The TECTON Concept Library

David R. Musser, Sibylle Schupp,
Christoph Schwarzweller and Rüdiger Loos

WSI 99-2

30. September 1999

Wilhelm-Schickard-Institut für Informatik
Arbeitsbereich Computeralgebra
Prof. Dr. Rüdiger Loos
Sand 13
D-72076 Tübingen

e-mail: {musser,schupp}@cs.rpi.edu, {schwarzw,loos}@informatik.uni-tuebingen.de

© WSI 1999
ISSN 0946-3852
Abstract

TECTON is an algebraic specification language. This report contains a considerable body of TECTON concepts which evolved over a long time. The concepts serve as a test bed for a TECTON translator and are a formal base for declarations occurring in algorithms from all areas of programming but in particular from computer algebra.
Contents

1 Introduction

2 Sets, Maps and Sequences
 2.1 Boolean, Domain, Set, Finite-set, Range
 2.2 Domain, Range and Set
 2.3 Map, Finite-map, Natural, Segment, Natural-set
 2.4 Sequence, Finite-sequence, Cartesian-product-of-set

3 Relations
 3.1 Unary-relation, General-binary-relation, Function, Binary-relation
 3.2 Surjection, Injection
 3.3 Transitive, Symmetric, Reflexive, Irreflexive, Antisymmetric
 3.4 Bijection, Finite
 3.5 Equivalence-relation, Equivalence-class, Set-of-representatives

4 Order Concepts
 4.1 Strict-partial-order, Partial-order, Total-order, Trichotomy
 4.2 Nondense-order, Dense-order, Archimedean-order, Continuous-order

5 Algebras with 1 Connective
 5.1 Binary-op, Right-regular, Right-identity, Left-regular, Left-identity
 5.2 Commutative, Associative, Right-inverses, Regular, Left-inverses, Identity
 5.3 Semigroup, Inverses, Regular-semigroup, Monoid, Commutative-semigroup
 5.4 Group, Abelian-monoid, Trivial-group, Group-of-order-2
 5.5 Commutative-group, Abelian-group, Additive-trivial-group

6 Algebras with 2 Connectives
 6.1 Right-distributive, Left-distributive, Distributive, Semiring, Ring
 6.2 Commutative-ring, Ring-with-identity, Commutative-ring-with-identity, Unit
 6.3 Right-module, No-zero-divisors, Left-module, Division-ring, Module, Skewfield
 6.4 Right-ideal, Left-ideal, Integral-domain, Gcd-domain, Euclidean-domain
Chapter 1

Introduction

We have defined well over 100 algebraic concepts in the concept description language TECTON [5],[4]. The main goal of these definitions is to provide a torture test of TECTON; but at the same time we are interested to have a conceptual framework for algorithm specification for a generic library for computer algebra. If the TECTON translator and the generic library evolve in the future the concepts of this report should always remain a fixed base for regression testing.

A second goal of this report are combined definitions of concepts important both for computer science and mathematics with all rigour and details which are needed for formal reasoning and software construction with provable properties. We claim, for example, that our definition of the reals inspired by Tarski [6], is the first single concept definition of the reals on a machine without any loss of mathematical contents and precision. Of course the complete concept of the reals is at the basis of many algorithms over the reals, as for example in quantifier elimination algorithms for real closed fields; but the concept is not explicitly represented on the machine in any formal sense.

Also the real numbers have been constructed using theorem provers like for example Mizar [9] or HOL [8]; but the emphasis of these constructions is ”only” to prove properties of the reals and not to serve in addition as the basis for a data structure over which algorithms are to be executed.

The concepts are organized in a single acyclic tree of concept families with the set-family as its root. The family algebra1 provides concepts for a single, the family algebra2 for two connectives. They are first independent of any relation and order concepts, but then merged with these families into the family of ordered algebra (ordalgebra). Another offspring of the algebra families is the family of morphisms.

Ordered algebra is the base family for arithmetical concepts (with the small exception of the naturals, which are needed already in the root family in order to define sequences and similar concepts). The arithmetical family comprises integers, rationals, reals, complex and quaternions. This arithmetical hierarchy was inspired from a similar effort in OBJ3, but stays within the framework provided by mathematics. Polynomials are finally inherited from arithmetical concepts such that a firm conceptual base for this important computer algebra domain with its algorithms can be established. Ample set, the last family in this report, play an important role in gcd-algorithms and any algorithm working on canonical forms of its input.

The reader is invited to report errors to loos@informatik.uni-tuebingen.de.
Figure 1.1: Structure of the library
Chapter 2
Sets, Maps and Sequences

2.1 Boolean, Domain, Set, Finite-set, Range

"src/set.tec" 4a ≡

Library: std
 Boolean, Domain, Set, Finite-set, Range, Map, Finite-map, Natural, Segment,

Definition: Boolean
 introduces bool,
 true -> bool,
 false -> bool;
 generates bool freely using true, false.

Precedence: nonassociative{=, !=}.
Precedence: {implies} < {or, xor} < {and}
 < prefix{not} < nonassociative{=} < {;}.
Precedence: confix{(, ,,)}.

Extension: Boolean
 introduces
 not : bool -> bool,
 and : bool x bool -> bool,
 or : bool x bool -> bool,
 xor : bool x bool -> bool,
 implies : bool x bool -> bool;
 requires (for x, y: bool)
 (not true) = false,
 (not false) = true,
 (true and x) = x,
 (false and x) = false,
 (x or y) = (not (not x and not y)),
 (x xor y) = (not x = y),
 (x implies y) = (not x or y).

⋄ File defined by parts 4ab, 5ab, 6ab, 7abc.

2.2 Domain, Range and Set

"src/set.tec" 4b ≡

Definition: Domain
 uses Boolean;
introduces domain.

Precedence: nonassociative(=) < nonassociative(in).
Definition: Range
uses Domain[with range as domain].

Definition: Set
uses Domain;
introduces sets,
empty : \to sets,
member: domain \times sets \to bool;
requires
(for a: domain) member(a, empty) = false.

⋄
File defined by parts 4ab, 5ab, 6ab, 7abc.

"src/set.tec" 5a ≡

Precedence: nonassociative(in, into).
Precedence: nonassociative(=) = \{union\} < \{intersection\} < \{subset\}.

Extension: Set
introduces
nonempty-sets < sets,
subset : sets \times sets \to bool,
is_empty : sets \to bool,
complement : sets \to sets,
singleton : domain \to sets,
into : domain \times sets \to sets,
union : sets \times sets \to sets,
intersection : sets \times sets \to sets;
requires (for d, e: domain; s, s1, s2: sets)
(s1 \subset s2) = (member(d, s1) \implies member(d, s2)),
is_empty(s) = (s = empty),
member(d, (e \text{ into } s1)) = ((d = e) \text{ or } member(d, s1)),
member(d, complement(s)) = \neg member(d, s),
singleton(d) = (d \text{ into } empty),
(s1 \cup \text{ empty}) = s1,
(s1 \cup \text{ (d \text{ into } s2)}) =
 \text{ if member(d, s1) then } s1 \cup s2
 \text{ else } d \text{ into } (s1 \cup s2),
(s1 \cap \text{ empty}) = empty,
(s1 \cap \text{ (d \text{ into } s2)}) =
 \text{ if member(d, s1) then } d \text{ into } (s1 \cap s2)
 \text{ else } s1 \cap s2,
s in nonempty-sets = (s \neq empty).

