
Translating Mathematical Vernacular

into Knowledge Repositories

Adam Grabowski1 and Christoph Schwarzweller2

1 Institute of Mathematics, University of Bia lystok
ul. Akademicka 2, 15-267 Bia lystok, Poland

adam@math.uwb.edu.pl
2 Department of Computer Science, University of Gdańsk
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Abstract. Defining functions is a major topic when building mathe-
matical repositories. Though relatively easy in mathematical vernacular,
function definitions rise a number of questions and problems in fully
formal languages (see [Dav03]). This becomes even more important for
repositories in which properties of the defined functions are not only
stated, but also proved correct. In this paper we investigate function
definitions in the Mizar system. Though most of them are straightfor-
ward and follow the intuition, we also found a number of examples dif-
fering from mathematical vernacular or where different solutions seem
equally reasonable. Sometimes there even do not seem to exist solutions
not somehow “ignoring mathematical vernacular”. So the question is:
Should we seek for some kind of standard, that is a “formal mathemati-
cal vernacular”, or should we accept that different authors prefer different
styles?

1 Introduction

Mathematical knowledge management aims at providing both tools and in-
frastructure supporting the organization, development, and teaching of math-
ematics on computers. To this end large repositories of mathematical knowledge
are of major concern in order to provide a basis the potential user can rely on.
Thereby, the acceptance of such repositories and hence of mathematical knowl-
edge management systems heavily relies on the way mathematics is presented
to the user; thus the closer to “everyday” mathematics the used language is, the
more likely users of the system will be found.

The language actually used by mathematicians, however, is rather vague and
imprecise: working mathematicians use what is called the “mathematical vernac-
ular” [DeB87], [KN04], a language rather to communicate than to be completely
formal. As stated by Davenport [Dav03] “It turns out to be remarkably hard
to write ‘correct’ mathematics in the mathematical vernacular.” The reason is
that the knowledge implicitly used in the vernacular must be made explicit for
“correct” mathematics. The same holds for knowledge repositories, especially if
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such a repository is to be connected with a theorem prover or checker and not
just a collection of (textual) definitions and theorems. Here, for example, we do
not have “obvious” special cases not worth mentioning.

On the other hand existing theorem provers and checkers provide languages
successfully used to formalize and prove numerous advanced theorems. The lan-
guages to do so, however, are usually highly specialized and hard to understand
from the viewpoint of working mathematicians. The reason here is a clash be-
tween what mathematicians and computers – that is computer scientists who
design and implement theorem provers and checkers – consider comfortable. For
theorem proving it might be reasonable to use languages “bizar” to a mathe-
matician, as the goal is “simply” to find a (representation and) a computer proof
for a specially chosen theorem.

In mathematical repositories the situation is somewhat different: here we look
for general methods describing (and proving) theorems from different – if not
all – areas of mathematics. So the question is: Should we develop mathemati-
cal knowledge management systems as closely as possible to the vernacular of
working mathematicians in order to please them as potential users? Or should
we include other language elements or slightly different definitions in case they
are more convenient from the theorem proving point of view?

In this paper we try to give an answer to this question by inspecting the
Mizar language and the Mizar Mathematical Library. We focus on definitions,
in particular function definitions, which are often given partially or by case
distinctions (see [Dav03]). This “impreciseness” is not further considered by
mathematicians: theorems are stated without really worrying about the “easy
special cases”. In mathematical repositories, however, this is not possible and
therefore Mizar provides language constructs to cope with such situations. In
addition we also present example situations which

1. do not strictly follow the “mathematical vernacular” and
2. provide a more elegant reuse in a repository.

The plan of the paper is as follows. After a brief review how functions can be
defined in Mizar in the next section, we start with an investigation of the empty
set and its elements in section 3. This “easy” example already indicates, that
there exist different possibilities to realize mathematical vernacular in reposito-
ries. That this is no accident is shown in section 4 and 5 where a number of
examples from different areas such as trigonometric functions and arithmetics
are presented. Problems concerning more involved topics such as modularity of
repositories and ambiguities are discussed in section 6. These observations imply
that maintaining and revising of repositories will stay an important topic in the
future. Section 7 discusses software built for the Mizar Mathematical Library to
support this task.

