
Symbolic Deduction in Mathematical Databases
based on Properties

Christoph Schwarzweller

Wilhelm-Schickard-Institute for Computer Science
University of Tübingen

Sand 13, D-72076 Tübingen
schwarzw@informatik.uni-tuebingen.de

Abstract. We claim that mathematical databases should be more than
a collection of domains with associated theorems; in particular theorems
should be stated as general as possible, that is independent of domains.
A database then should be able to check whether such a general theorem
holds in a particular domain. To this end we use a properties-based
representation for both theorems and domains, and present a deduction
calculus that using additional rules about the problem domain allows to
perform such a theorem check.

1 Introduction

Numerous mathematical theorems have been proven with various mech-
anized reasoning systems. Among them are, for example, the proof of
Robbin’s conjecture in Otter [McC97], a proof of the Jordan curve the-
orem in Mizar [RT99], and a proof of the Chinese Remainder theorem
in RRL [ZH93]. However, mathematical databases allowing to reuse such
theorems in a general sense can hardly be found. The reason is that
mechanized reasoning systems rely on rather involved logics and proof
languages, so that proofs cannot be translated from one system to an-
other easily. Thus the only possibility is often to prove such a theorem
again or to include it as an axiom. Furthermore, the domain used to prove
a theorem often includes unnecessary restrictions, for instance the above
mentioned Chinese remainder theorem is proven for the integers and not
for rings (or even more general domains). Hence even inside a reasoning
system it is sometimes a non-trivial task to reuse an already proven the-
orem because the current domain does not fit to the one that has been
used for the proof.

In this paper we present an approach to mathematical databases fo-
cussing on the reuse of theorems in various domains. We have proposed
to organize mathematical databases by decoupling proving theorems and

reusing them in other domains [Sch01]. To this end, theorems are deco-
rated with sets of properties describing conditions under which a theorem
holds. Thus by using as less properties as possible theorems are given in a
general setting. These properties-based theorems then allow for checking
their validity in particular domains by just checking whether the domain
fulfills the properties connected with the theorem. Here, we present a cal-
culus to perform this check in a Prolog-style manner. We think of such a
checker as being part of a mathematical database.

2 Representation of Theorems and Domains

In this section we describe the representation of theorems and domains
underlying our database approach. The key idea is to separate the content
of a theorem from the properties necessary to prove a theorem correct
[Sch01]. The content Cont(T) of a theorem T states the proposition the
theorem is about. It can be compared to a first-order formula. However,
the domain and the operations necessary to express Cont(T) are given
separately in a signature Sig(T). This allows to distinguish between the
proposition of the theorem and conditions under which it holds. This is
further elaborated in the third component of a theorem T . Here, a set
of properties Prop(T) is given. The intended meaning is that using these
properties Cont(T) can be proven correct. To enable easier deduction
we represent properties by predicate symbols. Thereby, the arity of these
symbols corresponds to the carriers and operations necessary to formulate
the property as a first order formula. Summarized we consider a theorem
T as a triple

T = (Sig(T), Cont(T), P rop(T))

where the statements of Cont(T) and Prop(T) fit to the given signa-
ture Sig(T). The other way round Sig(T) should not include more than
necessary for the statements given in Cont(T) and Prop(T). Note, that
we do not use a formal definition of properties in the sense of first-order
logic here. We assume that the meaning of a property is indicated by its
name, that is by the chosen predicate symbol. Consider, for example, the
following theorem T .

Let R be a (commutative) ring. Then {0} is an ideal in R.

Then we get in our notation

Cont(T) = {0} is an ideal in R.

It is a straightforward task to expand the right-hand phrase ”{0} is an
ideal in R” into a first-order formula. More importantly, the signature
necessary to formulate this proposition is

Sig(T) = (R,+, ∗, 0),

that is the symbol 1 usually part of a ring signature is not included.
Furthermore, in order to prove that {0} is an ideal in R it is only necessary
that + is associative, provides a right zero as well as right inverses and
that + and ∗ are distributive. So we get

Prop(T) = {associative(R,+), right-zero(R,+, 0),
right-inverse(R,+, 0), distributive(R,+, ∗)},

that is the properties connected with T are much weaker than the prop-
erties of a ring required in the original version of the theorem. Note that
the arguments R,+, ∗ and 0 can be interpreted as variable symbols since
they represent arbitrary carriers and operations respectively. This will
play an important role later for the calculus.

Domains D can be represented in a similar way. They also consist of
a signature Sig(D) giving carriers and operations of the domain and a
set Prop(D) containing properties the domain fulfills, thus

D = (Sig(D), P rop(D)).

