CORRIGENDUM

Capturing an Intruder in A Building

IEEE Robotics and Automation Magazine 15(2), pp. 16-26 (2008)

Ichiro Suzuki

Department of Electrical Engineering and Computer Science University of Wisconsin-Milwaukee, WI 53201-0784 Milwaukee, USA
suzuki@cs.uwm.edu

Pawee Żyliński

Institute of Computer Science
University of Gdańsk, 80-952 Gdańsk, Poland
pz@inf.ug.edu.pl

There is an error in Procedure Locate and Lemma 2. The error is that in Procedure Locate, Z may become visible to A when A is not on a vertex, and Z 's move thereafter cannot be assumed to be random. We noticed this error while discussing a similar algorithm with Adrian Dumitrescu. A revised procedure and Lemma 2 are presented below. The rest of the results in the paper are not affected.

Detecting an Intruder

Define the backbone of the grid $G_{n \times n \times n}$ with the root $(0,0,0)$ as the set of all points of shaft $(0,0)$, north-south corridor $(0,0)$, and west-east corridor $(0,0)$. Next, define the $x y$-plane to be the set of points (x, y, z) in $G_{n \times n \times n}$ with $z=0$; similarly, define the $y z$-plane and $x z$-plane to be the set of points (x, y, z) with $x=0$ and $y=0$, respectively. (See Figure ?? for an illustration).

Figure 1: The backbone and the xy-plane of the grid.
A can see Z from a vertex using the revised procedure given below. The idea is to give A a choice of not moving from a vertex.
(a)

(b)

(c)

Figure 2: An illustration of procedure Locate. (a) A chooses direction $+x$ and crossing $c=$ $(m, 0,0)$, moves to $(m, 0,0)$ and waits there till time $t=n$; next, he waits there for additional time $w \in[0,2 n]$, and at time $t=n+w$, starts moving towards ($m, n-1,0$) along north-south corridor $(m, 0)$. (b) A chooses direction $+y$ and crossing $c=(0, m, 0)$, moves to $(0, m, 0)$ and waits there till time $t=n$; next, he waits there for additional time $w \in[0,2 n]$, and at time $t=n+w$, starts moving towards $(0, m, n-1)$ along shaft $(0, m)$. (c) A chooses direction $+z$ and crossing $c=(0,0, m)$, moves to $(0,0, m)$ and waits there till time $t=n$; next, he waits there for additional time $w \in[0,2 n]$, and at time $t=n+w$, starts moving towards $(n-1,0, m)$ along east-west corridor $(0, m)$.

Procedure Locate

$/^{*}$ We assume that A is at the root $(0,0,0)$ of the backbone, otherwise, A goes to $(0,0,0)$ from its current location at maximum speed $s .^{* /}$

Step 1. Reset time $t=0$. Uniformly at random, A chooses a direction $d \in\{+x,+y,+z\}$, and next, also uniformly at random, he chooses an integer $m \in\{0,1, \ldots, n-1\}$. Let c be vertex $(m, 0,0)$ if $d=+x,(0, m, 0)$ if $d=+y$, and $(0,0, m)$ if $d=+z$. (See Figure ??.) A leaves $(0,0,0)$ at $t=0$ and goes to c at speed s, and waits at c till $t=n$. (A arrives at c at time $\frac{m}{s}$. Note that if $m=0$, then A stays at $(0,0,0)$ till $t=n$.)

Step 2. A executes one of the following actions with the given probabilities.
Action 2.1 With probability $\frac{1}{3}, A$ remains stationary at c until $t=4 n$.
Action 2.2 With probability $\frac{2}{3}, A$ choose a waiting time $w \in[0,2 n]$ uniformly at random, and waits at c for time w. Then, at time $t=n+w$ (see Figure 2(a-c) for an illustration):
(a) Case $d=+x$: A leaves $c=(m, 0,0)$, moves along north-south corridor $(m, 0)$ to the other end $(m, n-1,0)$ at speed s, and stays at $(m, n-1,0)$ till $t=4 n$.
(b) Case $d=+y$: A leaves $c=(0, m, 0)$, moves along shaft $(0, m)$ to the other end $(0, m, n-1)$ at speed s, and stays at $(0, m, n-1)$ till $t=4 n$.
(c) Case $d=+z$: A leaves $c=(0,0, m)$, moves along east-west corridor $(0, m)$ to the end $(n-1,0, m)$ at speed s, and stays at $(n-1,0, m)$ till $t=4 n$.

Termination Condition Locate ends in success at the moment A sees Z from a vertex. If A sees Z from a non-vertex position or A never sees Z in $[0,4 n]$, then Locate ends in failure. A executes Locate repeatedly until it ends in success.

In the following, we show that the probability of success of one execution of Locate, i.e., A sees Z from a vertex in $[0,4 n]$, is at least $\frac{1}{9 n}$.

We need the following notation. For a time interval $T=\left[t_{1}, t_{2}\right], t_{1} \leq t_{2}$, we denote by $|T|=t_{2}-t_{1}$ the length of T. For any $t_{3} \geq 0, T-t_{3}$ denotes the interval $\left[t_{1}-t_{3}, t_{2}-t_{3}\right]$ obtained by shifting T early by t_{3}.

Case 1. For some $m \in\{0,1, \ldots, n-1\}, Z$ is in one of north-south corridor $(m, 0)$, shaft $(m, 0)$ and west-east corridor $(0, m)$ at some time in $\left[\frac{m}{s}, n\right]$, and let t^{\prime} be the earliest such time. (In this case, at or before time n, Z may gain some knowledge about A 's choice.)