2 Defining Functions in Mizar

Mathematical function definitions often cannot be defined uniformly on its do-
mains; there are defined by case distinctions such as for example the signum
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function or even partially by giving additional conditions for the arguments as
in the case of inverse trigonometric functions. Of course one can introduce new
domains on which such functions are then totally defined; this, however, seems
to be rather artificial and in addition would lead to an inflation of domains not
acceptable in a mathematical repository.

The Mizar systems basically provides two language constructs to cope with
such situations: the assume-clause to express restrictions of arguments and the
if-clause for defining case distinctions. In this section we give some introduc-
tory examples for using (and abusing) these constructs before we discuss its
implications for mathematical knowledge repositories.

A standard example for restricting domains is the square root functions which
is defined for non-negative real numbers only. The straightforward Mizar defin-
ition is as follows.

definition let a be real number;

assume 0 <= a;

func sqrt a -> real number means

0 <= it & it^2 = a;

end;

Note, however, that this definition implies that for every application of sqrt
a non-negative argument a is necessary, that is one has to show or state as
an assumption that 0 <= a. Things become more puzzled when considering for
example trigonometric functions: tan a is defined only if cos a is not zero, we
thus get

definition let a be real number;

assume not ex k being Integer st a = Pi / 2 + k * Pi;

func tan a -> real number equals

sin(a) / cos(a);

end;

and, given a, to get the value tan a the assumption is evident and has to be
shown explicitly. The situation looks different when it comes to case distinc-
tions using the if-clause. Though defining functions this way requires proving
consistency – the cases need not be distinct, so one has to show that the corre-
sponding values are not contradictionary – most examples are straightforward
and intuitive such as

definition let x,y be real number;

func min(x,y) -> real number equals

x if x <= y otherwise y;

end;

Proving theorems involving such functions is rather straightforward and fits to
intuition. A prominent exception, though, is the inverse z" of a complex number
z, which is usually considered as a partial function, 0" being undefined. In Mizar,
however, we find that " is defined as a total function with 0" being equal to 0.
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definition let z be complex number;

func z" -> complex number means :: XCMPLX_0:def 7

z * it = 1 if z <> 0 otherwise it = 0;

end;

Note that in Mizar division a/b is defined as a*b". This means that / is a
total function too, and in particular that we can prove a/0 = 0 for every complex
number a. We will see in section 4 some more implications of this definition.

Of course it is easy to “abuse” these language constructs by introducing
unnecessary assumptions, the probably most prominent example is using non-
empty sets where this is not necessary. So the question is not only how to provide
assumptions that can be reasonably used later, but also to avoid false assump-
tions in a repository. As we will see this can be sometimes achieved by ignoring
the “mathematical vernacular”.

3 How Many Elements Has the Empty Subset?

To start the discussion we present in this section some issues of the empty
set and its elements. Though rather trivial at first sight, this well illustrates
the problems arising when moving from “imprecise” descriptions to “complete
formal” ones. We will see that though the definition is almost trivial, using it in
the environment of a mathematical repository – that is combining the definition
with other notations from set theory – needs some care.

The empty set is the set which contains no elements. Thus it is straightfor-
ward to define something like

definition

func {} -> set means :: XBOOLE_0:def 1

not ex x being set st x in it;

end;

Though not exactly in the scope of defining functions, we like to mention the
following problem here: In mathematical repositories definitions do not stand
alone; they have to be considered in the context of other notations, here for
example finite and infinite sets. Obviously, the empty set is finite. But in a
repository that is not true in advance, it’s just obvious in the “mathematical
vernacular”. Thus in principle it is possible to have objects such as

let X be infinite empty set;

Generally speaking that’s no harm, because such a phrase is meaningless: it
includes a contradiction, hence everything stated (and proved) for such objects
is of no use. On the other hand the acceptance of a repository in which this is
possible is at least questionable. Thus such “contradictable” objects should be
ruled out. In Mizar this is done by the use of existential cluster registrations:
before using an object of type infinite empty set its existence has to be
shown.