This works for both abstract domains such as rings or fields and concrete
domains. For example, the ring of integers Z would look like

Sig(Z) ⊇ (Z,+Z, ∗Z, 0Z, 1Z)
Prop(Z) ⊇ {associative(Z,+Z),distributive(Z,+Z, ∗Z),

commutative(Z,+Z), commutative(Z, ∗Z),
Euclidean(Z,+Z, ∗Z, 0Z)}

where Z,+Z, ∗Z, 0Z and 1Z are now constant symbols. Thus the approach
allows for the description of both domains and theorems with regard to
properties of domains and properties ensuring the correctness of theorems.
This gives rise to a straightforward criterion whether a theorem T holds
in a domain D where D may be both an abstract or a concrete domain. It
has only to be checked whether D provides both the necessary signature
and the properties connected with T , thus

Cont(T) holds in D :⇐⇒ SigD(T) ⊆ Sig(D) ∧ PropD(T) ⊆ Prop(D).

The notations SigD(T) and PropD(T) resp. mean that the variable sym-
bols occurring in the theorem T , actually in Sig(T), are replaced by the
corresponding symbols of the domain D. Note that the failure of this
test not necessarily implies that a theorem does not hold in a domain,
the check is relative to the properties stated about the theorem and the
domain. Reasoning is not necessary here, just checking whether certain
properties, that is predicates connected with domains and theorems, are
present. Nevertheless the deduced results are correct provided that the
meaning of the properties was defined properly. Note, that this method
also allows for straightforward error messages by collecting the properties
of T not included in the ones of D.

3 A Calculus for Deducing Properties

The distinction between the content of a theorem and properties under
which this content can be proven allows for checking whether theorems
hold in a domain by comparing sets of properties with respect to inclu-
sion. However, this setting is too restricted. For example, if a theorem T
requires the property left-distributive, and a domain D obeys the prop-
erty distributive, it is not desirable that left-distributive has to be added
to the domain’s properties. The mathematical database should rather
be able to conclude that T holds in D, although the sets of properties
involved are not related by inclusion.

In the following we replace the subset relation between two sets P1

and P2 of properties by a relation P1 =⇒ P2 with the meaning that every
domain D that fulfills the properties of P1 also fulfills the ones in P2, or
more formally

|= P1 =⇒ P2 :⇐⇒ ∀D : D |= P1 implies D |= P2

where |= on the right-hand side is the model operator well-known from
first-order logic. Thus the content of a properties-based theorem T =
(Sig(T), Cont(T), P rop(T)) holds in a domain D = (Sig(D), P rop(D))
if both SigD(T) ⊆ Sig(D) and |= Prop(D) =⇒ PropD(T) are valid.
Note that |= P1 =⇒ P2 corresponds to the usual semantic implication.
However, in a mathematical database as proposed in the last section the
formulas occurring in P1 and P2 are given by a set of predicates only,
whose arguments are either variables or constants.

Obviously, an implication P1 =⇒ P2 cannot be checked in this gener-
ality, in particular if we represent properties by predicate symbols without
giving the definition of properties as a first-order formula. Therefore we

incorporate a set of rules L describing basic relations between sets of
properties. For example, the following rule

{distributive(R,+, ∗)} −→
{left-distributive(R,+, ∗), right-distributive(R,+, ∗)} (A)

states that structures (R,+, ∗) that are distributive are also both left-
and right-distributive. In this way a mathematical database is provided
with additional knowledge about the problem domain. The deduction of
|= P1 =⇒ P2 is then performed relative to such a set of rules.

The calculus has two axioms. The first mirrors the fact, that an impli-
cation P1 =⇒ P2 trivially holds, if P2 ⊆ P1. The second axiom allows to
incorporate the external rules: if l −→ r ∈ L, then σ(l) implies σ(r) where
σ is an arbitrary substitution compatible with the signature. Further on,
there are a rule allowing to combine different implications P2 and P3 both
made from P1 and a rule for concatenating implications P1 =⇒ P2 and
P2 =⇒ P3.

P2 ⊆ P1

` P1 =⇒ P2
(AX1)

l −→ r ∈ L

` σ(l) =⇒ σ(r)
(AX2)

` P1 =⇒ P2, ` P1 =⇒ P3

` P1 =⇒ P2 ∪ P3
(R1)

` P1 =⇒ P2, ` P2 =⇒ P3

` P1 =⇒ P3
(R2)

Provided that the rules in L are correct, that is if from l −→ r ∈ L indeed
follows |= σ(l) =⇒ σ(r) for the substitutions σ used in a deduction, it
is straightforward to see that the calculus is correct. In other words, we
have that (relative to L) ` P1 =⇒ P2 implies |= P1 =⇒ P2. However,
if no deduction sequence is found this does not necessarily mean that
|= P1 =⇒ P2 is not valid. The reason is that the calculus checks for
implications with respect to the rule set L only. In other words, if L does
not contain enough knowledge about the problem domain, the deduction
of an implication may fail, although this implication is true.

