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Abstract—Thus far, many methods for calculating semantic
similarity have been proposed. Most of them produce a single
value that is to “represent all aspects of similarity.” In opposition
to this approach we argue that semantic entities can be similar
in different ways, each with a separate score (and meaning /
interpretation). We propose conceptualization of semantic simi-
larity through separate dimensions that denote / capture different
“aspects of similarity.”

I. INTRODUCTION

OVER the years, multiple methods of calculating se-
mantic similarity have been proposed. For ontologies,

similarity of pairs of entities is based either on simple terms
or complex concepts. This note concerns measurement of
semantic similarity between entities in description logic (DL).
Let us stress that we are not interested in ontology matching,
understood as finding similarities between ontologies (e.g. as
in [27]). Instead, we consider a single ontology and answers
to questions like: what is the similarity between two (or more)
entities within it? or, for a given entity, which entity (form a
given set) is most similar to it?

II. DESCRIPTION LOGIC

Let us start from a few comments about description logic
(DL). In DL knowledge is stored in knowledge bases (KB) that
contain ontologies. KBs are partitioned into TBox, ABox and
RBox. TBox contains declarations and descriptions of concepts
(classes). Each concept description is constructed from concept
names, role names, constants and a set of constructors. A
hierarchy of concepts is called a taxonomy. ABox contains
assertions about individuals built from concept names, role
names and constants. An individual is an instance of one, or
more classes, and can have roles (properties) assigned to it.
RBox describes relationships between roles. In what follows,
concept names are denoted by A,B, .., Z, individual names
by a, b, .., o, and role names by p, r, .., z.

In DL (see, [9]), there are two definitions relevant to calcu-
lation of similarity – the least common subsumer (LCS; [10])
and the most specific concept (MSC; [11]). The LCS of entities
X and Y is the most specific entity that is an ancestor to both
X and Y . In a taxonomy, it is a concept that shares the most
types with the compared concepts. The MSC of an individual
is a concept whose description is built from assertions about
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the individual in a way that includes every such assertion. In
other words, it is a class that is built specifically to contain
that individual.

III. SIMILARITY MODEL

Let us now discuss selected models of similarity, used in
practice (for a more comprehensive list, see [5]). In Tversky’s
model [12] concepts are represented by sets of features. Simi-
larity of two sets of features X and Y is given by STv(X,Y ) =

αf(X∩Y )
αf(X∩Y )+βf(X−Y )+γf(Y−X) , where f is a monotonically
increasing function while α, β and γ are positive coefficients.
For different choices of coefficients STv(X,Y ) produces dif-
ferent formulas; e.g. for α = β = γ = 1 and f = | · | the
model becomes the Jaccard index J(X,Y ) = |X∩Y |

|X∪Y | .
In the Information Content (IC) model, proposed in [13],

similarity is related to the “amount of information” an entity
provides. The IC of an entity e is computed from its probability
p(e): IC(e) = − log(p(e)). When applied to a textual entity
in a corpus, p(e) is the probability that this entity appears in a
given document from the corpus. In a taxonomy, probability of
an entity is inversely proportional to the number of entities it
subsumes. It is calculated from the IC of the most informative
common ancestor (MICA) – a common subsumer that has the
maximum IC: SRes(X,Y ) = IC(MICA(X,Y )).

Edge-based models assume that the edge distance in an
ontology graph is meaningful for similarity. The simplest
approach considers similarity to be equal to the length of
the shortest path between a pair of concepts SRada(X,Y ) =
min(paths(X,Y )) ([6]), where paths(X,Y ) is the set of path
lengths in an IS-A graph (see, Section IV). More sophisticated
methods, such as, e.g. SimWu(X,Y ) = 2∗depth(LCS(X,Y ))

depth(X)+depth(Y )
([7]), involve normalization and take into account depth of
the compared entities, depth of their LCS, or length of
path between the root, LCS and entities. Finally, [8] utilizes
multiple relations (not just IS-A) in a graph (multigraph).

IV. SEMANTIC SIMILARITY DIMENSIONS

This note draws on the idea of knowledge dimensions
introduced in [2], where ontological knowledge was divided
into subsets (dimensions). This idea was applied (in [1]) to
combine “dimensional scores” into a (single) similarity score.