Translating Mathematical Vernacular into Repositories 5

Now let’s have a look at the elements of the empty set. In Mizar we find
the definition of the type Element of X, where X is a set.3 It is “clear” that
x is an Element of X, if x ∈ X. With this there are no problems if X is non-
empty: There is an element x in X, so the type Element of X is non-empty.
If X is empty, however, there is no x ∈ X. One possibility now is to define the
type Element of X for non-empty sets X only, but this seems not to fit with
mathematical vernacular. Therefore in Mizar the type Element of {} is defined
to be the empty set:

definition let X be set;

mode Element of X means :: SUBSET_1:def 2

it in X if X is non empty

otherwise it is empty;

end;

This, however, does not fit to mathematical vernacular either, because the empty
set is not an element of the empty set; but has the advantage that the type
Element of X is well-defined for arbitrary sets X. We mention that though the
empty set {} is of type Element of {}, this does not imply that {} ∈ {} is
provable in Mizar, that is {} is still the empty set. So we see that even a notion
as “obvious” as the empty set calls for basic decisions when being formalized, that
is when moving from mathematical vernacular into a mathematical repository.

4 Trigonometric Functions

In this section we consider the definition of trigonometric functions in Mizar.
Interestingly, we can find different approaches, one following the intuition and
another one using that the inverse of 0 is 0. First, the logarithm of real numbers
a and b is defined using exponentiation, in Mizar defined as a functor to_power
(see section 5.3). Here, the usual “problematic” values for a and b have been
ruled out using an assumption:

definition let a,b be real number;

assume that a > 0 & a <> 1 and b > 0;

func log(a,b) -> real number means :: POWER:def 3

a to_power it = b;

end;

Consequently, theorems have to take these values into account, because the
equality a to_power log(a,b) = b is valid only if the assumptions about a

and b are fulfilled. We thus find theorems of the following kind.

theorem :: POWER:61

a>0 & a<>1 & b>0 & c>0 implies log(a,b) + log(a,c) = log(a,b*c);

3 We remind here that in Mizar types have to be non-empty.
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This approach follows what Davenport called the “conditional equation ap-
proach” in [Dav03]. The advantage is, that it is close to text book mathematics
(though there assumptions are often not stated thoroughly) and makes the nec-
essary assumptions explicit. On the other hand long lists of assumptions both
lower readability of theorems and require of course re-stating them when using
such theorems in other proofs.

What can improve things a bit here is the technique using “default values”
as presented in the definition of the inverse function ". Remembering that / is
a total function (compare section 2), the tangent function for real numbers can
be defined simply as follows.

definition let th be real number;

func tan(th) -> real number :: SIN_COS4:def 1

sin(th) / cos(th);

end;

which actually means that tan(Pi/2) is defined to be 0. Note that given th we
can now get the value tan(th) without proving th <> Pi/2. This also implies
that a number of theorems can be stated using no assumptions, so for example

theorem :: SIN_COS4:2

tan(-th) = - tan(th);

This may seem irritating at first sight for a reader not familiar with the
basic definitions of the repository; but has the advantage that this theorem can
be used without further prerequisites to be shown. Of course not all theorems
can be stated this way, because z * z" = 1 holds only if z <> 0. Here Mizar
formalizations fall back to the conditional approach, so for example we find

theorem :: SIN_COS4:8

cos(th) <> 0 implies sin(th) = cos(th) * tan(th);

5 Arithmetics and Related Issues

5.1 The Greatest Common Divisor

As the greatest common divisor GCD(a, b) is the largest number dividing both
integers a and b, according to our intuitions such number does not exist in case
of a = b = 0. Indeed, a quick tour through mathematical services available via
WWW confirms these convictions: Wolfram’s MathWorld’s4 definition of gcd
takes only positive integer numbers as arguments; according to Wikipedia5 both
should not be zero simultaneously, similarly is the PlanetMath’s6 opinion, but
we can read in Wikipedia that “it is useful to define gcd(0, 0) = 0”.

