
Checking Semantic Requirements of Generic

Algorithms

Holger Gast? and Christoph Schwarzweller

Wilhelm-Schickard-Institut für Informatik,
Universität Tübingen, Sand 13,
D-72076 Tübingen, Germany

{gast,schwarzw}@informatik.uni-tuebingen.de

Abstract. Algorithms in computer algebra lend themselves naturally to
the software design method of generic programming in the sense of the
C++ STL library [14]: They abstract over their concrete input domain
in favour of the properties that the domain must have; when calling a
generic algorithm, the instantiation domain must provide these proper-
ties.
We seek to design a language for generic programming; in particular,
the compiler should be aware of the proof obligations associated with
instantiation and should assist in proving them. Since properties will in
general be formulated in a rich logic, we introduce symbolic adjectives
as names for underlying formulae. The compiler then works on sets of
adjectives as a representation for properties; relations between properties
become declared implications between sets of adjectives.
We present a concise prototypical language Saga (Signatures and Ad-
jectives for Generic Algorithms) that embodies this design principle and
demonstrate its applicability by example.

1 Introduction

The term generic programming has been applied in such diverse fields of software
engineering as purely functional languages [9], object-oriented programming [1,
15], module systems [2] and library design [14, 3]. The common theme is that
the language objects can be parameterized to work uniformly on a variety of
data types. Unlike conventional ML-style polymorphic functions, generic defini-
tions can exploit type-specific properties, such as the data type constructors, the
methods of a class or overloaded operators. In this paper, we explore the STL
[14] notion of generic programming, where generic algorithms can abstract over
types and associated operations. Instantiating an algorithm with given types is
allowed only if all required operations can be provided and if they exhibit the
required semantics.

In order to reason about the correctness of generic algorithms, the associ-
ated operations must be taken into account, that is, verification must be lifted

? The implementation in this work is an application of the first author’s PhD project
[7], which has been supported by the Studienstiftung des deutschen Volkes.

to deal with generic definitions [16]. This goal requires that the precise meaning
of a program can be seen from the program text itself, not only from its transla-
tion. For the task to be feasible, the meaning of a program must be determined
separately for each algorithm and the correctness of an algorithm instance must
be clear from the correctness of the generic algorithm together with an argument
showing that the desired instance is legal.

We address these demands by a language design called Saga (Signatures
and Adjectives for Generic Algorithms) in which we integrate a conventional
imperative language with a calculus for symbolic deduction [17] of a data type’s
static properties. Saga has the following capabilities, which distinguish it from
the C++-based developments for error checking [18, section 2.5]:

– Calls to generic algorithms within generic algorithms can be checked once
and for-all, without re-compilation at every call-site.

– Calls to generic algorithms can be shown to be legal by reference to their
interface alone, without re-compilation of the definition.

– Legality checks include semantic knowledge about the operators involved.

The last point requires some form of language design decision, since including
some expressive logic into the language renders compilation an undecidable prob-
lem. Saga approaches this challenge by introducing adjectives as symbolic rep-
resentations for associated formulae. Requirements of generic algorithms are sets
of adjectives and legality checking becomes feasible. As the underlying formulae
are not considered by the Saga compiler, relationships between adjectives must
be declared by rules, which are interpreted as implications between the meanings
of adjectives.

In the remainder of this section, we give a short example and sketch the
calculus of signatures and adjectives [17]. We describe Saga in section 2 and
give an extended example application to univariate polynomials in section 3.
Section 4 points to related work and section 5 concludes.

1.1 Example: Euclidean GCD

The Euclidean GCD algorithm [13] works on rings T that provide division and
modulus operations together with a suitable norm function to guarantee termi-
nation. These requirements can be captured in an adjective euclidean_domain:

Adjective euclidean_domain

for (T, + : (T,T)->T, * : (T,T)->T, zero : ()->T,

div : (T,T)->T, mod : (T,T)->T, norm : (T)->Int)

means (all(x:T) norm(x) >= 0) /\

(all(x,y:T) norm(x*y) >= norm(x)*norm(y)) /\

(all(x,y:T) !(y EQ zero())

=> (x EQ div(x,y)*y + mod(x,y) /\

(norm(mod(x,y)) == 0 \/ norm(mod(x,y)) < norm(y))));

With that adjective at hand, we can specify the interface of algorithm egcd; the
ellipses ’...’ are part of Saga and will be discussed in section 2.4.

