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Abstract – In this paper we report on the Mizar codification of formal concepts and

concept lattices being part of the theory of formal concept analysis, a mathematical

theory that formally describes the notion of concepts and concept hierarchies.

     We give a short introduction to the theory of concept lattices and describe how

we modelled these structures in the Mizar language. After that we discuss

experiences and problems concerning the formalization; in particular we deal with

reusing mathematical knowledge stored in the Mizar Mathematical Library.
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1.  Introduction

     Concept lattices stem from the theory of formal concept analysis ([3],[9]).  The aim of
this theory is a formal mathematical treatment of concepts and concept hierarchies, hence
to bring formal methods into the field of data analysis and knowledge processing.  Its
mathematical basics are in fact nothing more than applied lattice theory.  Starting with an
elementary representation of data --- a so-called formal context C consisting of a set of
objects, a set of attributes and a relation that indicates whether an object has a particular
attribute or not--- formal concepts CP are defined as a pair consisting of a set of objects and
a set of attributes fulfilling some additional requirements.  Now the set of formal concepts
CP over a given formal context C can be equipped with a subconcept ordering and it turns
out that the set of formal concepts constitutes a complete lattice with respect to this ordering.
More details on what concept lattices are and how we formalized them in the Mizar
language will be given in Sections 2 and 3.
     The reason for choosing the theory of concept lattices to be formalized in the Mizar
language is twofold.  First, as already mentioned concept lattices stem from so-called
formal concept analysis.  This theory has a clear and rather practical intention.  In fact, a
great part of the theory goes into formulating theorems that allow the development of
algorithms analyzing data represented as concept lattices.  For example, dependencies
and implications of attributes can be computed.  So our work can be seen as a step
towards applications of the Mizar system.
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     On the other hand, the theory of concept lattices is strongly based on the theory of
(complete) lattices.  In the Mizar Mathematical Library, there are quite a few articles dealing
with these structures.  So we need not build our theory from scratch; instead we can reuse
the knowledge about (complete) lattices already included in the Mizar library. This is an
interesting experiment because it explores the possibility of reusing knowledge of the Mizar
library.  Note that the definition of lattices in Mizar was intended to enable the codification of
continuous lattices rather than to be used from a different point of view.  We will return to
this point in Section 4.

2.  Basic Lattice Theory

     In the following we shortly summarize the basic notations of the theory of lattices
necessary for the rest of the paper (see for example [2]). The reader familiar with lattice
theory may skip this section.

     Lattices are special partial orders:  a partially ordered set (P,≤) is a lattice, if for each
two elements x, y ∈  P both the supremum of x and y and the infimum of x and y exist. A
lattice L in which for each (not necessary finite) subset X ⊆  L the supremum of X and the
infimum of X exist is called a complete lattice.  Note that every finite lattice is complete.

     There is another equivalent possibility to introduce lattices:  Let L be a set and let ∧
and ∨  be binary operations over L. Then L is a lattice if ∧  and ∨  both are associative and
commutative and fulfill the absorption law, that is for arbitrary x, y, z ∈  L holds

                  x ∧  y = y ∧  x,                     x ∨  y = y ∨  x,
                  x ∧  (y ∧  z) = (x ∧  y) ∧  z,     x ∨  (y ∨  z) = (x ∨  y) ∨  z,
                  (x ∧  y) ∨  y = y,                   (x ∨  y) ∧  y = y.

     Now given such an algebraic definition of lattices one gets back the partial ordering by

defining x ≤≤ y :⇔ x ∨  y = y.  On the other hand, starting with lattices represented as
partially ordered sets, one defines x ∧  y to be the infimum and x ∨  y to be the supremum of x
and y. Then one gets two binary operations fulfilling the algebraic laws mentioned.  So
these two representations of lattices are indeed equivalent.
     In addition we need the notion of supremum density and infimum density of subsets of
a complete lattice.  A subset X of a complete lattice L is called supremum dense (infimum