In the Mizar library, there are two definitions of the greatest common divisor:
hcf for natural numbers and gcd with integer arguments which uses the notion
of hcf and the absolute value in its definiens.
4 http://mathworld.wolfram.com
5 http://www.wikipedia.org
6 http://planethmath.org
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definition let k, n be Nat;

func k hcf n -> Nat means :: NAT_1:def 5

it divides k & it divides n &

for m st m divides k & m divides n holds m divides it;

end;

Based on the above, we can easily prove that

a = 0 ∧ b = 0 ⇐⇒ a hcf b = 0

for all natural a and b, and similarly for integers. Furthermore, claiming such
definition we keep the connectedness with commutative rings, we also obtain a
lattice of naturals with gcd and lcm as binary operations to be both distributive
and complete.

5.2 The Integer Division

When inspecting the integer division in the Pascal programming language, the
FreePascal compiler returns ’division by zero’ error both with div and with
mod. Since the Mizar system itself is coded in Pascal (and as one can easily see,
some Mizar language constructions have been influenced by this programming
language), we could expect a similar behaviour for the functions div and mod in
the MML.

Since both are defined usually (see Wolfram’s MathWorld) as:

m div n = bm/nc, m mod n = m − nbm/nc, (1)

both share the restriction of n 6= 0 as usual in the literature.
This is not violation of intuitions, but the MML contains the following defi-

nitions, somewhat closer to Euclid’s Elements:

definition let k, l be natural number;

func k div l -> Nat means :: NAT_1:def 1

( ex t being Nat st k = l * it + t & t < l ) or it = 0 & l = 0;

func k mod l -> Nat means :: NAT_1:def 2

( ex t being Nat st k = l * t + it & it < l ) or it = 0 & l = 0;

end;

The above definition is a variant of which we wrote earlier (something like the
if-clause), but with a slightly different (but equivalent classically) formulation.7

There is an agreement in the MML that 0 is an element of N (to have both
functions natural-valued), but there isn’t any within mathematics in general:
MathWorld writes that “Unfortunately, 0 is sometimes also included to the list

7 The difference between natural number and Nat (with the latter expanding to
Element of NAT) which has origins in various treatment of element of the empty
set has to be recalled here. All Nats obtain the attribute natural automatically due
to the conditional cluster mechanism.
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of ‘natural’ numbers” (as Bourbaki and Halmos do), quoting Ribenboim’s as the
opposition (“. . . whenever convenient, it may be assumed that 0 ∈ N”).

In [GKP94] they state that extending mod to omit the assumption of the
division by zero is important, but they do not explain explicitly which one should
be taken: the divided number or 0. Inspecting the book we discovered that if we
accept the equation (1) as the new definitions of the integer division functions
in the MML, we obtain x = x mod 0, and this is also claimed in [GKP94] more
often.

There are contexts in which division by zero can be considered well-justified.
For example, in the extended complex plane C∗ it is defined to be a quantity
known as complex infinity. This definition expresses the fact that, for z 6= 0,
limw→0 z/w = ∞ (i.e., complex infinity). However, even though the formal
statement 1/0 = ∞ is permitted in C∗, this does not mean that 1 = 0 · ∞, so
zero does not have a multiplicative inverse. On the other hand, although R ⊆ C,
it is not clear which way to go with the extensions (since to the extended set of
real numbers both +∞ and −∞ are added and this is the case of the MML).

As a good example of the other way of definition extending we can quote
min* as an opposition to an ordinary min function.

definition let A be finite non empty real-membered set;

redefine func min A means :: SFMASTR3:def 1

it in A & for k being real number st k in A holds it <= k;

end;

definition let A be set;

func min* A -> Nat means :: HENMODEL:def 1

(it in A & for k st k in A holds it <= k) if

A is non empty Subset of NAT

otherwise it = 0;

end;

These two objects are defined completely independently, but the latter be-
came apparent to be useful when proving the Gödel’s Completeness Theorem
in Mizar. Theoretically, generalizing min* we can replace an original min to
simplify the library a bit. Generalizing can be also interesting from a purely sci-
entific point of view (as e.g., formalizing rough sets with tolerances as described
in [GS04] or [Gra05] instead of equivalence relations). But usually the loci of
a definition cannot be just generalized because the information contained in it
may be necessary to give the proper meaning of an introduced object.

