connected mobile
guard set is NP-hard [15], we obtain the following result.

Corollary 2 The SLP problem in grids is NP-hard.

Furthermore, since there is one-to-one correspon-
dence between a minimum cooperative mobile guard set
in a grid G and the minimum dominating set of the in-
tersection graph of G, and Guha and Khuller [11] pro-
posed an O(log∆)-approximation algorithm for com-
puting the minimum connected dominating set of a
graph, where ∆ is the maximum degree of that graph,
and proved a lower bound of Ω(log∆) even for bipartite
graphs, we may conclude the following corollary.

Corollary 3 The SLP problem in grids can be approx-
imated with an O(log∆) approximation ratio, where ∆
is the maximum number of intersections on a grid seg-
ment.

3 Navigating in Rectilinear Polygons

Our main result of this section is a quadratic time algo-
rithm for computing an optimum set of strip lighthouses
in a simple rectilinear polygon. The input to the algo-
rithm is a rectilinear polygon P and a specified target
edge t of P.

We first observe that the target t must be considered
to be a strip lighthouse and so included in the opti-
mum set of strip lighthouses for P, with the identify-
ing number 0. Following this observation, consider the
histogram partition H of P with t as the base, see Fig-
ure 2(a), for which the dual graph T is a tree rooted at
the histogram having t as its base, and with the win-
dows of a histogram recursively acting as the bases for
the relevant histograms corresponding to child nodes
in T [16]. Recall that a histogram is a rectilinear x- or
y-monotone polygon with one boundary chain being a
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Figure 2: (a) Partition into histograms, starting from
the target edge t. (b) An optimal solution (red) to the
LP problem and the relevant canonical one (green).

line segment (called the base). Now, for each histogram
h in H, we associate the base direction of h to be the
direction towards its base, denoted bh, and for a set L
of strip lighthouses in P, we define the canonical set
with respect to L as follows. First, we modify the set L
by recursively considering each histogram h in H cor-
responding to a leaf in T . For every strip lighthouse l
intersecting h and being parallel to bh (assuming l to
be maximal), we move l continuously in the base direc-
tion as far as possible while not decreasing the visibility
region of l. If h contains several such lighthouses, the
movement is done for each lighthouse in sequence in
the order of decreasing distance to the base bh. Once
this process has been completed for each lighthouse in h
parallel to bh, we remove any lighthouses that coincide,
thus reducing the size of the canonical set. Next, we
remove the corresponding node from T and repeat the
process until all histograms of H have been considered;
see Figure 2(b) for an example. Observe that any strip
lighthouse in a canonical set intersecting a histogram
and being parallel to the base, is not completely con-
tained in the histogram.

Our idea is then to associate a canonical feasible set
of strip lighthouses in P with a set Sh of pairs of 0/1-
valued intervals on the base bh of each histogram h that
a maximal strip lighthouse orthogonal to bh can inter-
sect. For convenience, we identify the first interval in
an interval pair as blue and the second one as red, re-
spectively, using Bh and Rh to denote them when no
confusion arise; an interval denoted Ih could be either
blue or red.

For the purpose of defining the set Sh, we start with
a few definitions. Consider two histograms h and h′, h
being a child of h′ in T , and assume for the definition
that the base direction of h is down and the base di-
rection of h′ is left; see Figure 3. When we henceforth
define objects in histograms, we will always make this
assumption, thereby avoiding having to define each ob-
ject also for the other seven possible cases. Let Ih be
an interval lying on the base bh (which is a window of
h′). We first project the endpoint of Ih that is closest
to the base bh′ vertically onto the opposite horizontal

Ih

h′Ih′

h

Figure 3: Illustrating the propagation of intervals.

vh(a)

h

{
ph qh

} = Sh
h′

ph1
qh1

(b)

Sh =
{ }

Figure 4: Defining the histogram intervals.

edge of h′ — this gives us two endpoints of a vertical
line segment in h′. Next, we project this line segment
horizontally onto the base bh′ — this gives us the in-
terval Ih′ . Following this sequence of two projections,
we say that Ih propagates from h to Ih′ in h′ in one
step, which is denoted by Ih′ = pr(Ih). An interval can
thus be propagated using a sequence of one-step prop-
agations from a histogram to any ancestral histogram
in T ; again see Figure 3. Finally, we need to define
some special points in a histogram h; see Figure 4(a).
First, the point qh is the rightmost point of bh. Next,
we follow the boundary of h from qh in counterclockwise
order along the xy-monotone staircase until the end of
that staircase at vertex vh is encountered (the vertex vh
is a convex vertex with the adjacent vertical edge below
vh and the adjacent horizontal edge to the right of vh)
— projecting a point vertically from vh onto bh defines
the point ph.