dense) if each x ∈  L can be represented as the supremum (infimum) of a subset of X.  Note
that this definition is independent of the representation of the lattice just because suprema
and infima are defined for both representations.
     We also introduce dual lattices. Of course dual lattices exist for both representations of

lattices:  given a lattice (L,≤), the dual lattice of L is defined as (L,≥), that is one gets the
dual lattice of L by taking L’s reverse order. The corresponding definition for algebraically

represented lattices is also quite simple:  one only has to exchange the operations ∧  and ∨ ,
that is given such a lattice (L,∧ ,∨ ), its dual lattice is (L,∨ ,∧ ).  It should be clear that although
we defined dual lattices for both representations, the definition in fact again is independent
of the representation.
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3.  Some Details of the Codification

     In this section we describe how we formalized concept lattices in the Mizar language.
The key point here is that we put our theory of concept lattices on top of the theory of lattices
already defined in Mizar, that is we strongly reuse mathematical knowledge included in the
Mizar library not being developed for our purpose.  In addition this section is also intended
to serve as a small introduction to concept lattices as given in [3].
     We start with the elementary representation of data consisting of a set of objects, a set
of attributes and a relation between them as already mentioned in Section 1.  We modelled
this as a Mizar structure called ContextStr consisting of three selectors: the Objects, the
Attributes and the Information.

      definition
      struct (2-sorted) ContextStr
            (# Objects -> set,
                 Attributes -> set,
                 Information -> Relation of the Objects, the Attributes #);
      end;

Now a formal context C is just a non-empty context structure.  Note that a (finite) formal
context can be seen as a two-dimensional table:  the rows of the table correspond to the
objects, the columns to the attributes.  A cross in row o and column a indicates that the pair

(o,a) belongs to the given relation, that is whether (o,a) ∈  the Information of C holds.
     As already mentioned a formal concept CP over a given formal context C is a pair
consisting of a set of objects and a set of attributes that fulfills some additional requirements.
These requirements concern the so-called derivation of objects and attributes respectively.
Given a set O of objects (A of attributes) one computes the set of attributes a (objects o)
common to all objects (attributes) belonging to O (A).1  Of course, the resulting set of
objects (attributes) strongly depends on the given formal context C.  The Mizar
formalization of these two operators, which we called ObjectDerivation and

AttributeDerivation, is as follows, where o is-connected-with a is just a shorthand for (o,a) ∈
the Information of C.

      definition
      let C be FormalContext;
      func ObjectDerivation(C) ->
         Function of bool(the Objects of C), bool(the Attributes of C) means
      for O being Element of bool(the Objects of C) holds
      it.O = {a where a is Attribute of C :
                 for o being Object of C st o ∈∈∈∈  O holds o is-connected-with a};
      end;

      definition

                                                  
1111 For the reader familiar with lattice theory we mention that these operators constitute a Galois connection

between the power set of objects and the power set of attributes ([3]).
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      let C be FormalContext;
      func AttributeDerivation(C) ->
         Function of bool(the Attributes of C), bool(the Objects of C) means
      for A being Element of bool(the Attributes of C) holds
      it.A = {o where a is Object of C :
                 for a being Attribute of C st a ∈∈∈∈  A holds o is-connected-with a};
      end;

Using these derivation operators we now can define formal concepts:  a formal concept CP
consists of a set of objects and a set of attributes, called the Extent and the Intent of the
concept CP, with the additional requirement that these two sets are closed with respect to
the just defined derivations, that is the derivation of the Extent exactly gives the Intent and
vice versa.  In the Mizar language we model this in two steps:  we first define a new
structure followed by a Mizar attribute describing the requirement.

      definition
      let C be 2-sorted;
      struct  ConceptStr over C
            (# Extent -> Subset of the Objects of C,
                Intent -> Subset of  the Attributes of C #);
      end;
      definition
      let C be FormalContext;
      let CP be ConceptStr over C;
      attr CP is concept-like means
         (ObjectDerivation(C)).(the Extent of CP) = the Intent of CP &
         (AttributeDerivation(C)).(the Intent of CP) = the Extent of CP;
      end;