⋄
File defined by parts 4ab, 5ab, 6ab, 7abc.

"src/set.tec" 5b ≡

Lemma: Set
obeys (for d, e: domain; s, s1, s2: sets)
is_empty(empty),
(s \subset \text{ empty}) \implies (s = empty),
member(d, singleton(e)) = (d = e),
member(d, s1 \cup s2) = (member(d, s1) \text{ or } member(d, s2)),
member(d, s1 \cap s2) = (member(d, s1) \text{ and } member(d, s2)).
Definition: Finite-set
refines Set,
introduces
finite-sets < sets,
nonempty-finite-sets < nonempty-sets,
into : domain x finite-sets -> nonempty-finite-sets;
generates finite-sets using empty, into;
requires (for s: sets; s1: nonempty-sets)
s in finite-sets
= (s = empty or s != empty
and (for some d: domain; s': finite-sets) s = d into s'),
s1 in nonempty-finite-sets = (s1 != empty).

File defined by parts 4ab, 5ab, 6ab, 7abc.

2.3 Map, Finite-map, Natural,
Segment, Natural-set

"src/set.tec" 6a ≡

Definition: Map
refines Set[with maps as sets, nonempty-maps as nonempty-sets];
uses Range;
introduces
apply : maps x domain -> range.

Definition: Finite-map
refines Map;
introduces
finite-maps < maps,
nonempty-finite-maps < nonempty-maps,
into : domain x finite-maps -> nonempty-finite-maps;
generates finite-maps using empty, into;
requires (for s: maps; s1: nonempty-maps)
s in finite-maps
= (s = empty or s != empty
and (for some d: domain; s': finite-maps) s = d into s'),
s1 in nonempty-finite-maps = (s1 != empty).

File defined by parts 4ab, 5ab, 6ab, 7abc.

"src/set.tec" 6b ≡

Precedence:
nonassociative{<, <=, >=, >, =} < {+, -} < {*).

Definition: Natural
refines Domain [with naturals as domain];
introduces
0 -> naturals,
1 -> naturals,
succ : naturals -> naturals,
+ : naturals x naturals -> naturals,
* : naturals x naturals -> naturals;
generates naturals freely using 0, succ;
requires (for n, m: naturals)
n + 0 = n,
n + succ(m) = succ(n + m),
CHAPTER 2. SETS, MAPS AND SEQUENCES

7

1 = succ(0),
n * 0 = 0,
n * succ(m) = n * m + n.

⋄
File defined by parts 4ab, 5ab, 6ab, 7abc.

"src/set.tec" 7a ≡

Extension: Natural
introduces
 nonzero-naturals < naturals,
 naturals < naturals?,
 2 : -> naturals,
 natural-underflow -> naturals?,
 - : naturals x naturals -> bool,
 < (x: naturals, y: naturals) = (x <= y and not(x = y)),
 >= (x: naturals, y: naturals) = not(x < y),
 > (x: naturals, y: naturals) = not(x <= y);
requires (for n, m: naturals; k: naturals?)
 2 = 1 + 1,
 n - 0 = n,
 0 - n = if n=0 then 0 else natural-underflow,
 succ(n) - succ(m) = n - m,
 0 <= n,
 not(succ(n) <= 0),
 (succ(m) <= succ(n)) = (m <= n),
 n in nonzero-naturals = (n != 0),
 k in naturals = (k != natural-underflow).

⋄
File defined by parts 4ab, 5ab, 6ab, 7abc.

"src/set.tec" 7b ≡

Definition: Segment
uses Natural;
introduces
 segments < naturals,
 max: -> naturals;
requires (for n: naturals)
 n in segments = (n < max).

Abbreviation: Natural-set is
Set [with Natural as Domain,
 naturals as domain,
 natural-sets as sets].

⋄
File defined by parts 4ab, 5ab, 6ab, 7abc.

2.4 Sequence, Finite-sequence, Cartesian-product-of-set

"src/set.tec" 7c ≡

Definition: Sequence
refines Map [with Natural as Domain,
 naturals as domain,
 n_th as apply,
 sequences as maps,
 nonempty-sequences as nonempty-maps].
Definition: Finite-sequence
refines Sequence;
introduces
 finite-sequences < sequences,
 nonempty-finite-sequences < nonempty-sequences,
 into : domain x finite-sequences -> nonempty-finite-sequences;
generates finite-sequences freely using empty, into;
requires (for s: sequences; s1: nonempty-sequences)
 s in finite-sequences
 = (s = empty or s != empty
 and (for some d: domain; s': finite-sequences) s = d into s'),
 s1 in nonempty-finite-sequences = (s1 != empty).

Definition: Cartesian-product-of-set
refines Finite-sequence [with Set as Range, sets as range].

File defined by parts 4ab, 5ab, 6ab, 7abc.
Chapter 3

Relations

3.1 Unary-relation, General-binary-relation, Function, Binary-relation

"src/relation.tec" 9a ≡

Pragma: include="set.xgf".
Pragma: concepts.
Library: std
 Unary-relation, General-binary-relation, Function, Binary-relation, Surjection,
 Injection, Transitive, Symmetric, Reflexive, Irreflexive, Antisymmetric,
 Bijection, Finite, Equivalence-relation, Equivalence-class,
 Set-of-representatives.

Precedence: nonassociative{=, R} < prefix{P}.

Definition: Unary-relation
 refines Domain;
 introduces P : domain -> bool.

File defined by parts 9abc, 10abcdef, 11abc.

"src/relation.tec" 9b ≡

Precedence: nonassociative{R, <=}.

Definition: General-binary-relation
 uses Domain, Range;
 introduces R : domain x range -> bool.

File defined by parts 9abc, 10abcdef, 11abc.

"src/relation.tec" 9c ≡

Definition: Function
 refines General-binary-relation;
 introduces f: domain -> range;
 requires (for x: domain; y, y': range)
 (f(x) = y) = (x R y),
 f(x) = y and f(x) = y' implies y = y'.

File defined by parts 9abc, 10abcdef, 11abc.
CHAPTER 3. RELATIONS

"src/relation.tec" 10a ≡

Definition: Binary-relation
refines Domain;
introduces R : domain x domain -> bool.

Lemma: Binary-relation is General-binary-relation.

⋄
File defined by parts 9abc, 10abcdef, 11abc.

3.2 Surjection, Injection

"src/relation.tec" 10b ≡

Definition: Surjection
refines Function;
requires (for y: range) (for at least 1 x: domain)
f(x) = y.

⋄
File defined by parts 9abc, 10abcdef, 11abc.

"src/relation.tec" 10c ≡

Definition: Injection
refines Function;
requires (for y: range) (for at most 1 x: domain)
f(x) = y.

⋄
File defined by parts 9abc, 10abcdef, 11abc.

3.3 Transitive, Symmetric, Reflexive, Irreflexive, Antisymmetric

"src/relation.tec" 10d ≡

Definition: Transitive
refines Binary-relation;
requires
(for x, y, z: domain) x R y and y R z implies x R z.

⋄
File defined by parts 9abc, 10abcdef, 11abc.

"src/relation.tec" 10e ≡

Definition: Symmetric
refines Binary-relation;
requires
(for x, y: domain) x R y implies y R x.

⋄
File defined by parts 9abc, 10abcdef, 11abc.

"src/relation.tec" 10f ≡
Definition: Reflexive
 refines Binary-relation;
 requires
 (for x: domain) x R x.