Thereby, the encoding Sh is defined recursively as fol-
lows (see Figure 4(b)):

Sh=
{(

pr(Bh̄), pr(Rh̄)
)
|(Bh̄, Rh̄)∈Sh̄, ∀h̄ ∈Th

}
∪ Ph, (1)

where Th denotes the set of all child histograms of h
in T , and Ph = ∅ if there exists a pair (Bh̄, Rh̄) ∈ Sh̄ for
some h̄ ∈ Th such that pr(Rh̄) ∩ [ph, qh] ̸= ∅, and Ph ={
[ph, qh], [qh, qh]

}
otherwise. All but [qh, qh] intervals

in Sh are then valued 1, while the interval [qh, qh], if it
belongs to Sh, is valued 0.

The set Sh can be computed in linear time, given Sh̄

for all child histograms h̄ of h in T , by a pass over the
boundary and using a stack data structure. Thus, the
sets Sh for each h in T can be computed in quadratic
time.

Now, given the encoding Sh, we define a realization
Γh of Sh to be a set of intervals such that Γh contains at



31st Canadian Conference on Computational Geometry, 2019

(b)

dominating

(a)

matching

Ih

Iĥ
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Figure 5: Illustrating domination and matching.

most one interval from each interval pair in Sh. Each
such realization Γh can be associated with the minimum
canonical set L(Γh) of strip lighthouses such that each
1-valued interval in Γh is intersected by a lighthouse in
L(Γh). Clearly, the number of possible realizations of
Sh is at most 3|Sh|. Note that all realizations do not
necessarily correspond to parts of solutions to the SLP
problem in P.

Before we present the crucial recursive formula for
the size of L(Γh), we need to introduce additional defi-
nitions. Let Ih and I ′h be two intervals on bh such that
Ih = pr(I

h̄
) and I ′h = pr(Iĥ) for some h̄, ĥ ∈ Th; see

Figure 5(a). We say that Ih dominates I ′h if the subhis-
togram of h formed by cutting along the line segment
with one endpoint at the lower endpoint of Iĥ and the
other endpoint by its horizontal projection in h contains
I
h̄
. If Ih is not dominated by any interval in a realiza-

tion Γh, we call Ih a master for Γh. Next, we say that Ih
and I ′h match if there is a point on I

h̄
whose horizontal

projection in h lies on Iĥ; see Figure 5(b).
Now, let VΓh denote the number of master intervals

among the intervals in Γh and let MΓh denote the num-
ber of distinctly matched intervals in Γh, i.e., any in-
terval is matched to at most one other interval. It is
clear that VΓh corresponds to the number of vertical
strip lighthouses required in the realization Γh, while
MΓh corresponds to the number of horizontal strip light-
houses that traverse h going from one child histogram
of h to another. We thereby set

s(Γh) =


0 if h is a leaf and Γh = {[qh, qh]}
1 if h is a leaf and Γh = {[ph, qh]}
VΓh −MΓh +

∑
h̄∈Th

s(Γh̄) otherwise,

which allows us to state the following lemma.

Lemma 4 For every histogram h, there is a realization
Γh from Sh such that L(Γh) ∪ {bh} is a solution to the
SLP problem in Ph and s(Γh) = |L(Γh)|, where Ph is
the subpolygon of P consisting of the histograms in T
rooted at h.

Proof. Consider an optimal canonical solution L∗
h to

the LP problem in Ph. We prove that L∗
h has a corre-

sponding realization Γ∗
h of Sh inductively in a bottom

up fashion. We consider each subhistogram hi in Th

separately.

Rh1
Bh2

h

h1,1
qh1,1

Rh

h1
h2

Figure 6: Illustrating the proof of Lemma 4. The green
segments are the strip lighthouses in L(Γh).

If hi is a leaf histogram in Th, then L∗
h either has

a lighthouse that intersects [phi , qhi ] or there is a light-
house in L∗

h in the ancestor histogram of hi for which the
projection onto bhi

intersects qhi
, otherwise not all of hi

is seen by L∗
h; see Figure 6 illustrating both these cases.

Both these intervals Bhi
= [phi

, qhi
] and Rhi

= [qhi
, qhi

]
are paired in Sh by construction and only one of them
is used by L∗

h.
If hi is an internal histogram in Th, then consider

those histograms hj that are children of hi in Thi
. By

induction, any (maximal) lighthouse in L∗
h intersect the

bases of hj in at most one interval per pair lying in
Shj

and furthermore these lighthouses intersect hi be-
tween two (vertical) boundary edges (assuming hi has
our standard orientation). These two boundary edges
define a (horizontal) interval and since L∗

h is a solution
to the SLP problem in Ph, it must have a lighthouse
intersecting this interval. The interval is propagated
from an interval in hj and is therefore in an pair in Sh.
The other interval from that pair is not propagated by
induction, concluding the proof. □

The above lemma has the following immediate corol-
lary.