P2 ⊆ P1

R `calc P1 =⇒ P2

R `calc P1 =⇒ P2, R `calc P2 =⇒ P3

R `calc P1 =⇒ P3

l −→ r ∈ R

R `calc σ(l) =⇒ σ(r)

R `calc P1 =⇒ P2, R `calc P1 =⇒ P3

R `calc P1 =⇒ P2 ∪ P3

Fig. 1. The calculus of Adjectives

Algorithm egcd

[(T,...) with ring(T,...), euclidean_domain(T,...),

equality_comparable(T,...), assignable(T,...)]

(a_ : T; b_ : T) return T

In order to instantiate egcd with the integers, we have to relate the known
properties of type Int to the meaning of euclidean_domain. The following rule
expresses this implication (incidentally with empty signature and premises):

Rules: for () { } ==> euclidean_domain(Int,+,*,int_0,/,%,abs);

With similar declarations for the remaining adjectives, we can call egcd(42,15);
the Saga compiler checks the legality of this call and computes the necessary
instantiation of the generic algorithm. In general, rules can have both a signature
and premises (see section 3).

1.2 The Calculus of Signatures and Adjectives

The calculus [17] describes a Horn-clause theory in which the adjectives play the
role of predicates: Signatures specify operators with their corresponding domains
and arities; adjectives give symbolic names to properties of sorts and operators
(see section 2.2). Rules P1 −→ P2, where P1 and P2 are sets of adjectives,
describe implications of the corresponding sets of properties. Note that rules
can be proven correct, based on a formal definition of the meaning of adjectives.
A given rule set R is the basis of the calculus presented in figure 1: A rule can
be incorporated by applying an appropriate substitution σ for the domains and
operators.

The calculus allows for a straightforward implementation by SLD-resolution:
To show P1 =⇒ P2 propagate the rules of R backwards starting with the adjec-
tives contained in P2 and eliminate adjectives from P2 present in P1 until P2 is
empty. Note that P1 is not changed throughout the whole deduction.

2 The Language Saga

The design of Saga augments a largely standard, C/C++-like language with
specific features for generic algorithms. As suggested in the introduction, generic
programming is enabled by parameterizing algorithms over signatures and ex-
pressing the requirements on operators by means of adjectives. This two-level

types data types algorithms

abstract data types

-
represent
 	6

operate on

��
�-

parameterize

�
�
�
��

instantiate

B
B
B

BB

N B
B
B

BBM

parameterize
implement

}

base language

generic extension

Fig. 2. Relation between Types, Data Types and Algorithms

design is sketched in figure 2: The algorithms work on data of basic types; these
types can be parameterized, but they differ from algorithms in that their pa-
rameters are types, not signatures. This restriction keeps the design of the base
language largely independent of the treatment of genericity, and we conjecture
that other languages can be augmented by the Saga-approach to genericity as
well. Furthermore, restrictions on the instances can be given on an algorithm-
to-algorithm basis rather than for each data type.

We describe the basic type system in section 2.1 and introduce the generic
constructs in the subsequent subsections. Each of these constructs comes with a
set of consistency checks, which together imply that all generated algorithm in-
stances obey the basic type discipline. A declaration passing these checks is called
legal. The link between the different constructs is the computation of instances
(section 2.3): An adjective’s parameters are transferred, perhaps through the
application of rules (section 1.2), into the generic algorithm’s signature instance.
The inference rules for the type-checks are given informally, the full definitions
can be found in [7].