Definition: Irreflexive
 refines Binary-relation;
 requires
 (for x: domain) not x R x.

Definition: Antisymmetric
 refines Binary-relation;
 requires
 (for x, y: domain) x R y and y R x implies x = y.

File defined by parts 9abc, 10abcdef, 11abc.

3.4 Bijection, Finite

"src/relation.tec" 11a ≡

Definition: Bijection
 refines Surjection, Injection.

Definition: Finite
 refines Domain,
 Bijection [with segments as domain, domain as range];
 uses Segment.

File defined by parts 9abc, 10abcdef, 11abc.

3.5 Equivalence-relation, Equivalence-class,
 Set-of-representatives

"src/relation.tec" 11b ≡

Definition: Equivalence-relation
 refines Reflexive, Symmetric, Transitive.

Precedence: nonassociative(=, equiv).

Definition: Equivalence-class
 uses Domain, Equivalence-relation [with equiv as R];
 introduces equivalence-classes,
 member : domain x equivalence-classes -> bool,
 equivalence-class : domain -> equivalence-classes;
 requires (for x, y: domain; e: equivalence-classes)
 (equivalence-class(x) = equivalence-class(y)) = (x equiv y),
 member(x, e) = (equivalence-class(x) = e).

File defined by parts 9abc, 10abcdef, 11abc.

"src/relation.tec" 11c ≡
Definition: Set-of-representatives
uses Equivalence-class;
introduces
 set-of-representatives < domain,
 representative : equivalence-classes -> domain,
 representative : domain -> domain;
requires (for x: domain; e: equivalence-classes)
 x in set-of-representatives = (representative(x) = x),
 equivalence-class(representative(e)) = e,
 representative(x) = representative(equivalence-class(x)).

File defined by parts 9abc, 10abcdef, 11abc.
Chapter 4

Order Concepts

4.1 Strict-partial-order, Partial-order, Total-order, Trichotomy

"src/order.tec" 13a

Pragma: include="relation.xgf", include="algebra1.xgf".

Precedence: nonassociative\{R, <\}.
Library: std
 Strict-partial-order, Partial-order, Total-order, Trichotomy, Nondense-order,
 Dense-order, Archimedean-order, Continuous-order.

Definition: Strict-partial-order
 refines Irreflexive [with < as R],
 Transitive [with < as R].
Precedence: nonassociative\{R, <=, =\}.

Definition: Partial-order
 refines Reflexive [with <= as R],
 Antisymmetric [with <= as R],
 Transitive [with <= as R].
Precedence: nonassociative\{<, <=, >, >=, \}.

Extension: Partial-order
 introduces
 < : domain x domain -> bool,
 > : domain x domain -> bool,
 >= : domain x domain -> bool;
 requires (for x, y: domain)
 (x < y) = (x <= y and x != y),
 (x > y) = (not x <= y),
 (x >= y) = (x > y or x = y).

 Lemma: Partial-order implies Strict-partial-order.

File defined by parts 13ab, 14ab.

"src/order.tec" 13b
4.2 Nondense-order, Dense-order,
 Archimedean-order, Continuous-order

"src/order.tec" 14a ≡

Definition: Nondense-order
refines Total-order;
requires not ((for x, y: domain)
 x < y implies (for some z: domain) x < z and z < y).

Definition: Dense-order
refines Total-order;
requires (for x, y: domain)
 x < y implies (for some z: domain) x < z and z < y.

Definition: Archimedean-order
refines Total-order, Abelian-group;
requires (for x, y, z: domain)
 x <= y implies x + z <= y + z.

"src/order.tec" 14b ≡

Definition: Continuous-order
refines Total-order;
uses Set;
introduces
 precedes : sets x sets -> bool,
 separates : sets x domain x sets -> bool;
requires (for K, L: sets; z: domain)
 precedes(K, L) = (for x, y: domain) member(x, K) and member(y, L) implies x < y,
 separates(K, z, L) = (for x, y: domain)
 member(x, K) and member(y, L) and x != z and y != z
 implies x < z and z < y,
 // Dedekind's axiom
 precedes(K, L) implies (for at least 1 z: domain) separates(K, z, L).

Lemma: Continuous-order implies Dense-order.
File defined by parts 13ab, 14ab.
Chapter 5

Algebras with 1 Connective

5.1 Binary-op, Right-regular, Right-identity, Left-regular, Left-identity

"src/algebra1.tec" 16a ≡

Pragma: include="set.xgf".
Precedence: nonassociative(=) < {#}.
Library: std
Binary-op, Right-regular, Right-identity, Left-regular, Left-identity,
Commutative, Associative, Right-inverses, Regular, Left-inverses, Identity,
Semigroup, Inverses, Regular-semigroup, Monoid, Commutative-semigroup, Group,
Abelian-monoid, Trivial-group, Group-of-order-2, Commutative-group,
Abelian-group, Additive-trivial-group.

Definition: Binary-op
uses Domain;
introduces * : domain x domain -> domain.

Precedence: nonassociative(=) < {#} < {+, -}.

Definition: Right-regular
refines Binary-op;
introduces | : domain x domain -> bool;
requires (for x, y: domain)
x | y = (for some d: domain) x * d = y.

Definition: Right-identity
refines Binary-op;
introduces 1 -> domain;
requires (for x: domain)
x * 1 = x.

Definition: Left-regular
refines Binary-op;
introduces | : domain x domain -> bool;
requires (for x, y: domain)
x | y = (for some d: domain) d * x = y.

⋄ File defined by parts 16ab, 17ab, 18abcde, 19ab.

"src/algebra1.tec" 16b ≡
CHAPTER 5. ALGEBRAS WITH 1 CONNECTIVE

Definition: Left-identity
refines Binary-op;
introduces 1 \to domain;
requires (for x: domain)
1 * x = x.

5.2 Commutative, Associative, Right-inverses, Regular, Left-inverses, Identity

"src/algebra1.tec" 17a ≡

Definition: Commutative
refines Binary-op;
requires (for x, y: domain)
x * y = y * x.

Definition: Associative
refines Binary-op;
requires (for x, y, z: domain)
x * (y * z) = (x * y) * z.

Precedence: prefix{-} < {*} < postfix{^(-1)}.

Definition: Right-inverses
refines Right-identity, Right-regular;
introduces ^(-1) : domain \to domain;
requires (for x: domain)
x * x^(-1) = 1.

Lemma: Right-inverses implies Right-regular.

Definition: Regular
refines Left-regular, Right-regular.

Precedence: prefix{-} < {*} < postfix{^(-1)}.

Definition: Left-inverses
refines Left-identity, Left-regular;
introduces ^(-1) : domain \to domain;
requires (for x: domain)
x^(-1) * x = 1.

Lemma: Left-inverses implies Left-regular.

Definition: Identity
refines Left-identity, Right-identity.

File defined by parts 16ab, 17ab, 18abcde, 19ab.
5.3 Semigroup, Inverses, Regular-semigroup, Monoid, Commutative-semigroup

"src/algebra1.tec" 18a ≡

Abbreviation: Semigroup is Associative.

⋄ File defined by parts 16ab, 17ab, 18abcde, 19ab.

"src/algebra1.tec" 18b ≡

Definition: Inverses
 refines Left-inverses, Right-inverses.

Lemma: Inverses implies Regular.

Precedence: {/, *}.

Extension: Inverses
 introduces / : domain x domain -> domain;
 requires (for x, y:domain)
 x/y = x * y^(-1).