Suppose Z is in north-south corridor $(m, 0)$ at t^{\prime}. With probability at least $\frac{1}{3 n}, A$ has chosen $c=(m, 0,0)$ and stays at c in the entire interval $\left[\frac{m}{s}, n\right]$. Thus A sees Z from c at time t^{\prime} with probability at least $\frac{1}{3 n}$. The argument for the other two cases are similar.
Case 2. For any $m \in\{0,1, \ldots, n-1\}, Z$ is not in any of north-south corridor $(m, 0)$, shaft $(m, 0)$ and west-east corridor $(0, m)$, at any time in $\left[\frac{m}{s}, n\right]$. (In this case, at time n, Z does not have any knowledge about A 's choice.)
(a) Suppose Z enters one of the $x y$-plane, $y z$-plane, and $x z$-plane in $[n, 4 n]$, and let t^{\prime} be the earliest such time. Let c be a vertex in the backbone from which Z is visible at t^{\prime}. Since A stays at c in $[n, 4 n]$ with probability at least $\frac{1}{3 n} \cdot \frac{1}{3}=\frac{1}{9 n}, A$ sees Z from c at t^{\prime} with the same probability.
(b) Suppose Z does not enter any of the $x y$-plane, $y z$-plane, and $x z$-plane in $[n, 4 n]$. Consider now two time intervals $W=[n, 3 n]$ and $I=[2 n, 3 n]$. Fix a move of Z in [$n, 4 n$], and for $1 \leq i, j, k \leq n-1$, let $x_{i, j}, y_{i, j}$ and $z_{i, j}$, respectively, be the total time in I during which Z is in shaft (i, j), east-west corridor (j, k) and north-south corridor $(i, k) .{ }^{1}$ Obviously, we have

$$
\begin{equation*}
\sum_{\substack{1 \leq i \leq n-1 \\ 1 \leq j \leq n-1}} x_{i, j}+\sum_{\substack{1 \leq j \leq n-1 \\ 1 \leq k \leq n-1}} y_{j, k}+\sum_{\substack{1 \leq i \leq n-1 \\ 1 \leq k \leq n-1}} z_{i, k} \geq|I| . \tag{1}
\end{equation*}
$$

(When Z is at a vertex, he is simultaneously in the shaft and two corridors passing through it.) Now, for some fixed i and j, let $J_{1}, J_{2}, \ldots, J_{l}$ be the disjoint maximal intervals in I in which Z is in shaft (i, j). Then $\left|J_{1}\right|+\left|J_{2}\right|+\cdots+\left|J_{l}\right|=x_{i, j}$. Suppose in Step 1, A selects direction $+x$ (with probability $\frac{1}{3}$) and $m=i$ (with probability $\frac{1}{n}$), and executes Action 2.2 (with probability $\frac{2}{3}$). Since it takes exactly $\frac{j}{s}$ time units for A to go from $c=(i, 0,0)$ to $(i, j, 0), A$ will see Z in shaft (i, j) at the moment he reaches $(i, j, 0)$ if A leaves vertex $c=(i, 0,0)$ at any time in any of $J_{1}-\frac{j}{s}, J_{2}-\frac{j}{s}$, $\ldots, J_{l}-\frac{j}{s}$. Since $1 \leq t-\frac{j}{s}<3 n$ holds for any $2 n \leq t \leq 3 n$ and $1 \leq j \leq n-1$, these intervals are pairwise disjoint sub-intervals of $W=[n, 3 n]$. Then, since A 's starting time $n+w$ is chosen uniformly at random in W (because w is chosen uniformly at random in $[0,2 n]$), the probability of the above event is

$$
\frac{\sum_{1 \leq t \leq l}\left|J_{t}-\frac{j}{s}\right|}{|W|}=\frac{\sum_{1 \leq t \leq l}\left|J_{t}\right|}{|W|}=\frac{x_{i, j}}{|W|}
$$

Consequently, assuming that A has chosen $d=+x$ and $m=i$ in Step 1 and Action 2.2 in Step 2 , the possibility that A sees Z from a vertex while moving along north-south corridor $(i, 0)$ is at least

$$
\sum_{1 \leq j \leq n-1} \frac{x_{i, j}}{|W|}
$$

[^0](If $s=1$, then A may see Z in multiple shafts while moving along north-south corridor $(i, 0)$. This means that two sub-intervals of W contributing in the above summation, associated with different values of j, may not be disjoint, sharing a single point in time. However, for any given move of Z, the set of starting times for A that make this possible has measure zero, and hence the above claim always holds.) Using a similar argument for axis directions $+y$ and $+z$ and summing all up, the probability that A chooses Action 2.2 and sees Z from a vertex is, by (1), at least
$$
\frac{1}{3 n} \cdot \frac{2}{3} \cdot\left(\sum_{\substack{1 \leq i \leq n-1 \\ 1 \leq j \leq n-1}} \frac{x_{i, j}}{|W|}+\sum_{\substack{1 \leq j \leq n-1 \\ 1 \leq k \leq n-1}} \frac{y_{j, k}}{|W|}+\sum_{\substack{1 \leq i \leq n-1 \\ 1 \leq k \leq n-1}} \frac{z_{i, k}}{|W|}\right) \geq \frac{1}{3 n} \cdot \frac{2}{3} \cdot \frac{|I|}{|W|}=\frac{1}{9 n} .
$$

Consequently, we obtain the following lemma.
Lemma 2 In $G_{n \times n \times n}$, with probability at least $\frac{1}{9 n}$, a single robot with a maximum speed of $s \geq 1$ can detect/see Z from a vertex within $O(n)$ time.

[^0]: ${ }^{1}$ We take $i, j, k \geq 1$ since by assumption Z never enters any of the $x y$-plane, $y z$-plane, and $x z$-plane in $[n, 4 n]$.