Corollary 5 There is a realization Γht
from Sht

such
that L(Γht

) ∪ {t} is a solution to the SLP problem in
P and s(Γht

) = |L(Γht
)|, where ht is the root histogram

in T .

Clearly, an brute-force implementation of the above
approach results in an exponential time algorithm for
computing a solution to the SLP problem in a rectilin-
ear polygon. However, in the following, we show that
an “optimal” representation — and so an optimal set of
strip lighthouses as well — can be (re-)constructed re-
cursively, in a more efficient way, using some additional
data when constructing the relevant sets Sh of interval
pairs.

For a given histogram h, let Γ∗
h be an optimal feasible

realization of Sh, i.e., a realization such that:

• L(Γ∗
h) has the smallest number of strip lighthouses

among the realizations obtainable from Sh,

• the union of these lighthouses is a connected set,

• the whole of Ph is covered.
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It follows from Lemma 4 that L(Γ∗
h) ∪ {bh} constitutes

an optimal solution to the SLP problem in Ph. Note
that L(Γ∗

h) is canonical in the sense defined above.

Lemma 6 For every histogram h, there is an optimal
feasible realization Γ∗

h using only red intervals matched
if possible, except when

• a red and a blue interval (but not the corresponding
red intervals) match, or

• two blue intervals match (but not the corresponding
red or red/blue intervals do), at least one of which
is a master,

in which cases these matched intervals are used.

Proof. We sketch an inductive proof maintaining the
following invariant: the realization Γ∗

h induces as few
strip lighthouses as possible and additionally the used
intervals are as large as possible.

If h is a leaf, the invariant holds trivially. On the
other hand, if h is not a leaf, we assume without loss
of generality, that considering intervals from two child
histograms h̄ and ĥ in Th, then pr(Rh̄) ⊂ pr(Bh̄) and
pr(Rĥ) ⊂ pr(Bĥ). We have four main cases.

1. The used interval Ih comes from the pair Ph, see
Equality (1).
The argument holds trivially by the same consid-
eration as for leaf histograms.

2. The used intervals pr(Rh̄) and pr(Rĥ) match with
Rh̄ in Γ∗

h̄
and Rĥ in Γ∗

ĥ
.

Assume Γ∗
h does not contain both pr(Rh̄) and

pr(Rĥ), then at least one of their corresponding
blue intervals is used and by replacing it with the
red interval, the size of the solution can be reduced
by one contradicting optimality.

3. The used intervals pr(Rh̄) and pr(Bĥ) match with
Rh̄ in Γ∗

h̄
and Rĥ in Γ∗

ĥ
.

We can assume that the red interval pr(Rĥ) in the
same pair as pr(Bĥ) does not match pr(Rh̄) (other-
wise an optimal realization would have picked those
two intervals, see Case 2). Assume Γ∗

h does not
contain both of pr(Rh̄) and pr(Bĥ). If Γ∗

h contains
pr(Rh̄) and pr(Rĥ) (not matching), it will use as
many strip lighthouses but since pr(Rĥ) is a subin-
terval of pr(Bĥ), it violates the invariant; see Fig-
ure 7(a).

4. The used intervals pr(Bh̄) and pr(Bĥ) match and
at least one of pr(Rh̄) and pr(Rĥ) is a master with
Rh̄ in Γ∗

h̄
and Rĥ in Γ∗

ĥ
.

We can assume that the interval pr(Rh̄) does not
match pr(Bĥ) and that pr(Bh̄) does not match

(a)

pr(Rh̄)

h Bĥ
Rh̄

pr(Bh̄)

(b)

h
BĥBh̄

Figure 7: Illustrating the proof of Lemma 6. The green
segments are the strip lighthouses.

pr(Rĥ) (otherwise an optimal realization would
have picked one of those two pairs of matching
intervals, see Case 3). Assume Γ∗

h contains both
pr(Rh̄) and pr(Rĥ), then h must contain two hori-
zontal strip lighthouses (assuming the standard ori-
entation of h), one intersecting each of Rh̄ and Rĥ,
and two vertical strip lighthouses, one intersecting
each of the horizontal ones. However, this solu-
tion violates the invariant since it can be replaced
by one horizontal strip lighthouse intersecting both
Bh̄ and Bĥ, since pr(Bh̄) and pr(Bĥ) match, and
one vertical strip lighthouse in h intersecting the
horizontal one. The size of the solution remains
the same but the interval pr(Bh̄) = pr(Bĥ) con-
tains each of pr(Rh̄) and pr(Rĥ); see Figure 7(b).

