WSZYSTKIE ISTOTNE OBLICZENIA I ARGUMENTY MUSZĄ ZNALEŹĆ SIĘ NA TYCH KARTKACH.

1. Rozwiązać równanie \(x^2 - (1 + 4j)x + 19 + 17j = 0 \).

2. Wyznaczyć wszystkie pierwiastki wielomianu \(V(x) = 3x^4 + 2x^3 - 15x^2 + 12x - 2 \).

3. Rozwiązać układ trzech równań o sześciu niewiadomych:

\[
\begin{align*}
-x_1 + 2x_3 - 5x_4 + x_5 - x_6 &= 0, \\
x_1 - x_3 + 3x_4 - x_5 + 2x_6 &= 0, \\
x_1 + x_3 - x_4 + x_5 + 4x_6 &= 0.
\end{align*}
\]

4. Wyznaczyć \(\mathbf{X} \) z równania:

\[
\begin{bmatrix}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
5 & 2 \\
2 & 1
\end{bmatrix}
= \begin{bmatrix}
11 & 5 \\
-3 & -1 \\
29 & 9
\end{bmatrix}.
\]
5. Sprawdzić, czy wektor \(\mathbf{v} = \begin{bmatrix} 3 \\ 5 \\ 5 \end{bmatrix} \) jest kombinacją liniową wektorów ze zbioru \(S = \left\{ \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \right\} \).

6. Wyznaczyć długość wektora \(\mathbf{a} = 3x - 2y \), gdy \(|x| = 2\), \(|y| = 3\) i \(\angle(x, y) = \frac{\pi}{3}\).

7. Dane jest przekształcenie liniowe \(T: \mathbb{R}^3 \rightarrow \mathbb{R}^4 \), gdzie \(T(1, 0, 1) = (0, 1, 0, 1) \), \(T(0, 1, 1) = (0, 0, 1, 1) \) i \(T(1, 1, 1) = (1, -1, 0, 1) \). Wyznaczyć \(T(x, y, z) \).

8. Znaleźć najlepsze rozwiązanie sprzecznego układu równań \(\begin{align*}
x_1 + x_2 &= 1, \\
x_1 - x_2 &= 0, \\
x_2 &= 1.
\end{align*} \)

9. Wyznaczyć prostą \(y = ax + b \), która, w sensie metody najmniejszych kwadratów, najlepiej pasuje do punktów \((-1, 2), (1, 1), (3, 4), (5, 3)\).