5.3 The Power Operator

The consequence of parallel introducing of similar notions (motivated by the
need of having their definitions close to the literature) can be observed in the
case of the definition of the power function, which is composed with the help
of various power operators defined earlier in MML (#R is defined as the limit of
sequence of rational powers with of a given real number – with the assumption
of the positive base, #Z is a integer power, with arbitrary real base).
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definition let a, b be real number;

func a to_power b -> real number means :: POWER:def 2

it = a #R b if a > 0,

it = 0 if a = 0 & b > 0,

it = 1 if a = 0 & b = 0,

ex k st k = b & it = a #Z k if a < 0 & b is Integer;

end;

Any efforts to change this definition should be made carefully, because the
article with this definition is referenced in 46 other MML items 1407 times.
Similar data for the other power operators: 415 references in 39 articles.

Note that this definition is an example of a definition of a partial function
(and keyword otherwise is not used there), e.g. according to this definition we

still don’t know which is the value of (−1)−
1

2 , but it gets the type real number.

5.4 Polynomials

Consider polynomials as a last example. The head term – and hence the head
coefficient – of a polynomial are usually defined for non zero polynomials only
(see for example [BW93]. From a theorem proving point of view, however, it
seems convenient to define a “head term” for the zero polynomial also as follows:
The head term of the zero polynomial equals the smallest term with respect to
the given order. This is can be seen as an extension of the head term functor
found in the literature.

definition

let n be Ordinal, T be connected TermOrder of n,

L be non empty ZeroStr, p be Polynomial of n,L;

func HT(p,T) -> Element of Bags n means :: TERMORD:def 6

(Support p = {} & it = EmptyBag n) or

(it in Support p &

for b being bag of n st b in Support p holds b <= it,T);

end;

This allows to formulate theorems about head terms for arbitrary polynomi-
als. As a consequence, when later reusing such theorems the user need not always
bother that the actual polynomial is not equal 0 – just like mathematicians. For
example, we get

theorem :: TERMORD:22

for n being Ordinal, T being connected TermOrder of n,

L being non trivial ZeroStr, p being Polynomial of n,L holds

term(HM(p,T)) = HT(p,T) & coefficient(HM(p,T)) = HC(p,T);

if also HC(p,T) is defined appropriately, e.g. equals the zero element of the un-
derlying coefficient domain.
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6 Modularity and Ambiguity

6.1 Modularity of the Library

Although the fundamentals of set theory in Mizar are established rather hard,
e.g. Axiom of Choice can be proved (and it is actually in [Ban90]), the user can
also modify his/her preferences. As a perfect example in arithmetics of alephs
we can cite the Generalized Continuum Hypothesis introduced by Josef Urban
in [Urb01].

definition

pred GCH means :: CARD_FIL:def 12

for N being Aleph holds nextcard N = exp(2,N);

end;

theorem :: CARD_FIL:31

GCH implies ( M is inaccessible implies M is strongly_inaccessible );

where M is again of the type Aleph.
This trick may be used, e.g. to state the Brouwer Fix Point Theorem for disks

on the real euclidean plane as an assumption to prove the famous Jordan Curve
Theorem8. As the bright side of this approach to the development of the library
we can point out the possibility of development of the authors’ favorite parts
of mathematics in which they are experts, instead of spending most time on
bridging the gap between the current and the desired state of the formalization
of the theory. This could attract more mathematicians and as we believe it is
one of the vital aims of math-assistants and also of the MKM project. Also the
research frontier could be so reached faster – which could make the machine
codification of recent mathematics more egalitarian.

The modular maintenance of systems could be a solution for someone’s wishes
to have some meta-assumptions, but the care is advised (e.g., the Axiom of
Determinacy contradicts the Axiom of Choice which is proven in the MML, so
the earlier should not be accepted as such an assumption). Maybe something
like the requirements directive with more human-friendly access and giving
possibility of defining author’s own modules of this type could be an attractive
solution.9

Clearly, this can also have some impact on the knowledge exchange between
different systems, according to the Sacerdoti Coen’s advice in [Sac03]: “Make
implicit information explicit”. Note however that the logical system standing
behind the Mizar system is fixed, and Mizar developers rather do not anticipate

8 Actually it is meaningless since Korni lowicz and Shidama proved this version of the
Brouwer Fix Point Theorem in February 2005 as the BROUWER article accepted to the
MML. The one-dimensional case is pretty old.