Now a formal concept CP over a given formal context C simply is a concept-like non-empty
concept structure over C.  The set of all formal concepts CP over a given formal context C
will be the carrier of the concept lattice over C.  In our codification the concept lattice is
given by the functor ConceptLattice(C) where C is the given formal context.
     The ordering necessary to consider formal concepts C from the viewpoint of lattice

theory is nothing more than an inclusion ordering:  CP1 ≤ CP2 --- or equivalently CP1 is a
subconcept of CP2 --- holds, if the Extent of CP1 is a subset of the Extent of CP2.  We
mention that due to the principle of duality we may also have used the intent of concepts to
define the ordering.2

      definition
      let C be FormalContext;
      let CP1, CP2 be FormalConcept of C;
      pred CP1 is-SubConcept-of CP means

                                                  
2222 To be more precise using our definition of subconcept the following theorem holds: Given CP1 and CP2

being formal concepts CP1 is a subconcept of CP2 if and only if the Intent of CP2 ⊆  the Intent of CP1.
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         the Extent of CP1 c= the Extent of CP2;
      end;

The first important point here is that given an arbitrary formal context C the set of all formal
concepts CP over C not only forms a lattice with respect to the just defined ordering, but
even a complete lattice ([3],[9]) --- the so-called concept lattice over C.  In the Mizar
language this can be formalized as the following theorem.3

      theorem
      for C being FormalContext holds ConceptLattice(C) is complete;

Hence the mathematical foundation of formal concept analysis in fact is an application of the
theory of (complete) lattices.  As we will see in the following, concept lattices even capture
all existing complete lattices.
     The next theorem ([3],[9]) gives a characterization of concept lattices in terms of
ordinary lattice theory.  It states a necessary and sufficient condition for a complete lattice L
to be isomorphic to a concept lattice over a given formal context C.  Note that the attribute
are_isomorphic is not specific with respect to concept lattices, but is the ordinary one for
lattices already being part of the Mizar library.

      theorem
      for L being complete Lattice
      for C being FormalContext holds
      ConceptLattice(C),L are_isomorphic
      iff ex g being Function of the Objects of C, the carrier of L,
               d being Function of the Attributes of C, the carrier of L
          st rng(g) is supremum-dense & rng(d) is infimum-dense &
              for o being Object of C, a being Attribute of C holds
              o is-connected-with a iff g.o ≤≤ d.a;

This theorem easily entails that every complete lattice is isomorphic to a concept lattice.
As a by-product we get that the theory of concept lattices in fact is identical with the theory of
complete lattices.  We proved the following theorem in [6].

      theorem
      for L being Lattice holds
      L is complete iff
      ex C being FormalContext st ConceptLattice(C),L are_isomorphic;

We close this section by describing dual concept lattices. First we define dual formal
contexts by exchanging objects and attributes and taking the reverse relation (denoted by
the functor ~) as the Information of the formal context.  Note that we are overloading the
operator °, which already has been introduced in the Mizar article LATTICE2 [7] where it

                                                  
3333 Or of course as a cluster definition.
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takes a lattice as its argument.4

      definition
      let C be FormalContext;
      func C° -> strict non empty ContextStr equals
         ContextStr (# the Attributes of C, the Objects of C, (the Information of C)~ #);
      end;

Now because ConceptLattice(C) is a lattice, its dual lattice (ConceptLattice(C))° is well
defined.  It turns out that building the concept lattice over a dual context C° is the same as
first building the concept lattice over C and then taking its dual lattice in the sense of Section
2.  To be more precise, one can prove the following Mizar theorem.

      theorem
      for C being FormalContext holds
      ConceptLattice(C°),(ConceptLattice(C))° are_isomorphic;

In other words building the concept lattice over a suitable formal context, namely the dual
formal context, already captures all dual concept lattices.  Note also that the functor ° if
applied to a lattice, in particular to a concept lattice, again is the functor being already part of
the Mizar library ([7]) and is not specific to concept lattices, which again demonstrates how
the theory of concept lattices is put on top of the theory of (complete) lattices.