Definition: Regular-semigroup
 refines Regular, Semigroup.

Definition: Monoid
 refines Semigroup, Identity.

⋄ File defined by parts 16ab, 17ab, 18abcde, 19ab.

"src/algebra1.tec" 18c ≡

Precedence: nonassociative(=) < {+, -}.

Definition: Commutative-semigroup
 refines Regular-semigroup[with + as *],
 Commutative[with + as *].

⋄ File defined by parts 16ab, 17ab, 18abcde, 19ab.

5.4 Group, Abelian-monoid, Trivial-group, Group-of-order-2

"src/algebra1.tec" 18d ≡

Definition: Group
 refines Monoid, Inverses.

Definition: Abelian-monoid
 refines Monoid, Commutative.

⋄ File defined by parts 16ab, 17ab, 18abcde, 19ab.

"src/algebra1.tec" 18e ≡
Definition: Trivial-group
refines Group;
requires (for x: domain) x = 1.

Definition: Group-of-order-2
refines Group;
requires (for x: domain) x * x = 1.

Lemma: Group-of-order-2 is Commutative.

File defined by parts 16ab, 17ab, 18abcde, 19ab.

5.5 Commutative-group, Abelian-group, Additive-trivial-group

"src/algebra1.tec" 19a ≡

Definition: Commutative-group
refines Commutative, Group.

Precedence: nonassociative{in} < {*, -} < prefix{-, +}
< (*) < postfix{^(-1)}.

Definition: Abelian-group
refines Commutative-group[with + as *, - as ^(-1), 0 as 1, - as /];
introduces nonzeros < domain,
- : domain x domain -> domain,
+ : domain -> domain;
requires (for x, y: domain)
x in nonzeros = (x != 0),
x - y = x + (-y),
+ x = x.

Definition: Additive-trivial-group
refines Abelian-group[with Trivial-group as Commutative-group].

File defined by parts 16ab, 17ab, 18abcde, 19ab.
Chapter 6
Algebras with 2 Connectives

6.1 Right-distributive, Left-distributive, Distributive, Semiring, Ring

Pragma: include="relation.xgf", include="algebra1.xgf".
Precedence: nonassociative(=) < {+, -} < prefix(-, +) < {*}.
Library: std

Right-distributive, Left-distributive, Distributive, Semiring, Ring,
Commutative-ring, Ring-with-identity, Commutative-ring-with-identity, Unit,
Right-module, No-zero-divisors, Left-module, Division-ring, Module, Skewfield,
Right-ideal, Left-ideal, Integral-domain, Gcd-domain, Euclidean-domain,
Coefficient-ring, Unique-right-ideal, Unique-left-ideal, Ideal, Unique-ideal,
Set-of-pairwise-spanning-ideals, Trivial-ideal, Proper-ideal, Ideal-equivalence,
Ideal-equivalence-class, Field, Quotient-ring.

Definition: Right-distributive
refines Binary-op, Binary-op [with + as *];
requires (for x, y, z: domain)
(x + y) * z = x * z + y * z.

Definition: Left-distributive
refines Binary-op, Binary-op [with + as *];
requires (for x, y, z: domain)
x * (y + z) = x * y + x * z.

Definition: Distributive
refines Left-distributive, Right-distributive.

Definition: Semiring
refines Commutative-semigroup, Semigroup, Distributive.

Definition: Ring
refines Abelian-group, Semigroup, Distributive.

File defined by parts 20ab, 21, 22abc, 23ab, 24abcd, 25.

6.2 Commutative-ring, Ring-with-identity, Commutative-ring-with-identity, Unit

Pragma: include="relation.xgf", include="algebra1.xgf".
Precedence: nonassociative(=) < {+, -} < prefix(-, +) < {*}.
Library: std

Commutative-ring, Ring-with-identity, Commutative-ring-with-identity, Unit,
Commutative-group, Group, Abelian-group, Semigroup, Distributive.

Definition: Commutative-ring
refines Abelian-group, Semigroup, Distributive, Commutative.

Definition: Ring-with-identity
refines Abelian-group, Semigroup, Distributive.

Definition: Commutative-ring-with-identity
refines Commutative-ring.

File defined by parts 20ab, 21, 22abc, 23ab, 24abcd, 25.
Definition: Commutative-ring
refines Ring, Commutative.

Definition: Ring-with-identity
refines Ring, Identity.

Definition: Commutative-ring-with-identity
refines Commutative-ring, Identity.

Definition: Unit
refines Ring-with-identity;
uses Regular;
introduces units < domain, nonunits < domain;
requires
(for u: domain)
 u in units = u | 1,
 u in nonunits = (not u | 1).

Lemma: Unit implies Group.

File defined by parts 20ab, 21, 22abc, 23ab, 24abcd, 25.

6.3 Right-module, No-zero-divisors, Left-module,
Division-ring, Module, Skewfield

"src/algebra2.tec" 21 ≡

Precedence: {+, -} < prefix{-} < {*}.

Definition: Right-module
refines Abelian-group[with right-module-elements as domain];
uses Ring, Right-identity;
introduces
 * : right-module-elements x domain -> right-module-elements;
requires (for a, b: domain; x, y: right-module-elements)
x * (a + b) = (x * a) + (x * b),
x * (a * b) = (x * a) * (x * b),
(x + y) * a = x * a + y * a,
x * 1 = x.

Definition: No-zero-divisors
refines Ring;
introduces
 * : nonzeros x nonzeros -> nonzeros,
 1 : -> nonzeros;
requires (for x, y: domain)
x * y = 0 implies x = 0 or y = 0.

Precedence: {+, -} < prefix{-} < {*}.

Definition: Left-module
refines Abelian-group[with left-module-elements as domain];
uses Ring, Left-identity;
introduces
 * : domain x left-module-elements -> left-module-elements;
requires (for a, b: domain; x, y: left-module-elements)
(a * b) * x = a * (b * x),
\[(a + b) \cdot x = a \cdot x + b \cdot x,\]
\[a \cdot (x + y) = a \cdot x + a \cdot y,\]
\[1 \cdot x = x.\]

File defined by parts 20ab, 21, 22abc, 23ab, 24abcd, 25.

\[\text{"src/algebra2.tec" 22a} \equiv \]

Precedence: prefix{\(-\)} < \{\(*\)} < postfix{\(^{-1}\)}.

Definition: Division-ring
refines Ring, Inverses;
introduces \((-1) : \text{nonzeros} \to \text{nonzeros};\)
requires
\[0 \neq 1,\]
\[(\text{for y: nonzeros}) y \cdot y^{-1} = 1.\]

File defined by parts 20ab, 21, 22abc, 23ab, 24abcd, 25.

\[\text{"src/algebra2.tec" 22b} \equiv \]

Definition: Module
refines
Left-module [with module-elements as left-module-elements],
Right-module [with module-elements as right-module-elements].

Lemma: Module [with Additive-trivial-group as Abelian-group] implies Module.

Lemma: Ring implies Module [with domain as module-elements].

Abbreviation: Skewfield is Division-ring.

Extension: Commutative-ring-with-identity
uses Unit;
introduces prime-elements < nonzeros;
requires (for d: nonzeros)
\[d \text{ in prime-elements} \neq \text{not((for some q, r: nonunits) } d = q \cdot r).\]

Lemma: Map [with nonempty-sets as domain, Module as Range] implies Module.