The idea of semantic similarity dimensions is based on
a conjecture that different “aspects of similarity” can be



“grouped together.” Those groups represent different dimen-
sions of semantic similarity. A simple example of this ap-
proach is a comparison of two physical objects with respect
to shape and color. Both features have independent similarity
scores (objects can have similar color and different shape). It
can be shown that, in DL, different dimensions use sets of
data that are “separable.” Let us follow this idea with further
details.

External similarity dimensions

External similarity dimensions involve information from
outside of the knowledge base or the ontology, that con-
tains compared entities. External methods use a small (likely
atomic) part of an entity description, that serves as an identi-
fier, to find information about it in external sources.

Here, a pair of natural language labels can be subject to
the lexical methods. They can utilize dictionaries and lexical
ontologies (such as WordNet) to asses similarity of entities
(see [1]). A simple lexical method could, for instance, extract
concept labels and use WordNet’s synsets of these labels as
features, in a feature-based method. Lexical dimension is most
useful when entities have uniquely identifying labels (e.g.
“dolphin” and “porpoise”) and gives poor results for non-
unique labels (e.g. human names).

Co-occurrence methods (known for questionable results [3])
are also external. Here, similarity is calculated assuming that
entities that appear together in high number of contexts (e.g.
words in many text corpora) are “similar.” For instance, web
search that measures the number of web pages that contain
two (or more) terms is a co-occurrence method.

The biggest weakness of the external similarity dimensions
is that they operate on small terms rather than full descrip-
tions. Usefulness of methods in external dimension relies on
existence of a good unique IDs for the considered entities.

Internal dimensions

Similarity in the hierarchical sort dimension (also called
hierarchical or taxonomical) is based on the underlying tax-
onomy. Here, in the sort dimension, similarity grows with each
IS-A relation that points to the same concept for both entities
and decreases with each relation that holds true only for one.
Many edge-counting methods (e.g. [19]), some IC methods
(e.g. [14], [26]) and feature methods (e.g. [4]) can be used in
this dimension. The sort dimension includes information about
subsumption (w), inclusion (v) and equivalence (≡). Simi-
larity measures that work on subsumptions usually take into
account subsumers of measured classes, rather than children.
Some IC methods make use of number of children (subsumed
classes) to calculate “probability” of a node.

The descriptive dimension encapsulates properties that an
entity “has” as opposed to what it “is.” It compares attributes,
or properties of objects. The more disparate attributes between
entities, the less similarity and vice-versa. More formally, in
descriptive dimension one is interested in roles that are not of
type IS-A. In DL terms, those are either role assertions (e.g.
r(a, b)), or restrictions (e.g. ∃p.C, ∀t.5). In the descriptive

dimension one can treat “descriptive” expressions as sets of
features, either for a TBox or an ABox. However, existing
methods usually do not distinguish between sort and descrip-
tive data, so no purely descriptive methods have been found.

Another way to create a dimension is to isolate a part
of the descriptive knowledge into its own dimension. Any
subdivision of the descriptive dimension generally means loss
of universality, i.e. one cannot apply the new dimension to
every ontology. An example is the compositional dimension
that takes into account roles that denote “having parts,”
“having ingredients,” etc. Compositional dimension has a very
clear interpretation and humans often look at composition of
a physical object. In practice this dimension is applicable
only if the knowledge base contains specific role that fits
this dimension (hasPart, isPartOf, etc.). Both SSN [20] and
WordNet [16] have such roles.

Instead of the role (hasPart) one might choose a set of
roles to represent a dimension. For instance, in a sensor
ontology [20], a physical dimension would describe size, mass
and shape of a sensor. In this case, other features such as
location or interface type would be irrelevant.

A dimension that is not a subdivision of a descriptive
dimension, is the membership dimension. It can be used to
measure similarity (only) between concepts by comparing sets
of individuals that are of a specific type. The membership
dimension is implicitly used in [15] to build feature sets (and
to calculate similarity as in the Tversky’s feature method).

