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Abstract - The Mizar construction of polynomials with an arbitrary number of 
variables has been described in [8].  In this paper, we present an alternative 
approach for formalizing polynomials with one variable.  This approach has the 
advantage that quite a number of theorems can be proven with fewer requirements 
on the underlying coefficient ring.  In addition, because polynomials with only one 
variable can be represented more easily, the construction allows for more 
straightforward proofs. 
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1. Introduction 

 
     The ring of polynomials is usually constructed over a commutative ring with 1≠0 or 
even more specifically, over a field, that is, the set L of coefficients for the polynomials 
forms a ring or a field.  The standard construction is to model a polynomial as a function 
from the set of terms generated by the variables into L.  However, to establish the set of 
polynomials itself as a (commutative) ring it is not necessary for the set of coefficients L to 
be a full commutative ring with 1≠0.  For example, to prove that addition of polynomials is 
associative, commutativity of multiplication in L is not needed.  This has already been 
observed in [9] where the Mizar formalization of polynomials with an arbitrary (even infinite) 
number of variables was described.  In this paper, we investigate polynomials with one 
variable.  Of course, polynomials with one variable can be constructed using the general 
approach of [9]. However, for the case of one variable, the construction of the ring of 
polynomials can be done much easier:  terms occur only as powers of the given variable.  
Hence, polynomials can be represented simply as a function from the natural numbers into 
L. The hope was that even fewer algebraic requirements would be necessary for the 
domain L than for the construction of polynomials with an arbitrary number of variables. 
     In the rest of this section, we review the construction of polynomials given in [9] and 
[11].  The reader familiar with this material may skip to Section 2, where a new approach 



 

 

for Mizar formalization of polynomials with one variable is presented.  Polynomials with an 
arbitrary number of variables have been modelled in [9] as functions from the set of terms 
into the underlying structure L.  A bag is a function from the set of terms over a given set 
of variables X into the natural numbers. 
 

definition 
let X be set; 
mode bag of X is natural-yielding finite-support ManySortedSet of X; 
end; 

 
Then, a formal power series over X is nothing more than a function from the set of bags of 
X, called Bags X, into an underlying structure and more importantly, a polynomial is just a 
special formal power series, namely one where almost all terms are mapped to zero.  This 
property is called finite-Support. 
 

definition 
let X be set; 
let S be 1-sorted; 
mode Series of X,S -> Function of Bags X, S means 
  not contradiction; 
end; 
 
definition 
let n be Ordinal; 
let S be non empty ZeroStr; 
mode Polynomial of n,S is finite-Support Series of n,S; 
end; 
 

     Note that in order to define polynomials as a refinement of formal power series, the 
underlying structure has to provide a zero and hence it must be a structure with a carrier 
and a special zero element, that is, a ZeroStr.  Now, the set of polynomials with its 
corresponding operations can be defined, and it was proven in [9] that this set is a ring if 
the coefficients L are a (not necessarily commutative) ring.  However, polynomial 
evaluation was shown in [11] to be a homomorphism of rings only for the commutative 
case: 

 
definition 
let n be Ordinal; 
let L be right_zeroed add-associative right_complementable  
         Abelian well-unital distributive non trivial 
         commutative associative (non empty doubleLoopStr); 
let x be Function of n,L; 
cluster Polynom-Evaluation(n,L,x) -> RingHomomorphism; 
end; 

 
   This may be due to the lack of better proofs avoiding the natural use of this property, 
that is, the attribute Abelian.  However, this does not seem likely at the moment and we 
decided to restrict ourselves to polynomials with one variable to see whether or not in this 
special case fewer properties are necessary.  This also touches on the question 
mentioned in [8]:  how much generalization is best? 
 
 
 
 



 

 

2. Polynomials with One Variable 
 
     The Mizar construction of polynomials with one variable based on finite support 
formal power series was presented in [3].  With only one variable, it is possible to define a 
formal power series as a function from the natural numbers into a structure L. This is done 
using the Mizar mode sequence (see [7]).  Note that L only has to provide a carrier, but no 
operations. 
 

definition 
let L be 1-sorted; 
mode sequence of L means 
  it is Function of NAT, the carrier of L; 
end; 

 
     Of course, if we want to work seriously with this definition of formal power series, the 
structure L has to fulfill further properties.  For example, to define the addition of two 
formal power series, the carrier of L has to be non empty and, furthermore, it has to provide 
an addition itself.  So L has to be a LoopStr (see [12]). 
 