2.1 The Basic Type System

The imperative base language is entirely conventional, with a C/C++-like nota-
tion for statements, and declarations id:type. The basic type-language contains
built-in types and application of user-defined constructors. Unlike other imper-
ative languages, Saga provides higher-order functions. To simplify parsing, we
have adopted the convention that type-identifiers tid start with an upper-case
letter, while all remaining identifiers id start with a lower-case letter.

type ::= tid | Int | Char | String | Bool | void

| Array ’(’ type ’)’ | Pair ’(’ type , type ’)’ | Cell ’(’ type ’)’
| &type | ’(’ typelist ’)’ ’→’ type | type ’(’ typelist ’)’

typelist ::= ε | type (’,’ type)∗

(1)

Cells, arrays and pairs are heap-allocated and can be accessed by reference (type
constructor &) via the operator !, array indexing and selectors fst and snd.

Our type-checking judgment Γ ; R; P `type e −→ i has standard compo-
nents Γ , e and i, where Γ is a relation between identifiers and their declared

types, e is an expression and i the translation to intermediate language. The
contexts R and P account for the generic features of Saga: They contain the
valid rules and adjectives applicable in the basic calculus from section 1.2.

In the prototype implementation, there is no subtyping; a reference is ac-
cessed by operator !, and a defined type is cast to its representation type by
:*. Overloading is permitted only in a form similar to that of the original Ada
proposal [4, 5]: All possible type-correct interpretations of an expression are enu-
merated. If there is more than one interpretation, the expression is considered
illegal.

We use a standard kinds-calculus [12, section 2.3] to ensure that type expres-
sions are well-formed. The language of kinds is kind ::= ∗ | (kind+) → kind,
and we use the standard introduction and elimination rules for →. Currently,
abstraction in generic algorithms is over types, that is, all type variables have
kind ∗.

2.2 Signatures, Adjectives and Rules

Signatures A signature is a sequence of type names and operators (with arities).

signature ::= ’(’ sig-elem-list ’)’
sig-elem-list ::= ε | sig-elem (’,’ (sig-elem))∗

sig-elem ::= tid | id ’:’ type

The type and operator identifiers in a signature must be unique, that is there is
no overloading within one signature. This is consistent with mathematical usage
where in every structure the operator names are unique, yet they may be reused
in different structures. As a convention, we assume in the remainder of this paper
that the type elements of a signature precede its operator elements.

A signature S = (T1, . . . , Tn, x1: t1, . . . , xm: tm) is legal if the types ti of the
operators are well-formed, i.e. they obey grammar (1) and the type names are
either defined in the context or among the T1, . . . , Tn.

The signature S can be instantiated by replacing type names with types
and operators with expressions. A signature instance S′ of S is a sequence
(s1, . . . , sn, e1, . . . , em) where {si}

n
i=1 are types and for j = 1 . .m, ej is an expres-

sion of type tj [si/Ti]
n
i=1. The corresponding judgment is Γ ; R; P `sinst S′ ≤σ

S S.
A context Γ enriched with a signature (T1, . . . , Tn, x1: t1, . . . , xm: tm) yields

a context Γ ′ := Γ ∪ {Ti :: ∗}n
i=1 ∪ {xj : tj}

m
j=1.

Adjectives An adjective is introduced by declaring its meaning as a formula,
based on a given signature. For informal or preliminary definitions, the formula
can be replaced by a text, interspersed with operator and type identifiers from
the signature.

adj-def ::= Adjective id signature meaning

meaning ::= means formula | informal (StringLit | tid | id)+

The order of elements in the signature is relevant, and we refer to them also
as the adjective’s parameters. An adjective definition with a signature S =
(T1, . . . , Tn, x1: t1, . . . , xm: tm) is legal iff S is legal and the formula is legal in a
context enriched with S.

An adjective application refers to a defined adjective by name, for instance
to include its defined meaning as a requirement of a generic algorithm.

adj-apply ::= id ’(’ (type | expr)∗’)’

An adjective application a(s1, . . . , sn′ , e1, . . . , em′) is legal if a has been intro-
duced with signature S and (s1, . . . , sn′ , e1, . . . , em′) is a signature instance of S.

Regarding run-time type safety we observe that the type of an operator found
as an adjective parameter is known to be an instance of the type included in the
adjective’s definition.