File defined by parts 20ab, 21, 22abc, 23ab, 24abcd, 25.

6.4 Right-ideal, Left-ideal, Integral-domain, Gcd-domain, Euclidean-domain

\[\text{"src/algebra2.tec" 22c} \equiv \]

Definition: Right-ideal
refines Set [with ideals as sets];
uses Ring;
requires (for I: ideals; a, b: domain)
member(0, I),
member(a, I) and member(b, I) implies member(a + b, I),
CHAPTER 6. ALGEBRAS WITH 2 CONNECTIVES

member(a, I) implies member(a * b, I).

Definition: Left-ideal
refines Set [with ideals as sets];
uses Ring;
requires (for I: ideals; a, b: domain)
member(0, I),
member(a, I) and member(b, I) implies member(a + b, I),
member(a, I) implies member(b * a, I).

⋄
File defined by parts 20ab, 21, 22abc, 23ab, 24abcd, 25.

src/algebra2.tec 23a ≡

Definition: Integral-domain

Definition: Gcd-domain
refines Integral-domain;
uses Set-of-representatives;
introduces gcd : domain x domain -> set-of-representatives;
requires (for x, y: domain)
gcd(x, y) | x and gcd(x, y) | y and
((for z: domain) (z | x and z | y) implies z | gcd(x, y)),
(for some z: domain) gcd(x, y) = z.

Definition: Euclidean-domain
refines Gcd-domain;
uses Natural;
introduces
Euclidean_function : nonzeros -> naturals,
div : domain x nonzeros -> domain,
rem : domain x nonzeros -> domain;
requires (for a: domain; b, c: nonzeros)
Euclidean_function(b * c) >= Euclidean_function(b),
(for some q, r: domain)
a = q * b + r
where
q = div(a, b),
r = rem(a, b),
r=0 or Euclidean_function(r:nonzeros) < Euclidean_function(b).

⋄
File defined by parts 20ab, 21, 22abc, 23ab, 24abcd, 25.

6.5 Coefficient-ring, Unique-right-ideal, Unique-left-ideal, Ideal, Unique-ideal

src/algebra2.tec 23b ≡

Abbreviation: Coefficient-ring is
Commutative-ring-with-identity [with coefficient-domain as domain].

Definition: Unique-right-ideal
refines Right-ideal;
requires (for I1, I2: ideals) I1 = I2.

Definition: Unique-left-ideal
CHAPTER 6. ALGEBRAS WITH 2 CONNECTIVES

refines Left-ideal;
requires (for I1, I2: ideals) I1 = I2.

Definition: Ideal
refines Left-ideal, Right-ideal.

Definition: Unique-ideal
refines Ideal;
requires (for I1, I2: ideals) I1 = I2.

6.6 Set-of-pairwise-spanning-ideals, Trivial-ideal, Proper-ideal, Ideal-equivalence

"src/algebra2.tec" 24a ≡

Definition: Set-of-pairwise-spanning-ideals
refines Ideal;
requires (for I1, I2: ideals)
 I1 != I2 implies (for a: domain) member(a, I1) or member(a, I2).

"src/algebra2.tec" 24b ≡

Definition: Trivial-ideal
refines Unique-ideal;
requires (for I: ideals; a: domain)
 member(a, I) implies a = 0.

Definition: Proper-ideal
refines Unique-ideal;
requires (for I: ideals)
 (for some a: domain) not member(a, I).

6.7 Ideal-equivalence-class, Field, Quotient-ring

"src/algebra2.tec" 24c ≡

Definition: Ideal-equivalence
refines Equivalence-class;
uses Unique-ideal;
requires (for I: ideals; x, y: domain)
 (x equiv y) = member(x - y, I).

"src/algebra2.tec" 24d ≡

Lemma: Euclidean-domain implies Gcd-domain.

Definition: Ideal-equivalence-class
refines Equivalence-class [with Ideal-equivalence as Equivalence-relation].
CHAPTER 6. ALGEBRAS WITH 2 CONNECTIVES

Definition: Field
refines Commutative, Division-ring.

Lemma: Field implies Euclidean-domain.

File defined by parts 20ab, 21, 22abc, 23ab, 24abcd, 25.

"src/algebra2.tec" 25 ≡

Definition: Quotient-ring
refines
Commutative-ring-with-identity [with equivalence-classes as domain];
uses
Commutative-ring-with-identity [with base-domain as domain],
Ideal-equivalence-class [with base-domain as domain];
requires (for e1, e2: equivalence-classes;
x, x1, x2: base-domain)
member(x, e1 + e2) = (for some x1, x2: base-domain)
member(x1, e1) and member(x2, e2) and x1 + x2 equiv x,
member(x, (e1 * e2)) = (for some x1, x2: base-domain)
member(x1, e1) and member(x2, e2) and x1 * x2 equiv x,
0 = equivalence-class(0),
1 = equivalence-class(1).

Extension: Euclidean-domain
introduces gcdc: domain x domain ->
set-of-representatives x domain x domain;
requires (for x, y, u, v: domain;
z: set-of-representatives)
(gcdc(x, y) = (z, u, v)) =
(z = gcd(x, y) and u * x + v * y = z).

File defined by parts 20ab, 21, 22abc, 23ab, 24abcd, 25.
Chapter 7
Ordered Algebras

7.1 Ordered-ring, Ordered-field

"src/ordalgebra.tec" 26a

Pragma: include="order.xgf", include="algebra2.xgf".
Library: std
Ordered-ring, Ordered-field.

Definition: Ordered-ring
refines Ring-with-identity [with Archimedean-order as Abelian-group];
requires (for x, y, z: domain)
x <= y and 0 <= z implies x*z <= y*z.

File defined by parts 26abc.

"src/ordalgebra.tec" 26b

Precedence: confix{|, |}.

Extension: Ordered-ring
introduces
sign: domain -> domain,
| | : domain -> domain,
positive: domain -> bool,
negative: domain -> bool,
non_positive: domain -> bool,
non_negative: domain -> bool;
requires
(for x: domain)
sign(x) = if x>0 then +1 else if x<0 then -1 else 0,
|x| = if x<0 then -x else x,
positive(x) = (x>0),
non_positive(x) = (not x>0),
negative(x) = (x<0),
non_negative(x) = (not x<0).

File defined by parts 26abc.

"src/ordalgebra.tec" 26c

Definition: Ordered-field
refines Field [with Ordered-ring as Ring].

File defined by parts 26abc.
Chapter 8

Arithmetic Hierarchy

8.1 Exponentiation, Integer, Rational

"src/arithmetic.tec" 27a

Pragma: include="ordalgebra.xgf".
Precedence: {∗}< {∗}.

Library: std
Exponentiation, Integer, Rational, Formal-real-field, Real, Complex, Quaternion,

Definition: Exponentiation
uses Monoid, Natural;
introduces ^ : domain x naturals -> domain;
requires (for x: domain; n: naturals)
x ^ 0 = 1,
x ^ (n + 1) = (x ^ n) * x.

File defined by parts 27ab, 28ab, 29ab, 30.