definition 
let L be non empty LoopStr;  
let p,q be sequence of L; 
func p+q -> sequence of L means 
  for n be Nat holds it.n = p.n + q.n; 
end; 

 
     The negation –p and the difference p-q of two formal power series p and q are 
defined the same way.  The definition of the product p*’q turned out to be a bit more 
complicated.  For this, it was necessary to introduce a helper sequence for collecting the 
intermediate products of p and q at certain terms (compare [8,9]).  The coefficient of the 
product series p*’q at a certain term is then given as the sum of the elements of this helper 
sequence.  However, a special functor decomp for splitting up bags used in the general 
approach is not necessary here.  Of course the underlying structure L now has to provide 
a multiplication also.  Due to the use of addition and multiplication, it must be a 
doubleLoopStr. 
 

definition 
let L be non empty doubleLoopStr; 
let p,q be sequence of L; 
func p*'q -> sequence of L means 
  for i be Nat 
  ex r be FinSequence of the carrier of L st 
    len r = i+1 &  
    it.i = Sum r & 
    for k be Nat st k in dom r holds r.k = p.(k-'1) * q.(i+1-'k); 
end; 

 
     In the above definition –' (see [6]) denotes subtraction restricted to the natural 
numbers, that is, k-'l equals zero if l is greater than k for natural numbers k and l.  Although 
this slightly complicates the definition, it was necessary merely because the argument of a 
sequence is not allowed to be less than zero.  We also defined the zero series 0_.(L) and 
the unit series 1_.(L) that are necessary later to construct the ring of polynomials.  A 
polynomial is a formal power series p where non-zero values appear only in a finite starting 
segment of p.  Again this property is called finite-Support although technically it does not 



 

 

exactly correspond to the finite-Support property for polynomials with an arbitrary number 
of variables (see [4]).  It should be clear now that to define polynomials in this way, the 
structure L must have a non empty carrier as well as a zero element 0.L and hence it must 
be a ZeroStr. 
 

definition 
let L be non empty ZeroStr; 
mode Polynomial of L is finite -Support sequence of L; 
end; 

 
     Due to the inheritance mechanism of the Mizar system, all operators defined for 
formal power series may also be applied to polynomials.  However, the result will be only a 
formal power series and not a polynomial.  This can be achieved by using term adjective 
registrations which say, for example, that the sum of two finite-Support sequences again 
has the finite-Support attribute; hence, it is not only a formal power series, but in fact a 
polynomial.  Of course proving such registrations sometimes requires further properties 
concerning the underlying structure L:  to prove the just mentioned registration for the 
addition of polynomials, for example, it was necessary for L to be right_zeroed, that is, for 
all elements x of L holds x + 0.L = x (and not necessarily 0.L + x = x).  To prove analogous 
results for –p and p-q, it turned out that L had to be add-associative, right_zeroed, and 
right_complementable (see [12]), whereas for the multiplication p*'q of polynomials, a fourth 
attribute, distributive (see [2]), was necessary. 
 

definition 
let L be add-associative right_zeroed right_complementable  
         distributive (non empty doubleLoopStr); 
let p,q be Polynomial of L; 
cluster p*'q -> finite-Support; 
end; 

 
     Now we can define the ring of polynomials with one variable over L.  Of course here 
L has to fulfill all the above attributes which are necessary to prove the registrations about 
finite-Support, that is, the attributes necessary for ensuring that operations are closed with 
respect to polynomials.  However, according to the following definition, the type of 
Polynom-Ring L is just strict non empty doubleLoopStr (see [2]); further registrations 
introduce properties necessary for Polynom-Ring L to indeed be a ring.  The carrier of 
Polynom-Ring L corresponds to the set of all polynomials, the sum and product to the sum 
and product of two polynomials, the zero element is the series 0_.(L) and the unity is the 
series 1_.(L) mentioned above. 
 

definition 
let L be add-associative right_zeroed right_complementable  
         distributive(non empty doubleLoopStr); 
func Polynom-Ring L -> strict non empty doubleLoopStr means 
  (for x be set holds  
   x in the carrier of it iff x is Polynomial of L) & 
  (for x,y be Element of the carrier of it,  p,q be sequence of L  
    st x = p & y = q holds x+y = p+q) & 
  (for x,y be Element of the carrier of it, p,q be sequence of L  
    st x = p & y = q holds x*y = p*'q) & 
  0.it = 0_.(L) & 
  1_(it) = 1_.(L); 
end; 

 



 