Rules Rules declare implications about sets of adjectives. For singleton sets,
the curly braces may be dropped.

rule-decl ::= Rules signature rule (’,’ rule)∗

rule ::= ’{’ (adj-apply)∗’}’ =⇒ ’{’ (adj-apply)+’}’

A rule declaration Rules S
(

{Aij}
mi

j=1 =⇒ {Bik}
ri

k=1

)n

i=1
is legal if the signa-

ture S is legal, and the adjective applications Aij are legal in a context enriched
by S. The adjective applications Bik must be legal in a context enriched by S and
premises P = {Aij}

mi

i=1. This treatment of the Bik enables the use of (instances
of) generic algorithms as operations on the right-hand side. The construction
parallels the usual introduction of implication in natural deduction by discharg-
ing an assumption.

Again, the types of all operator parameters to adjectives are known to be
instances of the declared types, such that instantiation information is propagated
consistently through applications of substitution σ in figure 1.

2.3 Generic Algorithms

Defining Algorithms Algorithm definitions in Saga feature a list of signatures
and adjectives to account for their generic behaviour. Each signature can have
a set of adjectives restricting the possible signature instances.

sig-params ::= ’[’ (sig − param)∗’]’
sig-param ::= signature with adj-apply (’,’ adj-apply)∗

Writing input type specifications as (xk : tk)r
k=1, we arrive at the following shape

of an algorithm definition. A definition

Algorithm a
[(

Si with (Aij)
mi

j=1

)n

i=1

]

(xk : tk)r
k=1 return s

begin B end

is legal if the signatures Si are legal and for each i, the adjective applications
Aij are legal in a context enriched with Si; all the tk and s must have kind ∗.
Furthermore, B must type-check after enriching the context with all the Si, and
the assertions Aij .

The input syntax provides for several signatures to enable overloaded names
of imported operators. For a concise formulation of a generic algorithm’s type, we
assume w.l.o.g. that the operator names in the signatures {Si}

n
i=1 are pairwise

distinct: A legal algorithm can be rewritten (by name-mangling and overload
resolution) so that it has a single signature S = (S1, . . . , Sn) and a single set
of adjectives {Aj}

k
j=1 where k =

∑n

i=1 mi. We can then express the algorithm’s
interface by a qualified type [12, 20] where abstraction is over the signature and
qualification captures the adjectives.

a : ∀S.{Aj}
k
j=1 ⇒ (t1, . . . , tr) → s (2)

Note that the qualification is about static properties of signature elements and
never about dynamic properties of value parameters.

Calling Generic Algorithms The standard rule for function application is:

Γ ; R; P `type f : (t1, . . . , tn) → s
for i = 1 . . n: Γ ; R; P `type ei : ti

Γ ; R; P `type f(e1, . . . , en) : s
(→-elim)

If f is a generic algorithm it has a qualified type (2). To use such an algorithm,
its signature must be instantiated such that all predicates are satisfied; in other
words, the qualified type must be eliminated. Towards that end, the intermediate
language is enriched by a construct denoting instantiation.

Γ ; R; P `type f : ∀S.{Aj}
k
j=1 ⇒ t

Γ ; R; P `sinst S′ ≤σ
S S

R `calc P =⇒ {Ajσ}
k
j=1

Γ ; R; P `type f : tσ −→ f〈S′〉
(∀-elim)

The rules (→-elim) and (∀-elim) can be implemented by unifying actual argu-
ment types with the formal parameter types and keeping the adjectives in a list
of preconditions to be proven. As soon as all type parameters of an adjective
are instantiated, it can be deduced from the context R; P . This step maps the
adjective’s name with the known parameters to the yet unknown parameters. All
instantiations occurring at any point in this process are captured in the instance
description f〈S′〉.

In case the adjective names are structure names, for example if ring(T,...)
denotes the ring properties of T, this procedure determines the operations of
type T, perceived as a ring [6].