"src/arithmetic.tec" 27b

Definition: Integer
refines
Nondense-order [with integers as domain],
Euclidean-domain [with Ordered-ring as Ring,
integers as domain,
nonzero-integers as nonzeros];
uses Natural;
introduces
naturals < integers,
nonzero-integers < integers,
succ : integers -> integers,
pred : integers -> integers,
d : naturals x naturals -> integers (private);
generates integers using d;
requires
(for m, n, p, q: naturals; z: domain)
(d(m, n) = d(p, q)) = (m + q = p + n),
0 = d(0, 0),
1 = d(succ(0), 0),
CHAPTER 8. ARITHMETIC HIERARCHY

\[
\text{succ}(d(m, n)) = d(\text{succ}(m), n),
\]
\[
\text{pred}(d(m, n)) = d(m, \text{succ}(n)),
\]
\[
d(m, n) + d(p, q) = d(m + p, n + q),
\]
\[
-(d(m, n)) = d(n, m),
\]
\[
d(m, n) * d(p, q) = d(m * p + n * q, n * p + m * q),
\]
\[
((\text{for } x : \text{integers}) \text{ x in naturals } = (x \geq 0)),
\]
\[
((\text{for } x : \text{integers}) \text{ x in nonzero-integers } = (x \neq 0)).
\]

File defined by parts 27ab, 28ab, 29ab, 30.

"src/arithmetic.tec" 28a ≡

Definition: Rational
refines
Ordered-field [with rationals as domain, nonzero-rationals as nonzeros];
uses Integer;
introduces
integers < rationals,
fraction : integers x nonzero-integers → rationals,
numerator : rationals → integers,
denominator : rationals → nonzero-integers;
generates rationals using fraction;
requires (for i, j: integers; k, l: nonzero-integers)
(fraction(i, k) = fraction(j, l)) = (i * l = j * k),
(fraction(i, k) ≤ fraction(j, l)) = (i * l ≤ j * k),
0 = fraction(0, 1),
1 = fraction(1, 1),
fraction(i, k) + fraction(j, l) = fraction(i * l + j * k, k * l),
fraction(i, k) * fraction(j, l) = fraction(i * j, k * l),
numerator(fraction(i, k)) = i, denominator(fraction(i, k)) = k,
((for r: rationals) r in integers = (denominator(r)=1)),
((for r: rationals) r in nonzero-rationals = (r!=0)).

Extension: Rational
introduces
numerator : nonzero-rationals → nonzero-integers;
requires (for r,s: rationals)
(r ≤ s) =
(numerator(r)*denominator(s) ≤ numerator(s)*denominator(r)),
-r = fraction(-numerator(r), denominator(r)),
(for s: nonzero-rationals)
s^(-1) = fraction(denominator(s), numerator(s)).

File defined by parts 27ab, 28ab, 29ab, 30.

8.2 Formal-real-field, Real, Complex, Quaternion

"src/arithmetic.tec" 28b ≡

Definition: Formal-real-field
refines Ordered-field;
uses Continuous-order;
requires
not ((for some x, y: domain) x*x + y*y = -1).

Definition: Real
refines
Continuous-order [with reals as domain],
Ordered-field [with reals as domain, nonzero-reals as nonzeros];
uses Rational;
introduces rationals < reals;
requires (for x: reals)
x in rationals =
 ((for some i: integers; k: nonzero-integers) x = fraction(i, k)).

File defined by parts 27ab, 28ab, 29ab, 30.
"src/arithmetic.tec" 29a ≡

Extension: Real
introduces
[] : reals -> integers, ⌈⌋ : reals -> integers, ⌈⌉ : reals -> integers;
requires (for r: reals; n: integers)
⌈r⌉ = n where n - 1 < r and r <= n,
⌊r⌋ = n where n <= r and r < n + 1,
[r] = if r>=0 then ⌈r⌉ else ⌊r⌋.

File defined by parts 27ab, 28ab, 29ab, 30.
"src/arithmetic.tec" 29b ≡

Definition: Complex
refines Field [with complexes as domain, nonzero-complexes as nonzeros];
uses Real;
introduces reals < complexes,
cp: reals x reals -> complexes, // a + i*b = z
i: -> complexes;
generates complexes freely using cp;
requires (for m, n, p, q: reals)
0 = cp(0, 0),
1 = cp(1, 0),
i = cp(0, 1),
cp(m, n) + cp(p, q) = cp(m + p, n + q),
-(cp(m, n)) = cp(-n, -m),
cp(m, n) * cp(p, q) = cp(m * p - n * q, m * q + n * p),
((for x : complexes) x in reals = ((for some r: reals) x = cp(r,0))),
((for x : complexes) x in nonzero-complexes = (x != 0)).

Extension: Complex
introduces
real-part: complexes -> reals,
imag-part: complexes -> reals,
conjugate: complexes -> complexes,
sqrt: complexes -> complexes,
norm: complexes -> reals;
requires (for c: complexes; a, b: reals)
real-part(cp(a, b)) = a,
imag-part(cp(a, b)) = b,
conjugate(cp(a, b)) = cp(a, -b),
(sqrt(c) = a) = (a * a = c),
norm(cp(a, b)) = sqrt(a * a + b * b).

Definition: Quaternion
refines Skewfield [with quaternions as domain, nonzero-quaternions as nonzeros];
uses Real;
introduces reals < quaternions, complexes < quaternions,
qn: reals x reals x reals x reals -> quaternions,
i: -> quaternions,
j: -> quaternions,
k: -> quaternions;
generates quaternions freely using qn;
requires (for a, b, c, d, a', b', c', d': reals)
0 = qn(0, 0, 0, 0),
1 = qn(1, 0, 0, 0),
i = qn(0, 1, 0, 0),
j = qn(0, 0, 1, 0),
k = qn(0, 0, 0, 1),
qn(a, b, c, d) + qn(a', b', c', d') =
qn(a + a', b + b', c + c', d + d'),
qn(a, b, c, d) * qn(a', b', c', d') =
qn(a * a' - b * b' - c * c' - d * d',
a * b' + b * a' + c * d' + d * c',
a * c' + c * a' + d * b' - b * d',
a * d' + d * a' + b * c' - c * b'),
((for x : quaternions) x in reals
 = ((for some r: reals) x = qn(r,0,0,0))),
((for x : quaternions) x in complexes
 = ((for some z: complexes) x = qn(real-part(z),imag-part(z),0,0))),
((for x : quaternions) x in nonzero-quaternions = (x != 0)).

Extension: Quaternion
introduces conjugate: quaternions -> quaternions,
norm: quaternions -> reals;
requires (for q: quaternions; a, b, c, d: reals)
conjugate(qn(a, b, c, d)) = qn(a, -b, -c, -d),
norm(qn(a, b, c, d)) = a * a + b * b + c * c + d * d.

⋄
File defined by parts 27ab, 28ab, 29ab, 30.

"src/arithmetic.tec" 30 ≡

Pragma: operator.
Definition: Integer-congruence-mod-p
refines Equivalence-relation [with equiv as R, integers as domain];
uses Integer;
introduces p: -> prime-elements;
requires (for x, y: integers; d: domain)
 (x equiv y) = p | x - y.

Lemma:
Integer-congruence-mod-p implies Equivalence-relation.
Lemma: Integer-congruence-mod-p
obeys (for x, x’, y, y’: integers)
((x equiv y) and (x’ equiv y’)) implies
(((x + y) equiv (x + y’)) and ((x * y) equiv (x’ * y’))).

Definition: Integers-mod-p
refines Field [with equivalence-classes as domain];
uses Set-of-representatives
[with integers as domain,
 Integer-congruence-mod-p as Equivalence-relation];
requires (for x, y: equivalence-classes;
a, b : domain)
x + y = equivalence-class(representative(x) + representative(y)),
x * y = equivalence-class(representative(x) * representative(y)),
0 = equivalence-class(0),
1 = equivalence-class(1).

