

Algebraic Requirements
for the Construction of Polynomial Rings

Robert Milewski†1 Christoph Schwarzweller††2

†University of Bialystok

Institute of Computer Science
Sosnowa 64, 15-614 Bialystok, Poland

milewski@cksr.ac.bialystok.pl

††University of Tuebingen
Faculty for Computer Science

Sand 13, D-72076 Tuebingen, Germany
schwarzw@informatik.uni-tuebingen.de

Abstract - The Mizar construction of polynomials with an arbitrary number of
variables has been described in [8]. In this paper, we present an alternative
approach for formalizing polynomials with one variable. This approach has the
advantage that quite a number of theorems can be proven with fewer requirements
on the underlying coefficient ring. In addition, because polynomials with only one
variable can be represented more easily, the construction allows for more
straightforward proofs.

Keywords – formalized mathematics, Mizar, polynomial ring, evaluation
homomorphism, algebraic requirements.

 Manuscript received October 1, 2001; revised June 10, 2002.

1 The work of the first author has been partially supported by CALCULEMUS grant HPRN-CT-2000-00102

and TYPES grant IST-1999-29001.
2 Part of this work was done while the second author visited Bialystok under CALCULEMUS grant

HPRN-CT-2000-00102.

1. Introduction

 The ring of polynomials is usually constructed over a commutative ring with 1≠0 or
even more specifically, over a field, that is, the set L of coefficients for the polynomials
forms a ring or a field. The standard construction is to model a polynomial as a function
from the set of terms generated by the variables into L. However, to establish the set of
polynomials itself as a (commutative) ring it is not necessary for the set of coefficients L to
be a full commutative ring with 1≠0. For example, to prove that addition of polynomials is
associative, commutativity of multiplication in L is not needed. This has already been
observed in [9] where the Mizar formalization of polynomials with an arbitrary (even infinite)
number of variables was described. In this paper, we investigate polynomials with one
variable. Of course, polynomials with one variable can be constructed using the general
approach of [9]. However, for the case of one variable, the construction of the ring of
polynomials can be done much easier: terms occur only as powers of the given variable.
Hence, polynomials can be represented simply as a function from the natural numbers into
L. The hope was that even fewer algebraic requirements would be necessary for the
domain L than for the construction of polynomials with an arbitrary number of variables.
 In the rest of this section, we review the construction of polynomials given in [9] and
[11]. The reader familiar with this material may skip to Section 2, where a new approach

for Mizar formalization of polynomials with one variable is presented. Polynomials with an
arbitrary number of variables have been modelled in [9] as functions from the set of terms
into the underlying structure L. A bag is a function from the set of terms over a given set
of variables X into the natural numbers.

definition
let X be set;
mode bag of X is natural-yielding finite-support ManySortedSet of X;
end;

Then, a formal power series over X is nothing more than a function from the set of bags of
X, called Bags X, into an underlying structure and more importantly, a polynomial is just a
special formal power series, namely one where almost all terms are mapped to zero. This
property is called finite-Support.

definition
let X be set;
let S be 1-sorted;
mode Series of X,S -> Function of Bags X, S means
 not contradiction;
end;

definition
let n be Ordinal;
let S be non empty ZeroStr;
mode Polynomial of n,S is finite-Support Series of n,S;
end;

 Note that in order to define polynomials as a refinement of formal power series, the
underlying structure has to provide a zero and hence it must be a structure with a carrier
and a special zero element, that is, a ZeroStr. Now, the set of polynomials with its
corresponding operations can be defined, and it was proven in [9] that this set is a ring if
the coefficients L are a (not necessarily commutative) ring. However, polynomial
evaluation was shown in [11] to be a homomorphism of rings only for the commutative
case:

definition
let n be Ordinal;
let L be right_zeroed add-associative right_complementable
 Abelian well-unital distributive non trivial
 commutative associative (non empty doubleLoopStr);
let x be Function of n,L;
cluster Polynom-Evaluation(n,L,x) -> RingHomomorphism;
end;

 This may be due to the lack of better proofs avoiding the natural use of this property,
that is, the attribute Abelian. However, this does not seem likely at the moment and we
decided to restrict ourselves to polynomials with one variable to see whether or not in this
special case fewer properties are necessary. This also touches on the question
mentioned in [8]: how much generalization is best?