2.4 Default Extensions to Signatures

Writing down all signatures and adjective instances becomes very cumbersome,
since for every adjective application, one ends up copying the adjective’s signa-
ture to prove the application legal. Therefore Saga allows an ellipsis ’...’ in
both signatures and adjective applications. The missing operators are automat-
ically inserted from the referenced adjectives’ definitions, such that the legality
checks are passed. Note that this operation is entirely syntactic and adjectives
appear in internal form just as if the operators had been supplied by the pro-
grammer. For instance, we have an adjective assignable, which captures our
convention about the type of the assignment operator:1

Adjective assignable

for (T, = : (&T,T)->&T)

informal "Operator" = " is an assignment on " T;

If an adjective application assignable(T,...) occurs in the context of a signa-
ture S = (T,...), the legality check requires the adjective’s ellipses to be filled
with a single operator of type (&T,T)->&T; it receives the default name = and is
propagated to the ellipsis in S.

3 Univariate Polynomials

We shall now study a possible implementation of univariate polynomials over a
coefficient domain T. For a full integration of polynomials into a library, three
steps must be taken: To start, we define the basic arithmetic algorithms; we
proceed by expressing the resulting algebraic properties in rules. With these
provisions, we are able to use the defined polynomials as input to other generic
algorithms.

Representation Type Polynomials are represented sparsely as sequences of mono-
mials, ordered by ascending exponent. Since the current run-time system of Saga

does not provide linked lists, we choose an array for the sequences, that is, we
have Type Poly(T:*) = Array(<Int,T>).

Addition Out of the arithmetic operations, we treat addition in more detail. It
is performed by adding coefficients with equal exponents; with the ordering by
exponents, the algorithm’s main component is a merge-loop. Inside the loop the
sum of the coefficients is computed and if it does not equal 0, it is written into
the result. These expressions access the operations and constants +, zero, and!=
associated with the coefficient domain through the algorithm’s signature. The
signature is filled during the legality checks as described section 2.4.

1 We treat assignment operator = by an adjective rather than generating it for every
type. This decision derives from the application [7] of Saga to STL concepts [3].

Algorithm poly_add

[(T,...) with ring(T,...),

assignable(T,...), equality_comparable(T,...)]

(x:Poly(T); y:Poly(T))

return Poly(T)

{ ... a=x:*; b=y:*; // convert to representation type

t = snd(!(!a)[!i]) + snd(!(!a)[!j]);

if (!t != zero()) { (!tmp)[!k] = mkpair(!e1,!t); ++k }

...

};

Algebraic Properties The remaining arithmetic operations can be defined for
type Poly in a similar manner (note that division will require a field as the
coefficient domain). We can then state the polynomials’ algebraic properties
by means of rules, for instance their ring structure. A subtlety arises because
rules serve the double purpose of checking semantic implications and transferring
instantiation information between adjectives. In order to constructively prove
the ring properties, we have to reference poly_add as an operation, which again
requires the technical adjectives assignable and equality_comparable:

Rules: for (T,...)

{ ring(T,...), equality_comparable(T,...), assignable(T,...) }

==> ring(Poly(T),poly_add,poly_sub,poly_mul,poly_zero,poly_one);

Whenever this rule is used in a deduction, requirements arise to give a construc-
tive proof for the three premises; the computed instances are directly propagated
to the conclusion’s algorithmic operations, hence providing their instantiation.

Instantiating GCD We can use the Euclidean GCD algorithm from section 2 to
compute the GCD of two univariate polynomials. In writing down a rule about
Poly as a euclidean_domain, we must reference algorithm poly_div, which
requires T to be a field.

Rules: for (T,...)