Abbreviation: Integer-ample-set-mod-p
is Set-of-representatives
[with integers as domain,
 Integer-congruence-mod-p as Equivalence-relation].

File defined by parts 27ab, 28ab, 29ab, 30.
Chapter 9

Polynomials

9.1 Polynomials

"src/polynomial.tec" 32a

Pragma: include="arithmetic.xgf".
Library: std
 Polynomial, Poly, Polynomial-over-integers, Bivariate-polynomial-over-integers.

Definition: Polynomial
 refines Map [with polynomials as maps,
 naturals as domain,
 Coefficient-ring as Range,
 coefficient-domain as range,
 c as apply],
 Commutative-ring-with-identity [with polynomials as domain];
uses Natural;
introduces nonzero-polynomials < polynomials,
 nonzero : polynomials -> bool,
 ldcf : nonzero-polynomials -> coefficient-domain,
 degree : nonzero-polynomials -> naturals,
 convolution : polynomials x polynomials x naturals x naturals
 -> coefficient-domain;
requires
 (for p, q: polynomials; r: nonzero-polynomials; m, n: naturals)
 p in nonzero-polynomials = nonzero(p),
 nonzero(p) = ((for some n: naturals) c(p, n) != 0),
 (for some n: naturals) (for all m: naturals)
 m > n implies c(p, m) = 0,
 degree(r) = n where (c(r, n) != 0 and
 ((for all m: naturals) m > n implies c(p, m) = 0)),
 ldcf(r) = c(r, degree(r)),
 convolution(p, q, m, 0) = c(p, m) * c(q, 0),
 convolution(p, q, m, n + 1) =
 c(p, m) * c(q, n + 1) + convolution(p, q, m + 1, n),
 c(-(p), n) = -(c(p, n)),
 c(p + q, n) = c(p, n) + c(q, n),
 c(p * q, n) = convolution(p, q, 0, n),
 (p = q) = ((for all n: naturals) c(p, n) = c(q, n)).

◊ File defined by parts 32ab, 33ab, 34abc.

"src/polynomial.tec" 32b
Lemma: Polynomial
obeys (for p, q: polynomials) // for example
\[c(p \ast q, 1) = c(p, 0) \ast c(q, 1) + c(p, 1) \ast c(q, 0), \]
\[c(p \ast q, 2) = c(p, 0) \ast c(q, 2) + c(p, 1) \ast c(q, 1) + c(p, 2) \ast c(q, 0). \]

Lemma: Polynomial
obeys (for p, q: polynomials; n: naturals)
\[c(p - q, n) = c(p, n) - c(q, n). \]

Precedence: {-|, *}.

File defined by parts 32ab, 33ab, 34abc.

9.2 Polynomial Extensions

"src/polynomial.tec" 33a ≡

Extension: Polynomial
introduces
- | : coefficient-domain x polynomials -> polynomials,
+ : coefficient-domain x polynomials -> polynomials,
\ast : coefficient-domain x polynomials -> polynomials;
requires (for p: polynomials; a: coefficient-domain; n: naturals)
\[c(a \lvert p, n) = \begin{cases} a & \text{if } n = 0 \\ c(p, n - 1) & \text{if } n > 0 \end{cases}, \]
\[c(a + p, n) = \begin{cases} a & \text{if } n = 0 \\ a + c(p, 0) & \text{if } n > 0 \end{cases}, \]
\[c(a \ast p, n) = a \ast c(p, n). \]

Extension: Polynomial
introduces
monic-monomial : naturals -> polynomials,
red : nonzero-polynomials -> polynomials;
requires (for r: nonzero-polynomials; m, n: naturals)
\[c(\text{monic-monomial}(m), n) = \begin{cases} 1 & \text{if } m = n \text{ and } m \neq 0 \\ 0 & \text{otherwise} \end{cases}, \]
\[c(\text{red}(r), n) = \begin{cases} 0 & \text{if } n = \text{degree}(r) \\ c(r, n) & \text{otherwise} \end{cases}. \]

File defined by parts 32ab, 33ab, 34abc.

"src/polynomial.tec" 33b ≡

Lemma: Polynomial
obeys (for r: nonzero-polynomials)
\[\text{red}(r) = r - \text{lDCF}(r) \ast \text{monic-monomial}(\text{degree}(r)). \]

Lemma: Polynomial
obeys (for r: nonzero-polynomials; n: naturals)
\[c(\text{red}(r), n) = \begin{cases} c(r - \text{lDCF}(r) \ast \text{monic-monomial}(\text{degree}(r)), n), & \text{if } \text{degree}(r) = n \\ c(r - \text{lDCF}(r) \ast \text{monic-monomial}(\text{degree}(r)), n), & \text{otherwise} \end{cases}, \]
\[c(\text{red}(r), n) = \begin{cases} c(r, n) & \text{if } \text{degree}(r) = n \text{ and } n > 0 \\ c(r, n) - \text{lDCF}(r) \ast \text{monic-monomial}(\text{degree}(r)), n), & \text{otherwise} \end{cases}, \]
\[c(\text{red}(r), n) = \begin{cases} c(r, n) & \text{if } \text{degree}(r) = n \\ c(r, n) - \text{lDCF}(r) \ast \text{monic-monomial}(\text{degree}(r)), n), & \text{otherwise} \end{cases}, \]
\[c(\text{red}(r), n) = \begin{cases} c(r, n) - 1 & \text{if } \text{degree}(r) = n \\ c(r, n) - \text{lDCF}(r) \ast 0 & \text{otherwise} \end{cases}. \]
CHAPTER 9. POLYNOMIALS

\[
\text{if degree}(r) = n \text{ then } c(r, n) - \text{ldcf}(r) \text{ else } c(r, n),
\]
\[
c(\text{red}(r), n) =
\text{if degree}(r) = n \text{ then } c(r, n) - c(r, \text{degree}(r))
\text{ else } c(r, n),
\]
\[
c(\text{red}(r), n) = \text{if degree}(r) = n \text{ then } 0 \text{ else } c(r, n).
\]

File defined by parts 32ab, 33ab, 34abc.

"src/polynomial.tec" 34a

Extension: Polynomial
introduces monic-polynomials < nonzero-polynomials;
requires (for p: nonzero-polynomials)
p in monic-polynomials = (ldcf(p) = 1).

Extension: Polynomial
introduces unit-polynomials < polynomials,
nonunit-polynomials < polynomials;
requires (for p: polynomials)
p in unit-polynomials = p | 1,
p in nonunit-polynomials = (not p | 1).

Extension: Polynomial
introduces prime-polynomials < polynomials;
requires (for p: polynomials)
p in prime-polynomials =
not((for some q, r: nonunit-polynomials) p = q * r).

File defined by parts 32ab, 33ab, 34abc.

"src/polynomial.tec" 34b

Abbreviation: Poly is Polynomial.

Extension: Polynomial
uses Exponentiation [with Poly as Monoid].

File defined by parts 32ab, 33ab, 34abc.

9.3 Polynomial-over-integers,
Bivariate-polynomial-over-integers

"src/polynomial.tec" 34c

Abbreviation: Polynomial-over-integers is
Polynomial [with Integer as Coefficient-ring,
integers as coefficient-domain,
univariate-polynomials as polynomials].