 

     Further properties of Polynom-Ring L are shown again using term adjective 
registrations; attributes included here are Abelian, commutative, add-associative, 
associative, right_zeroed, right_complementable, right_unital, and distributive, which 
means that Polynom-Ring L is a commutative ring.  Of course, to prove these registrations 
there are again further requirements on L.  For example, to show the distributive property, 
we have to assume in addition that L is Abelian (see [12]). 
 

definition 
let L be Abelian add-associative right_zeroed right_complementable  
         distributive (non empty doubleLoopStr); 
cluster Polynom-Ring L -> distributive; 
end; 

 
     Using registrations here has the advantage that in order to prove that a particular 
object is a polynomial ring over a structure L, all one has to show is that this object is a 
strict non empty doubleLoopStr (and of course that the definiens, i.e., the statements after 
the “means”, is fulfilled).  The other properties of a ring are given for free, if the coefficient 
domain L has all the properties required by the registrations.  
 
 

3. Evaluation of Polynomials with One Variable 
 
     In this section we present the Mizar formalization of the evaluation of polynomials with 
one variable.  For that we define a functor eval (compare [4]) returning the value of a given 
polynomial at a given Point x∈L.  Like in the definition of the product of two formal power 
series, we employ a finite helper sequence to collect intermediate results, which are then 
summated using the Sum functor defined for finite sequences.  This is the usual technique 
in Mizar when the sum or product of quite a number of elements has to be made explicit.  
We note that for the definition of the eval functor, the underlying structure L has to be only 
non-empty and unital (see [13]). 
 

definition 
let L be unital (non empty doubleLoopStr); 
let p be Polynomial of L; 
let x be Element of the carrier of L; 
func eval(p,x) -> Element of L means 
  ex F be FinSequence of the carrier of L st 
    it = Sum F & 
    len F = len p & 
    for n be Nat st n in dom F holds  
        F.n = p.(n-'1) * (power L).(x,n-'1); 
end; 

 
     We would like to mention that the definiens of the functor eval could also have been 
equivalently written as: 
 

for F be FinSequence of the carrier of L 
st len F = len p & 
   for n be Nat st n in dom F holds F.n = p.(n-'1)*(power L).(x,n-'1) 
holds it = Sum F; 

 
However, in this case, it would be necessary to explicitly construct such a finite sequence F 
each time we want to use the definition: in contrast to the first definition, this one does not 
guarantee the existence of F.  On the other hand, if one wants to show that a given 



 

 

element a∈L equals eval(p,x), the second one would be better because in this case the first 
definition requires the construction of F whereas the second only needs the fact that a 
equals Sum F for a sequence F fulfilling the given preconditions.  However, this does not 
happen often in our proofs, so we decided to use the first definition. 
    Again, to prove further properties of eval, for example, that it is compatible with the 
addition of polynomials as in: 
 

theorem 
for L be Abelian add-associative right_zeroed right_complementable  
         unital left-distributive (non empty doubleLoopStr) 
for p,q be Polynomial of L 
for x be Element of the carrier of L holds 
  eval(p+q,x) = eval(p,x) + eval(q,x); 

 
some additional properties of L are necessary.  Though these properties are obvious, 
proving them turned out to be tedious.  In particular, the proof concerning multiplication of 
polynomials, that is, eval(p*'q,x) = eval(p,x)*eval(q,x), was quite technical as we had to do a 
double induction.  Of course there are other, and maybe better, ways to prove these 
properties, but for us it was more important to use as few properties of the structure L as 
possible.  In fact, in the first version of [4], the fact that L is a field was used, which by 
changing the proof could be improved to: 
 

theorem 
for L be add-associative right_zeroed right_complementable  
         Abelian left_unital distributive commutative associative  
         non trivial (non empty doubleLoopStr) 
for p,q be Polynomial of L 
for x be Element of the carrier of L holds 
  eval(p*'q,x) = eval(p,x) * eval(q,x); 

 
      Now we define the evaluation of a polynomial over L at a given term x as a function 
eval from Polynom-Ring L into L.  To be more precise, given a structure L and an element 
x∈L, the function eval returns the value eval(p,x) for every polynomial p.  That this function 
is in fact a homomorphism of rings is stated analogously to the definition of Polynom-Ring L, 
using term adjective registrations. 
 

definition 
let L be add-associative right_zeroed right_complementable  
         distributive unital (non empty doubleLoopStr); 
let x be Element of the carrier of L; 
func Polynom-Evaluation(L,x) -> map of Polynom-Ring L,L means 
  for p be Polynomial of L holds it.p = eval(p,x); 
end; 