{ field(T,...), equality_comparable(T,...), assignable(T,...) }

==> euclidean_domain(Poly(T),poly_add,poly_mul,poly_zero,

poly_div,poly_mod,poly_degree);

Indeed, the above rule is only legal if the algorithm poly_add in the consequence
can be instantiated legally. That algorithm requires a ring, while the rule’s
premise provides a field. Hence, the following rule is necessary:

Rules: for (T,...) field(T,...) ==> ring(T,...);

After these declarations, the polynomials over the rational numbers Rat provide
a correct instantiation of egcd, given appropriate statements about the field-
structure of Rat are also provided:

Algorithm rat_univariate_gcd (x:Poly(Rat); y:Poly(Rat))

return Poly(Rat)

begin return egcd(x,y) end

Saga checks that the call to egcd is legal and computes the necessary instances of
all referenced generic algorithms. In contrast, Poly(Int) is no legal instantiation
for egcd: The integers are not a field. Hence, if x, y are of type Poly(Int), the call
egcd(x,y) fails with the following error message, which points to the problem
directly:

entailed <= adj[field](Int,x225,x226,x227,x228,x229,x230)

4 Related Work

Axiom [10] uses categories and inheritance to build up an algebraic hierarchy.
Properties of the domains are given in the categories’ documentation, but they
are not part of the language itself. A particular domain or an implementation of
a domain belongs to a category by assertion. Saga, in contrast, directly connects
individual properties of operators with the algorithms themselves. Using rules
describing implications of sets of properties then enables identification of imple-
mentations for legal instantiation without building up or extending a hierarchy.

Mizar [?] is a proof checker based on natural deduction. The Mizar language
is designed as a formal counterpart of mathematical vernacular. It provides at-
tributes similar to our adjectives and basic (algebraic) structures can be extended
by attributes. Rings, for example, or even a single operator, can be further qual-
ified as “commutative”. With attributes, theorems can be stated and proven in
a general setting: Only properties required for the proof appear in the theorem’s
statement [?]. This supports building up a library of mathematical knowledge
because reuse of theorems is increased.

C++ treats templates by re-compiling the definitions [19]. The main tool to
reason about correctness are the STL concepts [3], which group together required
operators and their semantics. Siek has proposed concept checks and concept

archetypes [18, section 2.5] as a limited form of compile-time checking; these
checks are restricted to the existence of operators and do not carry information
about their behaviour. We show by an example implementation [7] of quicksort
[3, chapter 12], that Saga’s adjectives can serve as a representation of concepts.

Haskell [11] provides a mechanism for bundling operators into type classes to
give a clear semantics to overloading [21]. A type can be declared an instance of a
class by providing implementations for the class’s operators. An operator can be
a member of at most one class, and the compiler ultimately maps operator names
to their implementation via a lookup in the global instance table [8]. In other
words, it is the operator’s name which determines its required behaviour, not the
algorithm in which the operator appears. This mismatch with Saga’s concept
of generic programming can be remedied technically by renaming operators,
for instance replacing + with the more precise ring_add or monoid_add. Yet
this renaming renders Haskell’s subclass mechanism unusable and deprives the
language of its counterpart of adjective implication.

5 Conclusion

We have presented a language design focussing on the precise specification of
generic algorithms. It admits parameters for both types and their associated op-
erations, which together form the algorithm’s signature. Algorithm instantiation
can be restricted by semantic conditions on parameters, expressed symbolically
as adjectives with a defined meaning. The compiler then checks that the restric-
tions are obeyed in calls. At the same time, we can reason about the correctness
of algorithms without referring to their instantiations in the compiled program:
All proof-obligations about static properties are apparent from the program text
and can be generated by citing the adjectives’ definitions.

Saga is a prototype implementation of this design. We have demonstrated its
applicability by an example, a sparse implementation of the univariate polyno-
mials. More example material is covered in [7], where we represent STL concepts
[3] by Saga’s adjectives; concept checking can be conducted by Saga, including
the semantic conditions missing in previous approaches [18, section 2.5].

The examples considered so far admit the following observation regarding the
practical use of Saga: Due to the separate declaration of adjectives and their
relationships, algorithm descriptions and collections of adjectives can be evolved
in parallel. Whenever an adjective proves too coarse for the precise specification
of an algorithm, it is split and the relation of the parts to the original is declared
as a rule. By the same token, rules also enable cross-references between generic
libraries with different terminology or background.

References

1. Ole Agesen, Stephen N. Freund, and John C. Mitchell. Adding Type Param-
eterization to the Java Language. In Proceedings of the 1997 ACM SIGPLAN
Conference on Object-Oriented Programming Systems, Languages & Applications
(OOPSLA ’97), volume 32 of SIGPLAN Notices, pages 49–65, Atlanta, Georgia,
October 1997. ACM.