The calculus can be extended with some straightforward derived rules,
among them

` P1 =⇒ P2 ∪ P3

` P1 =⇒ P2
(L1)

` P1 =⇒ P2, P1 ⊆ P3

` P3 =⇒ P2
(L2)

These rules can be easily proven correct in the sense that their conse-
quences can be deduced from their premises in the original calculus. To
see how the calculus works let us deduce the following implication.

` {associative(Z,+Z), distributive(Z,+Z, ∗Z)} =⇒
{associative(Z,+Z),
left-distributive(Z,+Z, ∗Z), right-distributive(Z,+Z, ∗Z)}

To do so, we assume that the distributivity rule A from above is present in
the set of rules L. Then, using Lemma L2, we get the following deduction
sequence. Note that the actual definition of the properties involved has
no influence on the deduction, that is the deduction is purely symbolic.

(1) ` {associative(Z,+Z), distributive(Z,+Z, ∗Z)} =⇒
{associative(Z,+Z)}
by AX1

(2) ` {distributive(Z,+Z, ∗Z)} =⇒
{left-distributive(Z,+Z, ∗Z), right-distributive(Z,+Z, ∗Z)}
by AX2 with A and σ(R) = Z, σ(+) = +Z, σ(∗) = ∗Z

(3) ` {associative(Z,+Z), distributive(Z,+Z, ∗Z)} =⇒
{left-distributive(Z,+Z, ∗Z), right-distributive(Z,+Z, ∗Z)}
by L2(2)

(4) ` {associative(Z,+Z, distributive(Z,+Z, ∗Z)} =⇒
{associative(Z,+Z),
left-distributive(Z,+Z, ∗Z), right-distributive(Z,+Z, ∗Z)}
by R1(1,3)

Thus a theorem T requiring for instance the properties associative(R,+),
left-distributive(R,+, ∗) and right-distributive(R,+, ∗) holds in particu-
lar for Z. Though for Z only the property distributive(R,+, ∗) has been
stated, this can be checked by a mathematical database using the calcu-
lus. Note that, by just taking the identity substitution for σ, the above
sequence can be easily transformed in a deduction sequence using R,+
and ∗ instead of Z,+Z and ∗Z, that is general lemmas can be shown.

Finding a deduction sequence for an implication P1 =⇒ P2 requires
some amount of guessing in which way the set on the left-hand side of an
implication has to be extended, that is guessing which property should
be additionally considered in order to combine already deduced implica-
tions. This can be seen, for example, in step (3) of the deduction above
where using Lemma L2 the set on the left-hand side is extended from
{distributive(Z,+Z, ∗Z)} to {associative(Z,+Z), distributive(Z,+Z, ∗Z)};
any other extension would have been a correct application of L2, too.
Fortunately, this problem can be avoided using backward propagation.
The idea is, given an implication P1 =⇒ P2, to successively remove prop-
erties from P2 that are implied by the ones from P1. We use the following
three rules.

(B1) Replace ` P1 =⇒ P2 by ` P1 =⇒ P2\(P1 ∩ P2).
(B2) Replace ` P1 =⇒ P2 by ` P1 =⇒ (P2\(σ(r) ∩ P2)) ∪ σ(l) if there

are a rule l −→ r ∈ L and a substitution σ with σ(r) ∩ P2 6= ∅.
(B3) Accept ` P1 =⇒ ∅.

Thus an implication P1 =⇒ P2 is accepted, if it can be transformed into
an implication of the form P1 =⇒ ∅. The rules are correct with respect
to the above calculus in the sense that every deduction starting with
P1 =⇒ P2 and ending with P1 =⇒ ∅ using B1 - B3 can be translated
into a correct sequence of the original calculus. For the example from
above we get

` {associative(Z,+Z), distributive(Z,+Z, ∗Z)} =⇒
{associative(Z,+Z),
left-distributive(Z,+Z, ∗Z), right-distributive(Z,+Z, ∗Z)}

` {associative(Z,+Z), distributive(Z,+Z, ∗Z)} =⇒
{left-distributive(Z,+Z, ∗Z), right-distributive(Z,+Z, ∗Z)}
by B1