4.  Experiences

     First we want to say that Mizar formulation of mathematical objects is rather
straightforward --- at least in the field of algebra and lattice theory --- so that even beginners
can easily cope with this. Problems are caused in the environment part in which one has to
import the necessary preliminaries of the article:  one has to identify the articles of the
Mizar library in which the notation one needs for the new article has been introduced.  In
addition, finding theorems in the Mizar Mathematical Library that may be helpful in proving
one's own theorems is rather difficult.5  For example, although dual lattices are defined in
the article LATTICE2 using the algebraic representation, the corresponding theorem about
the induced orders (compare Section 2), to be more precise the theorem stating that given
an algebraically represented lattice L the order of L’s dual lattice equals the reverse order of
L, is part of a different article LATTICE3.  It is obvious that this cannot be changed, just
because some parts of LATTICE3 are necessary to formulate and prove this theorem.  But,
it makes finding theorems about dual lattices very difficult.  Both problems could be solved
by introducing more structure into the Mizar library or by extending the Mizar system with
powerful search tools. This also would improve Mizar’s capabilities concerning the reuse of
knowledge.  On the other hand, if we ignore these rather technical aspects of reusing
knowledge of the Mizar library, the facilities we find are in fact satisfying, as we will see in the

                                                  
4444 There the operator ° also denotes the dual lattice.
5555 At this point we have to mention the excellent Mizar User Service which relativizes these problems.
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following.
     As already mentioned lattices can be defined in two equivalent ways (compare Section
2). Consequently in the Mizar Mathematical Library there are two different representations of
lattices:  the first one is based on partially ordered sets6; the second one is the algebraic
structure7 given by a carrier and two operations usually denoted by ∧  and ∨ . We defined
concept lattices using the latter representation.  At a first glance this seems to be a mistake
as in the Mizar library lattice theory based on the first representation is much more
developed. But --- because the Mizar library comes with operators converting objects from
one representation into the other one --- it turned out that it is rather easy to change the
representation, apply theorems formulated for the second representation and translate back
the results. Let us illustrate this with a rather trivial example:

     In lattices defined using the operations ∧  and ∨ , an ordering ≤≤ can be defined by a ≤≤
b :⇔ a ∨  b = b as already has been pointed out in Section 2.  Given this definition assume
that we want to prove transitivity of the ordering ≤≤:

      theorem
      for L being Lattice
      for a,b,c being Element of the carrier of L holds (a ≤≤ b & b ≤≤ c) implies a ≤≤ c

Assume further that for lattices based on partially ordered sets we know that the following
corresponding theorem holds. T is just a label used by the Mizar checker to apply the
theorem in later proofs.
   
      theorem T:
      for L being LATTICE
      for a,b,c being Element of the carrier of L holds (a ≤ b & b ≤ c) implies a ≤ c;

The transformation operator we will use to prove the theorem8 using T is denoted by % ([1]):
given an algebraically represented lattice L, an element a ∈  L is converted into an element
of the corresponding lattice based on partially ordered sets, that is theorems formulated for
LATTICE are directly applicable to a%.  By using this, the proof of our theorem consists of
the three already mentioned steps: converting the elements (this is done using theorem
LATTICE3:7 which also states that the transformation respects the orderings), applying
theorem T from above (which is formulated for LATTICE) and reconverting the elements
(which again is done using theorem LATTICE3:7):

      proof
      let L be Lattice;
      let a,b,c be Element of the carrier of L;
      assume A: a ≤≤ b & b ≤≤ c;
      then B: a% ≤ b% by LATTICE3:7;
      b% ≤ c% by A,LATTICE3:7;

                                                  
6666 Called LATTICE in the Mizar Mathematical Library.
7777 Called Lattice in the Mizar Mathematical Library.
8888 In this case it is of course trivial to prove the theorem directly.
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      then a% ≤ c% by B,T;
      hence a ≤≤ c by LATTICE3:7;
      end;