9 As of version 7.0.04 of the Mizar system, there are five modules of this type available:
BOOLE, SUBSET, HIDDEN, ARITHM, NUMERALS, REAL, where first two introduce autom-
atization of boolean operations on sets, the latter three – calculations on numbers.
The detailed exposition of the topic is included in [Nau04].
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change of this policy (e.g. from the classical into the constructive logic) in the fu-
ture. Another drawback is that stating some significant and influential theorems
without proofs we allow for a gray area of practically unverified and – hence void
in some sense – mathematics. Machine verification does not tend to eliminate
completely thorough peer-review system of checking mathematical papers.

6.2 Ambiguities

In a distributed knowledge repository it is hard to establish a high unification
level (compare 1/0 = 0, which is provable in HOL/Mizar, its negation is provable
in IMPS, both the formula and its negation are not provable in Coq, or being not
a correct formula in PVS), so there is a need to exchange information about the
mathlore (as in QED Manifesto they wanted to call “knowledge that is neither
taught in classes nor published in monographs”) which is accepted (or rather
where it was rejected). As a mathlore we mean here not only basic facts which
are commonly accepted, but also the formulation of definitions of basic notions.

But what to do with freshmen which are not well acquainted with mathlore?
Anyone remembers from the school that the division by zero is not allowed as
a rule, and noone complained, so why to think about pros to have some value
for 0 divided by 0? The answer given in the MML is not obligatory in didactics:
our recent teaching policy is not to use the whole repository, but to prepare
small working environments building from scratch [Ret04], in which some other
decision can be done. The reason is also that in this way it is independent from
the Mizar library which evolves rapidly so the update during a semester could
be hardly acceptable.

Safe choice is also not to decide by oneself and to keep different definitions
and theorems in parallel. Thus, we can measure the use of notions by statistical
means after some time and leave only the one which is most often used (as it
can be done e.g. in case of min and min*).

7 Improving the Library

As mathematics assistance systems are designed as a tool offering machine help
for human researchers, many of the decisions about chosen approach are taken on
the user’s side depending on the various (subjective as a rule) criteria: elegancy,
faithfulness to mathematical standards, feasibility, etc.

However, especially if the cooperation between various systems is taken into
account, much improvement of a repository can be done in a highly automatic
way. The quality is to be measured by statistical, so quantitative means. As it
is clear however, “short” does not mean “readable” and this is a serious draw-
back when thinking about reusability of proofs and their clarity for people. The
de Bruijn factor, which is defined by Wiedijk as the quotient of a size of formal
representation by its informal original can be a dead end sometimes.

All Mizar distributions contain the bunch of programs aiming at reviewing
a Mizar article and which hence may lead to the enhancing of a human work
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done by hand. The Library Committee of the Association of Mizar Users uses a
collection of editing versions of the mentioned programs.

The software inspects a Mizar text focusing on three main activities:

– shortening and clarifying proofs;
– improving definitions’ and theorems’ level of generality;
– marking block and items which are just not used anymore.

There is a need for controlling of the necessity of some parts of the proofs
written by human. As a rule, this can be done via stepwise refinement. There
are few stages on which such control can be performed (and this is the case of
the Mizar library):

Irrelevant premises

This is the most unproblematic and the most popular control which can be
performed when writing a Mizar article. relprem reviews which references
are not needed for the justification of a sentence.

Checking unused labels

Very often removed unused premises are just library references (for defini-
tions and theorems proven in MML already), but sometimes the calling by
a local fact is written accidentally. If any other sentence also does not use
this labelled item, after the chklab pass such label is marked as unnecessary.
Still though, the sentence can be needed in a proof via simple linking by the
next one (the reserved word ‘then’ in such a case).

Inaccessible part of proofs

The program inacc points out sentences which are neither labelled nor linked
(elements of a proof skeleton are not marked as erroneous).

Finding trivial proofs

Although Mizar proofs are hierarchical (in the sense considered e.g., by Lam-
port), sometimes after the aforementioned transformations nested proofs can
be simplified by the program trivdemo to a simple justification, that is to a
list of references preceded by the keyword ‘by’.