Abbreviation: Bivariate-polynomial-over-integers is
Polynomial [with Polynomial-over-integers as Coefficient-ring,
univariate-polynomials as coefficient-domain,
bivariate-polynomials as polynomials].

File defined by parts 32ab, 33ab, 34abc.
Chapter 10

Ample Sets

10.1 Unit-equivalence, Ample-set, Normal-ample-set, Multiplicative-ample-set

"src/ampleset.tec" 35a ≡

Pragma: include="polynomial.xgf".

Precedence: nonassociative{in, into}.

Library: std
Unit-equivalence, Ample-set, Normal-ample-set, Multiplicative-ample-set,
Integer-ample-set, Ample-coefficient, Multiplicative-gcd-domain,
Rational-ample-set, Absolut-value-integer-ample-set, Ample-polynomial,
Integer-ample-polynomial, Standard-integer-ample-set-mod-p,

Definition: Unit-equivalence
refines Equivalence-class;
uses Commutative-ring-with-identity, Unit;
requires (for x, y: domain)
(x equiv y) = ((for some z: units) x = z * y).

Lemma: Unit-equivalence implies Equivalence-relation.

Abbreviation: Ample-set is
Set-of-representatives
[with Unit-equivalence as Equivalence-relation].

Lemma: Ample-set obeys representative(0) = 0.

⋄

File defined by parts 35ab, 36abc, 37abcd, 38.

"src/ampleset.tec" 35b ≡

Definition: Normal-ample-set
refines Ample-set;
requires representative(1) = 1.

Definition: Multiplicative-ample-set
refines Normal-ample-set;
requires (for x, y: set-of-representatives)
(for exactly 1 z: set-of-representatives) x*y = z.

⋄
10.2 Integer-ample-set, Ample-coefficient, Multiplicative-gcd-domain

Definition: Integer-ample-set
refines Multiplicative-ample-set [with integers as domain];
uses Integer.

Definition: Ample-coefficient
refines Multiplicative-ample-set
[with coefficient-domain as domain,
 ample-coefficient-domain as set-of-representatives].

Definition: Multiplicative-gcd-domain
refines Gcd-domain, Multiplicative-ample-set.

10.3 Rational-ample-set, Absolut-value-integer-ample-set, Ample-polynomial

Definition: Rational-ample-set
refines Multiplicative-ample-set [with rationals as domain];
uses Rational, Integer-ample-set;
requires (for \(i, j\): integers; \(k, l\): nonzero-integers)
\[
(fraction(i, k) = representative(fraction(j, l))) = (fraction(i, k) = fraction(j, l) \land gcd(i, k) = 1 \land representative(k) = k).
\]

Definition: Absolut-value-integer-ample-set
refines Integer-ample-set, Ordered-ring [with integers as domain];
requires (for \(i\): integers)
\[
\text{representative}(i) = |i|.
\]

Definition: Ample-polynomial
refines Polynomial, Ample-coefficient;
requires (for \(p\): polynomials)
\[
\text{ldcf}(p) : \text{ample-coefficient-domain}.
\]
10.4 Integer-ample-polynomial, Standard-integer-ample-set-mod-p

Definition: Integer-ample-polynomial refines Ample-polynomial [with Polynomial-over-integers as Polynomial, integers as coefficient-domain, univariate-polynomials as polynomials, Integer-ample-set as Ample-coefficient].

Remark: Lemma: Integer-ample-set-mod-p implies Field [with integers as domain, representative(0) as 0, representative(1) as 1].

Realization: Integers-mod-p by Integer-ample-set-mod-p introduces rep: set-of-representatives -> equivalence-classes (private); requires (for x: set-of-representatives; e: equivalence-classes) (rep(x) = e) = (equivalence-class(representative(x)) = e).

Definition: Symmetric-integer-ample-set-mod-p refines Integer-ample-set-mod-p; uses Real; requires (for x: integers)
representative(x) =
 if (rem(x,p) = 0)
 then 0
 else if ((x | 2) = true)
 then -\left\lfloor \frac{\text{rem}(x,p)}{2} \right\rfloor
 else \left\lfloor \frac{\text{rem}(x,p)}{2} \right\rfloor + 1.

Definition: Normal-integer-ample-set-mod-p
refines Integer-ample-set-mod-p,
Normal-ample-set.

Lemma: Standard-integer-ample-set-mod-p implies

Lemma: Symmetric-integer-ample-set-mod-p implies

File defined by parts 35ab, 36abc, 37abcd, 38.
Chapter 11

Morphisms

11.1 Morphisms for Semi-groups

Pragma: include="algebra2.xgf".
Library: std
 Semigroup-homomorphism, Semigroup-monomorphism, Semigroup-epimorphism,
 Semigroup-embedding, Semigroup-isomorphism, Semigroup-endomorphism,
 Semigroup-automorphism, Ring-homomorphism, Ring-monomorphism, Ring-epimorphism,
 Kernel, Ring-isomorphism.

Definition: Semigroup-homomorphism
 refines Semigroup, Semigroup [with image as domain];
 introduces
 h : domain -> image;
 requires (for x, y: domain)
 h(x*y) = h(x)*h(y).

Definition: Semigroup-monomorphism
 refines Semigroup-homomorphism,
 Injection [with h as f, image as range].

Definition: Semigroup-epimorphism
 refines
 Semigroup-homomorphism,
 Surjection [with h as f, image as range].

Abbreviation: Semigroup-embedding is
 Semigroup-monomorphism.

Definition: Semigroup-isomorphism
 refines Semigroup-epimorphism, Semigroup-monomorphism.

Definition: Semigroup-endomorphism
 refines
 Semigroup-epimorphism,
 Semigroup-monomorphism.

Definition: Semigroup-automorphism
 refines
 Semigroup-endomorphism,
 Semigroup-isomorphism.
11.2 Morphisms for Rings

Definition: Ring-homomorphism
refines
 Ring-with-identity,
 Ring-with-identity [with image as domain];
introduces h: domain -> image;
requires (for x, y: domain)
 h(x+y) = h(x) + h(y),
 h(x*y) = h(x) * h(y),
 h(1) = 1.

Definition: Ring-monomorphism
refines Ring-homomorphism,
 Injection [with h as f, image as range].

Definition: Ring-epimorphism
refines Ring-homomorphism,
 Surjection [with h as f, image as range].

Definition: Kernel
uses Ring-homomorphism;
introduces ker < domain;
requires (for x: domain)
 x in ker = (h(x) = 0).

Definition: Ring-isomorphism
refines Ring-epimorphism, Ring-monomorphism.
Appendix A

Indices and References

"src/algebra1.tec" Defined by parts 16ab, 17ab, 18abcde, 19ab.
"src/algebra2.tec" Defined by parts 20ab, 21, 22abc, 23ab, 24abcd, 25.
"src/ampleset.tec" Defined by parts 35ab, 36abc, 37abcd, 38.
"src/arithmetic.tec" Defined by parts 27ab, 28ab, 29ab, 30.
"src/morphism.tec" Defined by parts 39, 40.
"src/ordalgebra.tec" Defined by parts 26abc.
"src/order.tec" Defined by parts 13ab, 14ab.
"src/polynomial.tec" Defined by parts 32ab, 33ab, 34abc.
"src/relation.tec" Defined by parts 9abc, 10abcdef, 11abc.
"src/set.tec" Defined by parts 4ab, 5ab, 6ab, 7abc.
Bibliography