V. EXAMPLE OF MULTI-DIMENSIONAL SIMILARITY

Let us now consider an example of dimensional similarity
scores in a mock-up biological ontology (see Fig. 1), which
is an extract of a phylogenetic ontology, with added roles. We
compare three concepts – short-beaked common dolphin [21],
silvertip shark [22] and lesser electric ray [24] denoted D, S
and R respectively. Data originates from [21], [22], [23], [24],
[25]. This example is meant to demonstrate usage and indicate
usefulness of similarity dimensions. The taxonomic methods
use data in the hierarchy of concepts. In this example there are
20 phylogenetic concepts (classes, including >). According
to Resnik’s method [13] SRes(X,Y ) = IC(MICA(X,Y )),
IC(e) = − log(p(e)) similarity scores are as follows:
SRes(D,S) = IC(CHORDATA) = − log( 1820 ) ≈ 0.105,
SRes(S,R) = IC(SELACHIMORPHA) = − log( 9

20 ) ≈
0.799, SRes(D,R) = IC(CHORDATA) ≈ 0.105. Note that
this example contains only a fraction of phylogenetic classes
and in a full ontology Resnik’s method would give a differ-
ent(!) score. Calculation of Jaccard index J(A,B) =

|Af∩Bf |
|Af∪Bf | ,

where Af is a set of features of A and assuming that each type
of a concept (including >) is a feature, gives the following
results: J(D,S) = 3

16 ≈ 0.188, J(S,R) = 6
14 ≈ 0.429,

J(D,R) = 3
16 ≈ 0.188.

In the descriptive dimension we use role restrictions. We
can, again, use the Jaccard index, using roles as features.
Hence, the similarity dimensions are, in fact, independent of
the method. Here, D and S have 6 roles each, while R has 4
roles.



Fig. 1. Phylogeny ontology example

Let us also consider the physical dimension represented
by roles for mass, length and coloration. To better represent
differences between numerical values, a simple ratio method
is used for the data values of the same role. This similarity
is equal to the smaller value divided by the larger one
Sval(k

r, lr) = min(kr,lr)
max(kr,lr) , where kr and lr are values of role

restrictions or assertions, about the same role r. For instance,
similarity of average weight between D and S is 118

130 ≈ 0.907.
Total similarity, is this dimension, is calculated by taking
arithmetic average over similarity of each relevant role. The
scores are: Simph(D,S) =

118
130+

200
225+1

3 ≈ 0.932, Simph(S,R) =
45
225+0+0

3 ≈ 0.067, Simph(D,R) =
45
200+0+0

3 ≈ 0.075.

TABLE I
APPROXIMATE SIMILARITY SCORES

Sim(D,S) Sim(S,R) Sim(D,R)
taxonomical
Resnik 0.105 0.799 0.105
Jaccard 0.188 0.429 0.188
descriptive
Jaccard 0.2 0.0 0.0
physical
subdimension 0.932 0.067 0.075

Obtained similarity scores are summarized in Table I. Ob-
serve that each method produces different similarity scores,
even in the same dimension; e.g. Resnik’s method gives
different results than Jaccard method. This is, for instance,
because of the assumption of Resnik that distance to the root
in an ontology (a level) is significant. This also means that the
results produced by the Resnik’s method depend on “size of
the taxonomy.”

The levels of example concepts do not correspond with
levels of phylogenetic classification, e.g. the dolphin does
not have a subclass or superorder, so technically its order
(CETACEA) is on the same ontological level as subclass of the

shark (ELASMOBRANCHII), even though intuitively (and in
accordance with biological research) an order should be more
informative than a subclass.

Explanation of those results lays in the fact that the de-
scriptive features were not used when constructing phylogeny.
Features such as diet, type of reproduction, coloration, period
of gestation, and others vary in the same genus, so species
are not classified based on those characteristics. Purely taxo-
nomical methods (such as Resnik’s) do not take such features
into account at all. Consequently, in this case, the descriptive
results are independent of the taxonomy.

Note also that the physical dimension score does not co-
incide with the descriptive score, even though the former
is, theoretically, a subdimension of the latter. This difference
stems from the difference in methods used in each dimension.
The physical method takes into account degree of difference
between values corresponding to the same role, while the
descriptive one does not. Note that there is no good and
universal method that would compare complex descriptions
in expressive DLs in an in-depth manner.