2. Polynomials with One Variable

 The Mizar construction of polynomials with one variable based on finite support
formal power series was presented in [3]. With only one variable, it is possible to define a
formal power series as a function from the natural numbers into a structure L. This is done
using the Mizar mode sequence (see [7]). Note that L only has to provide a carrier, but no
operations.

definition
let L be 1-sorted;
mode sequence of L means
 it is Function of NAT, the carrier of L;
end;

 Of course, if we want to work seriously with this definition of formal power series, the
structure L has to fulfill further properties. For example, to define the addition of two
formal power series, the carrier of L has to be non empty and, furthermore, it has to provide
an addition itself. So L has to be a LoopStr (see [12]).

definition
let L be non empty LoopStr;
let p,q be sequence of L;
func p+q -> sequence of L means
 for n be Nat holds it.n = p.n + q.n;
end;

 The negation –p and the difference p-q of two formal power series p and q are
defined the same way. The definition of the product p*’q turned out to be a bit more
complicated. For this, it was necessary to introduce a helper sequence for collecting the
intermediate products of p and q at certain terms (compare [8,9]). The coefficient of the
product series p*’q at a certain term is then given as the sum of the elements of this helper
sequence. However, a special functor decomp for splitting up bags used in the general
approach is not necessary here. Of course the underlying structure L now has to provide
a multiplication also. Due to the use of addition and multiplication, it must be a
doubleLoopStr.

definition
let L be non empty doubleLoopStr;
let p,q be sequence of L;
func p*'q -> sequence of L means
 for i be Nat
 ex r be FinSequence of the carrier of L st
 len r = i+1 &
 it.i = Sum r &
 for k be Nat st k in dom r holds r.k = p.(k-'1) * q.(i+1-'k);
end;

 In the above definition –' (see [6]) denotes subtraction restricted to the natural
numbers, that is, k-'l equals zero if l is greater than k for natural numbers k and l. Although
this slightly complicates the definition, it was necessary merely because the argument of a
sequence is not allowed to be less than zero. We also defined the zero series 0_.(L) and
the unit series 1_.(L) that are necessary later to construct the ring of polynomials. A
polynomial is a formal power series p where non-zero values appear only in a finite starting
segment of p. Again this property is called finite-Support although technically it does not

exactly correspond to the finite-Support property for polynomials with an arbitrary number
of variables (see [4]). It should be clear now that to define polynomials in this way, the
structure L must have a non empty carrier as well as a zero element 0.L and hence it must
be a ZeroStr.

definition
let L be non empty ZeroStr;
mode Polynomial of L is finite -Support sequence of L;
end;

 Due to the inheritance mechanism of the Mizar system, all operators defined for
formal power series may also be applied to polynomials. However, the result will be only a
formal power series and not a polynomial. This can be achieved by using term adjective
registrations which say, for example, that the sum of two finite-Support sequences again
has the finite-Support attribute; hence, it is not only a formal power series, but in fact a
polynomial. Of course proving such registrations sometimes requires further properties
concerning the underlying structure L: to prove the just mentioned registration for the
addition of polynomials, for example, it was necessary for L to be right_zeroed, that is, for
all elements x of L holds x + 0.L = x (and not necessarily 0.L + x = x). To prove analogous
results for –p and p-q, it turned out that L had to be add-associative, right_zeroed, and
right_complementable (see [12]), whereas for the multiplication p*'q of polynomials, a fourth
attribute, distributive (see [2]), was necessary.

definition
let L be add-associative right_zeroed right_complementable
 distributive (non empty doubleLoopStr);
let p,q be Polynomial of L;
cluster p*'q -> finite-Support;
end;