Irrelevant suppositions

As unnecessary assumptions (in the sense of elements of proof skeleton, not
just as premises) are not marked by any of the programs mentioned before
as vital element of proofs, this software operates on the stage of theorem
formulation than proof transformation.
This program (relsup) is not freely available in the distribution. Explicit
formulation of some assumptions in a proof may be forced by the so-called
definitional expansions and hence not used directly. They are needed however
and their automatic removal could result in an error in the proof skeleton
and marking them as erroneous can be highly confusing, especially for an
unexperienced author.

The above ordering of these programs reflects their preferred calling sequence.
The only controversial exception of the reviewing software is relinfer pro-

gram (so it was excluded from our enumeration), which points out the unnec-
essary steps in a proof (and the references should be added to the next step).
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It can exceptionally shorten proofs but it may result in poor readability of the
text:

– some sentences which are important for the proof technically are marked as
irrelevant steps, but their removal may force the user to repetition of the
same library reference;

– the removal may be accidental in some sense, that is steps which are crucial
for human understanding of the idea of a proof, but are still unnecessary
for machine (e.g., unwinding definitions – definitional expansions). Here the
tendencies to reduce the de Bruijn factor can be misleading.

We also have software which detects unused variable occurrences, irrelevant
private predicates and functions, marks unnecessary type changing statements,
etc.

Besides the aforementioned proof transformations which are performed very
often, some other checkouts are done occasionally. There is a software which
checks if there are equal theorems in the library, and what’s more interesting, if
a theorem is a consequence of another (although due to the large library, both
use a lot of resources). The latter one is often not very unlikely: to formulate
statements as equivalences is the usual mathematical practice, very often though
some assumptions are needed only for one of the implications.

We still do not have any automatic control if the definitions are repeated
(authors would have like to introduce independently e.g. closure operators using
different structures), so we can speak about the detection of ‘equal theorems’
rather than ‘equivalent’ ones. So the role of careful peer-reviewing of a repos-
itory is so important, especially if we take into account a large repository of
mathematics, written by many authors, so rather heterogeneous in a style of
writing. Quantitative parameters of the MML (some 40 thousand of theorems
and lemmas, nearly 8 thousand definitions authored by more than 160 authors)
justify the necessity of continuous revising of Mizar articles.

8 Conclusions

In this paper we have considered how the mathematical vernacular can be real-
ized in mathematical repositories, thereby focusing on function definitions. The
inspection of the Mizar Mathematical Library has shown that its authors used a
number of different styles such as the “conditional” style using partial functions
or the “extension” style as used in the definition of ". Sometimes even more than
one definition is available. It seems to us that these different styles exist due to
a clash between (a) working in a formal language close to the mathematical ver-
nacular which (b) is also used to prove the theorems stated. Strictly following
the mathematical vernacular sometimes leads to rather tedious formal proofs, so
that some authors decide to modify their definitions in order to ease the proving
task.

The problem becomes more evident in a repository with a large number of
developers and users: here, of course, it is impossible to have an open system
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without ending up with different realizations of the mathematical vernacular.
Hence, should we seek for a kind of standard, that is a “formal mathematical
vernacular”? Though we believe that this can be done in general, it seems hardly
possible to fix all the details theorem proving introduces into our repositories.
Allowing for different realizations, on the other hand, could of course lower the
acceptance of users by confusing them. Also, extending or reusing developments
by other authors gets more complicated in case the vernacular of the new author
does not fit to the first author’s one.

What we can try to do is organize our repositories in such a way that both
authors and potential users have the possibility to identify the basic decisions
theories and developments rely on. As we have illustrated this also includes the
definition of functions. This is not a trivial task, because as already mentioned
the large number of Mizar authors has even led to duplication of definitions
or theorems. Consequently, we always have to keep track of the development
by permanently revising and cleaning up our repositories. The goal must be to
automate this as far as possible. A step into this direction are the Mizar tools
presented in section 7. They are, however, in most cases still working on the proof
transformation level, so that their further development into a “more intelligent
direction” is desirable. We should, however, always keep in mind – especially if
we try to develop systems for working mathematicians – that if we break rules
accepted widely by mathematicians, this has to be sufficiently justified.
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