The “final answer” to the question of “how similar are two
concepts?,” for the dolphin and shark, according to Resnik’s
method is 0.105. According to the method of dimensional
similarity D and S have taxonomical similarity of 0.188,
descriptive similarity of 0.2 and physical similarity of 0.932.

Overall the results suggest that short beaked dolphins and
silvertip sharks look similar (high physical similarity), but
are evolutionary different (low or average taxonomical score).
Note that this statement is possible because separate dimen-
sions of similarity have been independently evaluated.

One dimension that was not used (for sake of brevity) is the
compositional dimension. It would comprise of physical “com-
ponents” of the animals with additional details, for instance,
fins (e.g. small pointed dorsal fin), details of bone structure
(e.g. serrated teeth), specific organs and functions. Note that
this dimension has a specific interpretation in the context of
phylogeny.

VI. COMBINING DIFFERENT DIMENSIONS

Separate similarity scores can be combined into a single
number. In [1] authors used a weighted sum of 5 dimensional
similarity scores, and weights trained against human-based
similarity scores. The suggested advantage of this approach is
that the final score combines “all available knowledge.” The
main disadvantage is that there is no reason to believe that
weights calculated for one ontology will “work” for a different
one. There is also a question: what is the actual meaning of
these weights?

Let us now propose that representing similarity scores in a
similarity vector (containing all dimensions as separate values)
would avoid aforementioned problems. One would also posses
precise information as to what similarity dimension each score
represents. For instance, as cen be seen above, the lexical
dimension answers “how similar are the names,” co-occurence
answers “how often do they appear together,” taxonomical
dimension deals with “classification or types of entities.”



In the example from section V the taxonomical score has
an interpretation of phylogenetic similarity (i.e. evolutionary
ancestry). Understanding of what is phylogeny and how it is
constructed further improves the understanding of this dimen-
sion. In SSN [20], the taxonomical dimension has a different
interpretation and describes the kind of sensor, process or
model (depending on module). Descriptive dimension answers
general questions about roles, properties, characteristics, etc.
and, similarly to taxonomical dimension might answer a more
specific question depending on the context.

VII. CONCLUDING REMARKS

The notion of (semantic) similarity is, by nature, vague and
ambiguous. Many semantic similarity measuring methods have
been proposed and work well for ontology-specific or domain-
specific applications. Their results, however, do not generalize
across domains (or ontologies). Similarity dimensions address
this problem and attempt to rectify the ambiguity of similarity
scores. A combined, single score suggests how similar two
entities are, but does not answer the question: in what way
are the entities actually similar? Multi-dimensional similarity
scores may provide such answers by treating each dimension
separately. Thus, it is possible to capture the fact that being
descriptively similar is different from taxonomically similar, or
lexically similar, etc. In short, dimensions add extra meaning
to similarity. Dimensional scores specify not only how similar
entities are, but also why.

Furthermore, as is apparent from the phylogeny example
(section V), in practice, known methods utilize only a part of
available knowledge. For instance Resnik’s method is purely
taxonomical, but this fact is apparent only after analysis of
the method. Hence, merely by explicitly labeling this method
as taxonomical one gains valuable information. Someone not
familiar with details of Resnik’s method would not know why
similarity does not change, even if one adds a lot of roles
into the KB. Labeling it as taxonomical informs us that it is
insensitive to roles.

It should be stressed that the proposed approach is flexible
as: (i) it still allows attempts at domain/ontology specific meth-
ods to combine separate scores into a single one (as in, [1],
[2]), (ii) it is possible to restrict similarity dimensions that are
actually considered in a given domain (e.g. only taxonomic
and compositional dimensions), based on the “nature of the
application.”

Note that accurate dimensional characterization of complex
methods, such as IntelliGO [18] (a domain specific method for
the Gene Ontology [17] similarity), may turn out very difficult.
Note that this is not a judgment about correctness or usefulness
of such methods. As a matter of fact, these application specific
methods may work best in capturing the “nature of the specific
problem” (similarly to training weights in [1]).

This, in turn, may lead to the following general conclusion.
There are two ways of dealing with semantic similarity. First,
the general approach (e.g. the one proposed in this note),
based on application of similarity dimensions, with separate

scores to understand how similar entities are and in what way.
Second, development of domain / ontology specific methods
that capture only the nature of the problem of interest.
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