 Now we can define the ring of polynomials with one variable over L. Of course here
L has to fulfill all the above attributes which are necessary to prove the registrations about
finite-Support, that is, the attributes necessary for ensuring that operations are closed with
respect to polynomials. However, according to the following definition, the type of
Polynom-Ring L is just strict non empty doubleLoopStr (see [2]); further registrations
introduce properties necessary for Polynom-Ring L to indeed be a ring. The carrier of
Polynom-Ring L corresponds to the set of all polynomials, the sum and product to the sum
and product of two polynomials, the zero element is the series 0_.(L) and the unity is the
series 1_.(L) mentioned above.

definition
let L be add-associative right_zeroed right_complementable
 distributive(non empty doubleLoopStr);
func Polynom-Ring L -> strict non empty doubleLoopStr means
 (for x be set holds
 x in the carrier of it iff x is Polynomial of L) &
 (for x,y be Element of the carrier of it, p,q be sequence of L
 st x = p & y = q holds x+y = p+q) &
 (for x,y be Element of the carrier of it, p,q be sequence of L
 st x = p & y = q holds x*y = p*'q) &
 0.it = 0_.(L) &
 1_(it) = 1_.(L);
end;

 Further properties of Polynom-Ring L are shown again using term adjective
registrations; attributes included here are Abelian, commutative, add-associative,
associative, right_zeroed, right_complementable, right_unital, and distributive, which
means that Polynom-Ring L is a commutative ring. Of course, to prove these registrations
there are again further requirements on L. For example, to show the distributive property,
we have to assume in addition that L is Abelian (see [12]).

definition
let L be Abelian add-associative right_zeroed right_complementable
 distributive (non empty doubleLoopStr);
cluster Polynom-Ring L -> distributive;
end;

 Using registrations here has the advantage that in order to prove that a particular
object is a polynomial ring over a structure L, all one has to show is that this object is a
strict non empty doubleLoopStr (and of course that the definiens, i.e., the statements after
the “means”, is fulfilled). The other properties of a ring are given for free, if the coefficient
domain L has all the properties required by the registrations.

3. Evaluation of Polynomials with One Variable

 In this section we present the Mizar formalization of the evaluation of polynomials with
one variable. For that we define a functor eval (compare [4]) returning the value of a given
polynomial at a given Point x∈L. Like in the definition of the product of two formal power
series, we employ a finite helper sequence to collect intermediate results, which are then
summated using the Sum functor defined for finite sequences. This is the usual technique
in Mizar when the sum or product of quite a number of elements has to be made explicit.
We note that for the definition of the eval functor, the underlying structure L has to be only
non-empty and unital (see [13]).

definition
let L be unital (non empty doubleLoopStr);
let p be Polynomial of L;
let x be Element of the carrier of L;
func eval(p,x) -> Element of L means
 ex F be FinSequence of the carrier of L st
 it = Sum F &
 len F = len p &
 for n be Nat st n in dom F holds
 F.n = p.(n-'1) * (power L).(x,n-'1);
end;

 We would like to mention that the definiens of the functor eval could also have been
equivalently written as:

for F be FinSequence of the carrier of L
st len F = len p &
 for n be Nat st n in dom F holds F.n = p.(n-'1)*(power L).(x,n-'1)
holds it = Sum F;

However, in this case, it would be necessary to explicitly construct such a finite sequence F
each time we want to use the definition: in contrast to the first definition, this one does not
guarantee the existence of F. On the other hand, if one wants to show that a given

element a∈L equals eval(p,x), the second one would be better because in this case the first
definition requires the construction of F whereas the second only needs the fact that a
equals Sum F for a sequence F fulfilling the given preconditions. However, this does not
happen often in our proofs, so we decided to use the first definition.
 Again, to prove further properties of eval, for example, that it is compatible with the
addition of polynomials as in:

theorem
for L be Abelian add-associative right_zeroed right_complementable
 unital left-distributive (non empty doubleLoopStr)
for p,q be Polynomial of L
for x be Element of the carrier of L holds
 eval(p+q,x) = eval(p,x) + eval(q,x);

some additional properties of L are necessary. Though these properties are obvious,
proving them turned out to be tedious. In particular, the proof concerning multiplication of
polynomials, that is, eval(p*'q,x) = eval(p,x)*eval(q,x), was quite technical as we had to do a
double induction. Of course there are other, and maybe better, ways to prove these
properties, but for us it was more important to use as few properties of the structure L as
possible. In fact, in the first version of [4], the fact that L is a field was used, which by
changing the proof could be improved to:

theorem
for L be add-associative right_zeroed right_complementable
 Abelian left_unital distributive commutative associative
 non trivial (non empty doubleLoopStr)
for p,q be Polynomial of L
for x be Element of the carrier of L holds
 eval(p*'q,x) = eval(p,x) * eval(q,x);