     A rather small problem with this proof we also want to mention is that the
transformation operator % as it is defined in [1] does not exactly convert from Lattice into
LATTICE, but only to partially ordered sets, or to be more precise to LattPOSet L, if L is the
given Lattice. Of course L being an algebraically based lattice implies that LattPOSet L also
is a lattice based on partially ordered sets, so we can formulate the following cluster about
LattPOSet L.

      definition
      let L be Lattice;
      cluster LattPOSet L -> with_infima with_suprema;
      end;

The attributes with_infima and with_suprema defined in [1] state the existence of suprema
and infima respectively, hence in our case that LattPOSet L indeed is a lattice.
     After this cluster definition --- which in fact is nothing more than a reformulation of
theorem LATTICE3:11 --- the proof from above is accepted as it is. This means that in Mizar
it is possible to switch from one representation of lattices into the other without any major
problem.  Consequently all theorems proved for one representation are also applicable to
the other one --- just as we are used to from usual mathematical lattice theory.  From a
technical point of view this means that reusing knowledge of the Mizar library is possible
even if the actual representation slightly differs from the former one.  We plan to explore
this point in more detail, but we believe that the introduction of additional cluster definitions
like in our example will enable us to comfortably switch between the two Mizar
representations of lattices.
     A last point we want to mention here is concerned with the length of our codification.
The two articles that we wrote about concept lattices [5], [6] both have a length of about
4000 lines of Mizar code.  The corresponding part of the textbook [3], which is the basis of
our formalization, is only about eight pages.
     At a first glance this seems to be an unacceptable proportion having its origins in the
Mizar proof checker.  But, we believe that the length of the formalization is not well suited
as a measure for the quality of the formalization.  First, one has to take into account the
quality of the source, that is how detailed the given mathematical text and its proofs are.  In
our case this is rather small:  many facts about formal contexts and formal concepts simply
occur in the text, that is they are not formulated as a lemma or a theorem.  In addition,
proofs of easy lemmas are left out and even if proofs are done --- due to the duality principle
of lattice theory --- one often reads “The other case analogously follows.”  This is no harm
in mathematical textbooks, but in Mizar (like in every formal proof or proof checking system)
these things have to be made explicit.
     Second, we also believe that how easy it is to construct a proof that is accepted by a
proof checker is more important than how long this proof is.  That is one of the main
advantages of the Mizar system:  its proof language and its checker are very close to the
usual mathematical language and natural deduction.  Consequently, though proofs
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sometimes tend to be a bit lengthy, to get a proof accepted one can think in ordinary
mathematical terms and needs not to be aware of special tricks of the checker.

 5. Conclusions and Further Work

     We reported on the Mizar codification of concept lattices and our experiences in doing
so. These experiences are really good:  though we chose the algebraic representation of
lattices whose theory is not as far developed as the theory of lattices based on partially
ordered sets, we had no problems with developing the theory so far.  This is due to the fact
that it is possible in Mizar to apply theorems formulated for one representation of lattices to
the other one as we are used to doing from ordinary mathematics. Mizar models well this
aspect of mathematics.  Also we had no problems in putting the theory of concept lattices
on top of the Mizar codified theory of (complete) lattices, that is reusing the knowledge of the
Mizar Mathematical Library can be done without major problems.
     We plan to go on with the formalization of concept lattices by exploring more
algorithmic aspects.  This includes the already mentioned computation of dependencies
and implications of attributes.  In addition we want to codify the reduction of formal
concepts:  given a formal context, one can often eliminate objects and attributes without
changing the corresponding concept lattice.  A theorem in [3] states that for every (finite)
formal context C there exists another formal context --- the so-called standard context of C
--- defining the same concept lattice which is minimal in this sense.
     Codifying these properties again is a step into a more practical use of the Mizar
system as they stem from the area of knowledge processing.  In addition, they are the
basis for algorithms analyzing formal contexts, which means that in this sense we are also
verifying algorithms using the Mizar system.
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