 
    Note that in this definition it is sufficient that L is an add-associative right_zeroed 
right_complementable distributive unital (non empty doubleLoopStr); this holds because we 
required the type of Polynom-Evaluation(L,x) to be a function only, not a homomorphism 
already.  Again these properties are stated using term adjective registrations.  As should 
be clear by now, further properties of the coefficient domain L become necessary to prove 
these registrations.  Specifically, for Polynom-Evaluation(L,x) to be a homomorphism of 
rings, we need the fact that the structure L is a commutative ring with 1≠0.  We conclude 
with the following: 
 
 



 

 

definition 
let L be add-associative right_zeroed right_complementable  
         Abelian left_unital distributive commutative  
         associative non degenerated (non empty doubleLoopStr); 
let x be Element of the carrier of L; 
cluster Polynom-Evaluation(L,x) -> RingHomomorphism; 
end; 

 
 

4. Comparison of the Constructions 
 
     Our hope was that by having the restriction to one variable, the construction of (the 
ring of) polynomials could be done with fewer attributes of the underlying coefficient domain 
L than in the general case.  Unfortunately, when defining the ring of polynomials over L 
and proving that it is indeed a ring, the only attribute concerning L that vanished was non 
trivial.  However, in terms of certain properties, some improvements could be made:  in 
contrast to the general case, to prove the attribute distributive (for formal power series) for 
the restricted case, it was not necessary for multiplication of L to be associative.  Also, the 
existence of a unit could be proven without the assumption that L is Abelian.  Furthermore, 
defining polynomials as mathematical objects only, rather than as a full ring, requires much 
fewer attributes for L.  For example, to define the unit polynomial we need only the 
attribute non empty whereas in the general approach six further attributes, namely, non 
trivial, add-associative, right_zeroed, right_complementable, unital, and distributive were 
used.  Also, in proving that the addition of polynomials commutes for the one-variable 
approach, right_zeroed was not necessary.  So the main lesson is that when defining the 
objects in the beginning, it can indeed be done with fewer attributes for polynomials with 
one variable.  However, when proving more and more properties of polynomials, one gets 
closer to the level of the general case.  This results in polynomial evaluation where again 
the definition of the functor eval needed much fewer attributes in the restricted case, but to 
prove that it is indeed a homomorphism of rings in both approaches the same attributes 
concerning L were necessary.  
     Of course, which attributes are necessary is determined by the proof of a theorem. 
For example, as mentioned in Section 3, the fact that the evaluation of one-variable 
polynomials respects multiplication was first proven using the attribute Field-like; by a slight 
modification of the original proof this attribute is now avoided.  Hence, there is the 
possibility that there are other proofs which would allow a decrease in the number of 
necessary attributes in one of the constructions.  It is hard to estimate whether a set of 
attributes is indeed minimal for a theorem (independent of the proof technique used).  In 
fact, there are theorems in which such a minimal set is not unique (see [10]). 
     The construction, including the proofs, was of course much easier in the restricted 
case of one variable. For example, as mentioned in Section 3, to define multiplication of 
power series, the somewhat technical functor decomp for splitting bags into what is needed 
for multiplication of polynomials was not necessary.  So it seems reasonable to have both 
concepts defined because if we know that all we need are polynomials with one variable, 
we can choose the easier restricted approach.  In fact we plan to give a formal Mizar proof 
that both approaches - Polynom-Ring(1,L) and Polynom-Ring L - are isomorphic, so that 
switching between them will become easier.  Again it would be interesting to see which 
algebraic properties of L are necessary to construct such a proof. 
 
 

5. Conclusion 
 
     We presented an alternative Mizar construction of polynomials with one variable and 
compared it with the construction of polynomials with an arbitrary number of variables.  In 



 

 

particular, we focused on properties of the underlying structure L allowing for such a 
construction.  This also contributes to the area of non-commutative analysis [1,14] as, if 
possible, we in particular have proven our theorems without assuming commutativity of 
multiplication.  We observed that although fewer properties of L were necessary to define 
the ring of polynomials with one variable, to prove that polynomial evaluation is a ring 
homomorphism required the fact that L is a commutative ring with 1≠0 in both cases.  
However, polynomial theories not using the evaluation homomorphism can be formalized 
with much fewer requirements on the underlying structure if we restrict ourselves to one 
variable polynomials. 
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