 Now we define the evaluation of a polynomial over L at a given term x as a function
eval from Polynom-Ring L into L. To be more precise, given a structure L and an element
x∈L, the function eval returns the value eval(p,x) for every polynomial p. That this function
is in fact a homomorphism of rings is stated analogously to the definition of Polynom-Ring L,
using term adjective registrations.

definition
let L be add-associative right_zeroed right_complementable
 distributive unital (non empty doubleLoopStr);
let x be Element of the carrier of L;
func Polynom-Evaluation(L,x) -> map of Polynom-Ring L,L means
 for p be Polynomial of L holds it.p = eval(p,x);
end;

 Note that in this definition it is sufficient that L is an add-associative right_zeroed
right_complementable distributive unital (non empty doubleLoopStr); this holds because we
required the type of Polynom-Evaluation(L,x) to be a function only, not a homomorphism
already. Again these properties are stated using term adjective registrations. As should
be clear by now, further properties of the coefficient domain L become necessary to prove
these registrations. Specifically, for Polynom-Evaluation(L,x) to be a homomorphism of
rings, we need the fact that the structure L is a commutative ring with 1≠0. We conclude
with the following:

definition
let L be add-associative right_zeroed right_complementable
 Abelian left_unital distributive commutative
 associative non degenerated (non empty doubleLoopStr);
let x be Element of the carrier of L;
cluster Polynom-Evaluation(L,x) -> RingHomomorphism;
end;

4. Comparison of the Constructions

 Our hope was that by having the restriction to one variable, the construction of (the
ring of) polynomials could be done with fewer attributes of the underlying coefficient domain
L than in the general case. Unfortunately, when defining the ring of polynomials over L
and proving that it is indeed a ring, the only attribute concerning L that vanished was non
trivial. However, in terms of certain properties, some improvements could be made: in
contrast to the general case, to prove the attribute distributive (for formal power series) for
the restricted case, it was not necessary for multiplication of L to be associative. Also, the
existence of a unit could be proven without the assumption that L is Abelian. Furthermore,
defining polynomials as mathematical objects only, rather than as a full ring, requires much
fewer attributes for L. For example, to define the unit polynomial we need only the
attribute non empty whereas in the general approach six further attributes, namely, non
trivial, add-associative, right_zeroed, right_complementable, unital, and distributive were
used. Also, in proving that the addition of polynomials commutes for the one-variable
approach, right_zeroed was not necessary. So the main lesson is that when defining the
objects in the beginning, it can indeed be done with fewer attributes for polynomials with
one variable. However, when proving more and more properties of polynomials, one gets
closer to the level of the general case. This results in polynomial evaluation where again
the definition of the functor eval needed much fewer attributes in the restricted case, but to
prove that it is indeed a homomorphism of rings in both approaches the same attributes
concerning L were necessary.
 Of course, which attributes are necessary is determined by the proof of a theorem.
For example, as mentioned in Section 3, the fact that the evaluation of one-variable
polynomials respects multiplication was first proven using the attribute Field-like; by a slight
modification of the original proof this attribute is now avoided. Hence, there is the
possibility that there are other proofs which would allow a decrease in the number of
necessary attributes in one of the constructions. It is hard to estimate whether a set of
attributes is indeed minimal for a theorem (independent of the proof technique used). In
fact, there are theorems in which such a minimal set is not unique (see [10]).
 The construction, including the proofs, was of course much easier in the restricted
case of one variable. For example, as mentioned in Section 3, to define multiplication of
power series, the somewhat technical functor decomp for splitting bags into what is needed
for multiplication of polynomials was not necessary. So it seems reasonable to have both
concepts defined because if we know that all we need are polynomials with one variable,
we can choose the easier restricted approach. In fact we plan to give a formal Mizar proof
that both approaches - Polynom-Ring(1,L) and Polynom-Ring L - are isomorphic, so that
switching between them will become easier. Again it would be interesting to see which
algebraic properties of L are necessary to construct such a proof.