Enumerating the remaining possibilities, it follows that
in these cases the invariant holds by always selecting
and propagating the red intervals. □

The algorithm makes passes over the boundary of the
histogram and computes, given Sh̄ for each child his-
togram h̄, a maximal set of unique red/red matching
intervals, given these, a maximal set of unique red/blue
matching intervals, and given these, a maximal set of
unique blue/blue matching intervals where at least one
is a master. After the matching intervals have been es-
tablished the algorithm selects the remaining red ones
for an optimal solution.

It is easy to verify that the running time of the above
algorithm is quadratic (with respect to the number of
vertices of the input polygon P).

Theorem 7 A solution to the SLP problem for a simple
rectilinear polygon P and a target edge t can be computed
in quadratic time.

For rectilinear polygons with holes, a simple modifica-
tion of the NP-hardness proof for optimally guarding a
rectilinear polygon with holes [8], adding a target notch
in a corner of the construction shows the result.

Theorem 8 The SLP problem in rectilinear polygons
with holes is NP-hard.

3.1 Edge Lighthouses

Another natural model is to assume that an edge light-
house sees all points of the histogram with this edge as
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its base. Unfortunately, our standard navigation pro-
tocol can get stuck in this model and therefore another
navigation protocol is needed: If stuck at a lighthouse
with the identifying number l, then move towards the
lighthouse with the maximum number you see until you
see a lighthouse with an identifying number smaller than
l (and then continue with the standard protocol until you
either reach the target or get stuck again). This modifi-
cation is sufficient (for the existence of a solution), since
by taking all edges as lighthouses and labelling them
consecutively along the boundary (with 0 at the target,
and then increasingly in counterclockwise manner), we
obtain a feasible solution.

4 Laser Lighthouses in Grids

In grids, a natural counterpart of (directed) edge light-
houses in rectilinear polygons, are laser lighthouses.
Specifically, a laser lighthouse is a point which can illu-
minate only towards one of the forth directions: North,
East, South or West. We begin with two simple but
crucial observations.

Observation 1 For any grid, n is a lower bound.

Observation 2 Putting a laser not at the endpoint of
a segment results in two lasers associated with this seg-
ment, so in order to have only n lasers, each segment
must have at least one endpoint being an intersection
point and all of the lasers must be located at some of
these intersection end-points.

Taking into account the above two remarks, one can
easily observe that 2n is an upper bound. The idea is
to place two lasers on each grid segment, starting from
the (at most) two segments that the target is located
at (and so, at most four lasers in total), in opposite
direction, and continue with each new, so far uncov-
ered segment intersecting some covered one, by placing
another two lasers, at the intersection point, in the di-
rections alternative to the intersected already covered
segment. Therefore, we have a simple linear-time 2-
approximation algorithm.

In general, the problem is polynomially tractable; re-
call that by Observation 1, each segment must be as-
signed at least one laser. The idea of our algorithm
is as follows. For a grid G = VG ∪ HG, where VG

(HG, resp.) is the set of all vertical (horizontal, resp.)
line segments of G, we first construct the weighted di-
rected bipartite intersection graph GG, with the bipar-
tition (VG,HG) [17], where the weight w(a) of an arc
a = (x, y), corresponding to the intersection of line seg-
ments x and y, is set to 1 if x has an endpoint on y,
and 2 otherwise. (The graph GG can be constructed in
O(n log n+m) time, where m = O(n2) is the number of
intersection points of grid segments of G [2].) Then we

modify the graph GGby adding the new vertex t that
corresponds to the target point t, and by adding at most
two arcs (z, t), depending on the location of t on a line
segment z, with the weight of (z, t) equal to 1 if t is
located at the endpoint of z, and 2 otherwise.

Let DG be the resulting digraph from the above mod-
ification of GG. One can that observe that any arbores-
cence Tt of DG with the root t corresponds to a fea-
sible laser assignment in G with the number of used
lasers equal to the cost of Tt, and vice versa. Therefore,
there is one-to-one correspondence between any arbores-
cence of DG with the root at t and an optimal solution
to the Lighthouse Problem in G. Consequently, since
the problem of computing a minimum spanning tree
of a weighted digraph can be solved in O(n log n + m)
time [10], where n and m are the number of vertices and
edges of the input graph, respectively, we immediately
obtain the following result.

Theorem 9 The Laser Lighthouse Problem in grids
can be solved in O(n log n + k) time, where n is the
number of grid segments of the input grid while k is the
number of their intersection points.
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