` {associative(Z,+Z), distributive(Z,+Z, ∗Z)} =⇒
{distributive(Z,+Z, ∗Z)}
by B2 with A and σ(R) = Z, σ(+) = +Z, σ(∗) = ∗Z

` {associative(Z,+Z), distributive(Z,+Z, ∗Z)} =⇒ ∅
by B1

which is accepted by B3. Note, that the only choice throughout the de-
duction consists of determining which rule of L should be applied. Also
the left-hand side P1 of the goal does not change throughout the whole
deduction, so that keeping track of the changes occurring in P2 is suffi-
cient. Finally it may be worth mentioning that for rules l −→ r with a
right-hand side r consisting of one property only, B2 can be simplified to

(B2’) Replace ` P1 =⇒ P2 by ` P1 =⇒ (P2\σ(r)) ∪ σ(l) if there are a
rule l −→ r ∈ L and a substitution σ with σ(r) ∈ P2.

Thus no intersection has to be computed in this case. Note, that this kind
of rules can be easily obtained by splitting up given rules as for example
the distributivity rule from above into the following two ones.

{distributive(R,+, ∗)} −→ {left-distributive(R,+, ∗)}
{distributive(R,+, ∗)} −→ {right-distributive(R,+, ∗)}

However, transforming all the rules of L this way would heavily increase
the number of steps in a deduction and only detailed experiments will
show which method is to prefer.

4 Conclusion

The calculus presented provides mathematical databases with additional
knowledge: it allows to infer implications of sets of properties with respect
to a given set of basic rules. In the database both theorems and domains
are represented based on properties so that the implication of sets of
properties is sufficient to check whether a theorem holds in a particular
domain. Thus theorems stated in this general manner can be checked for
validity in special domains easily.

Stating theorems with respect to properties rather than domains may
at first glance be somewhat unfamiliar. However, if working in a partic-
ular domain only, the familiar representation of theorems can be easily
regained. For example, a theory of rings can be constructed as follows.
First—if this has not already been done—the database has to be extended
by a domain R = (Sig(R), P rop(R)) with the appropriate signature and
properties defining rings. Then all theorems T with SigR(T) ⊆ Sig(R)
and |= Prop(R) =⇒ PropR(T) can be extracted from the database, in
this way building a new database for rings.

Mechanized reasoning systems can be incorporated the following way.
Theorems and properties included in the library as well as rules used for
deduction can be proven with a mechanized reasoning system (provided
that first-order formulae has been attached to the properties’ predicate
symbols). Note, that this indeed is a realization of proving theorems and
properties of domains on the one side, and storing and reusing knowledge
in a mathematical database on the other side. Mechanized reasoning sys-
tems allowing to formulate and prove properties-based theorems are for
example Mizar [RT99], Imps [Far93], and Theorema [BJK97].

The properties-based approach has applications in other areas, for in-
stance in the area of generic programming. Here, generic algorithms obey
type parameters which are instantiated later to get a running instance of
the algorithm. Both the feasibility and the correctness of such an instance
depends on whether the operations instantiated fulfill certain properties
which is usually not checked. Using an properties-based approach, that is
providing generic algorithms and possible instantiations with properties
required resp. fulfilled, this can be done in terms of the calculus presented.

References

[BJK97] B. Buchberger, T. Jebelean, F. Kriftner, M. Marin, E. Tomuta, and D.
Vasaru, A Survey on the Theorema Project, in: Proceedings of ISSAC’97
(International Symposium on Symbolic and Algebraic Computation), ed. W.
Küchlin, ACM Press, 1997, pp.384-391.

[Far93] W. M. Farmer, J. D. Guttman, and F. J. Thayer, IMPS: An Interactive
Mathematical Proof System, Journal of Automated Reasoning, 11 (1993)
213-248.

[McC97] W. McCune, Solution of the Robbins Problem; in: Journal of Automated
Reasoning (19), p. 263-276, 1997.

[RT99] Piotr Rudnicki and Andrzej Trybulec, On Equivalents of Well-foundedness.
An Experiment in Mizar. in: Journal of Automated Reasoning, 23:197–234,
1999.

[Sch01] C. Schwarzweller, Designing Mathematical Libraries based on Minimal Re-
quirements for Theorems. in: Proceedings of the First International Work-
shop on Mathematical Knowledge Management (MKM2001), 2001.

[ZH93] H. Zhang and X. Hua, Proving the Chinese Remainder Theorem by the Cover
Set Induction; in: D. Kapur (ed.), Proceedings of the 1992 International
Conference of Automated Deduction, LNAI 607, Springer-Verlag, p. 431-445,
1993.