5. Conclusion

 We presented an alternative Mizar construction of polynomials with one variable and
compared it with the construction of polynomials with an arbitrary number of variables. In

particular, we focused on properties of the underlying structure L allowing for such a
construction. This also contributes to the area of non-commutative analysis [1,14] as, if
possible, we in particular have proven our theorems without assuming commutativity of
multiplication. We observed that although fewer properties of L were necessary to define
the ring of polynomials with one variable, to prove that polynomial evaluation is a ring
homomorphism required the fact that L is a commutative ring with 1≠0 in both cases.
However, polynomial theories not using the evaluation homomorphism can be formalized
with much fewer requirements on the underlying structure if we restrict ourselves to one
variable polynomials.

References

[1] N. Bourbaki, Elements of Mathematics, Algebra section 4, Hermann and Addison-Wesley,
1973.
[2] Eugeniusz Kusak, Wojciech Leonczuk and Michal Muzalewski, Abelian Groups, Fields and

Vector Spaces, Formalized Mathematics, Vol. 1, 1989,
http://www.mizar.org/JFM/Vol1/vectsp_1.html.

[3] Robert Milewski, The Ring of Polynomials, Formalized Mathematics, Vol. 12, 2000,
http://www.mizar.org/JFM/Vol12/polynom3.html.

[4] Robert Milewski, Evaluation of Polynomials, Formalized Mathematics, Vol. 12, 2000,
http://www.mizar.org/JFM/Vol12/polynom4.html.

[5] Michal Muzalewski and Leslaw W. Szczerba, Construction of Finite Sequence over Ring
and Left-, Right-, and Bi-Modules over a Ring, Formalized Mathematics, Vol. 2, 1990,
http://www.mizar.org/JFM/Vol2/algseq_1.html.

[6] Takaya Nishiyama and Yasuho Mizuhara, Binary Arithmetics, Formalized Mathematics, Vol.
5, 1993, http://www.mizar.org/JFM/Vol5/binarith.html.

[7] Jan Popiolek, Real Normed Space, Formalized Mathematics, Vol. 2, 1990,
http://www.mizar.org/JFM/Vol2/normsp_1.html

[8] Piotr Rudnicki, Christoph Schwarzweller and Andrzej Trybulec, Defining Power Series and
Polynomials in Mizar, in: M. Kerber and M. Kohlhase (eds.), Symbolic Computation and
Automated Reasoning: The Calculemus-2000 Symposium, A K Peters, 2000, pp. 191-204.

[9] Piotr Rudnicki and Andrzej Trybulec, Multivariate polynomials with arbitrary number of
variables, Formalized Mathematics (to appear), Vol. 11, 1999,
http://www.mizar.org/JFM/Vol11/polynom1.html.

[10] Christoph Schwarzweller, The Binomial Theorem for Algebraic Structures, Formalized
Mathematics, Vol. 11, 1999, http://www.mizar.org/JFM/Vol11/polynom1.html.

[11] Christoph Schwarzweller and Andrzej Trybulec, Evaluation of Multivariate Polynomials,
Formalized Mathematics, Vol. 12, 2000, http://www.mizar.org/JFM/Vol12/polynom2.html.

[12] Wojciech A. Trybulec, Vectors in Real Linear Space, Formalized Mathematics, Vol. 1,
1989, http://www.mizar.org/JFM/Vol1/rlvect_1.html.

[13] Wojciech A. Trybulec, Groups, Formalized Mathematics, Vol. 2, 1990,
http://www.mizar.org/JFM/Vol2/group_1.html.

[14] B. Yousefi, Unicellularity of the multiplication operator on Banach spaces of formal
power series, Studia Math. 147(3), 2001, pp. 201-209.