2. ANSI, editor. The Programming Language Ada—Reference Manual. Number 155
in Lecture Notes in Computer Science. Springer-Verlag, 1983.

3. Matthew H. Austern. Generic Programming and the STL–using and extending the
C++ Standard Template Library. Addison-Wesley, 1st edition, 1998.

4. G.V. Cormack. An Algorithm for the Selection of Overloaded Functions in Ada.
ACM SIGPLAN Notices, 16(2):48–51, 1982.

5. Harald Ganzinger and Knut Ripken. Operator Identification in ADA:Formal
Specification,Complexity, and Concrete Implementation. ACM SIGPLAN Notices,
(15):30–42, 1980.

6. Holger Gast. Generic Programming with Views: Type- and Class-inference with
Polymorphic Subsumption by Resolution Theorem Proving. Technical Report
WSI-2001-17, Wilhelm-Schickard Institut,Universität Tübingen, November 2001.

7. Holger Gast. Generating Type-Checkers in a Proof Theoretic Formulation. PhD
thesis, Wilhelm-Schickard-Institut für Informatik, Universität Tübingen, 2003.
(forthcoming).

8. Cordelia V. Hall, Kevin Hammond, Simon L. Peyton Jones, and Philip L. Wadler.
Type Classes in Haskell. ACM Transactions on Programming Languages and Sys-
tems, 18(2):109–138, 1996.

9. P. Jansson and J. Jeuring. PolyP - a polytypic programming language extension. In
Conference Record of POPL ’97: The 24th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages.

10. Richard D. Jenks and Robert S. Sutor. AXIOM : the sientific computation system.
Springer-Verlag, New York u.a., 1992.

11. Hughes (ed.) Jones, Simon Peyton. Report on the Programming Language
Haskell 98— A Non-strict,Purely Functional Language. http://www.haskell.org/
definition/haskell98-report.ps.gz, February 1999.

12. Mark P. Jones. A system of constructor classes: overloading and implicit higher-
order polymorphism. Journal of Functional Programming, 5(1):1–35, January 1995.

13. Donald E. Knuth. The Art of Computer Programming, volume 2 – Seminumerical
Algorithms. Addison-Wesley, 3rd edition, 1997.

14. David R. Musser and Atul Saini. STL Tutorial and Reference Guide. Addison-
Wesley, 1996.

15. Martin Odersky, Enno Runne, and Philip Wadler. Two Ways to Bake Your
Pizza – Translating Parameterised Types into Java. In M. Jazayeri, R. Loos,
and D. Musser, editors, Generic Programming ’98, volume 1766 of Lecture Notes
in Computer Science, pages 114–132. Springer-Verlag, 2000.

16. Christoph Schwarzweller. MIZAR verification of generic algebraic algorithms. PhD
thesis, Universität Tübingen, 1997.

17. Christoph Schwarzweller. Symbolic deduction in mathematical databases based on
properties. In V. Sorge S. Colton, editor, Proceedings of the Second International
Workshop on the Role of Automated Deduction in Mathematics (RADM2002),
Kopenhagen, Denmark, July 2002.

18. Jeremy G. Siek, Lie-Quan Lee, and Andrew Lumsdaine. The Boots Graph Library.
C++ In-Depth Series. Addison-Wesley, Boston, 2003.

19. Bjarne Stroustrup. The C++ programming language. Addison-Wesley, Reading,
Mass. u.a., 3rd edition, 1997.

20. Martin Sulzmann. A General Framework for Hindley/Milner Type Systems with
Constraints. PhD thesis, Yale University, Department of Computer Science, May
2000.

21. Philip Wadler and Stephen Blott. How to Make ad-hoc Polymorphism Less ad-hoc.
In J. Hughes, editor, Conference Record of the Sixteenth Annual ACM Symposium
on Principles of Programming Languages, pages 60–76, Austin, Texas, January
1989.

