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Abstract. We argue that for building mathematical knowledge reposi-
tories a broad development of theories is of major importance. Organizing
mathematical knowledge in theories is an obvious approach to cope with
the immense number of topics, definitions, theorems, and proofs in a
general repository that is not restricted to a special field. However, con-
crete mathematical objects are often reinterpreted as special instances of
a general theory, in this way reusing and refining existing developments.
We believe that in order to become widely accepted mathematical knowl-
edge management systems have to adopt this flexibility and to provide
collections of well-developed theories.
As an example we describe the Mizar development of the theory of Gröb-
ner bases, a theory which is built upon the theory of polynomials, ring
(ideal) theory, and the theory of rewriting systems. Here, polynomials
are considered both as ring elements and elements of rewriting systems.
Both theories (and polynomials) already have been formalized in Mizar
and are therefore refined and reused. Our work also includes a number
of theorems that, to our knowledge, have been proved mechanically for
the first time.

1 Introduction

One major goal of mathematical knowledge management is to design and con-
struct large repositories containing a wide range of different topics, such as al-
gebra, analysis, topology and many more. To be as broad as possible seems
reasonable in order to explore the use of such repositories for distributing math-
ematics over the internet and extracting introductory courses, among others. On
the other hand, to be attractive for professional mathematicians also, more ad-
vanced mathematics must be taken into account. As has been pointed out at the
last MKM-meetings by Andrzej Trybulec ”We should try to reach the research
frontier”.

Advanced, contemporary mathematics, however, cannot be brought onto the
computer by simply choosing one theory and formalizing it ”to its end”. More
advanced mathematics usually uses a number of theories to develop its results.
Different theories are reused or combined to get new ones. Moreover, modern
mathematics lives from the fact that one and the same object can be considered
as a special instance of different theories. For example the integers can be con-
sidered as a group (generated by 1), as an Euclidean ring, as an ordered domain
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or even as (the ring of) coefficients for polynomials rings. In each case the in-
stantiation, or refinement as we shall also call it, of the general theory with the
integers allows for both reusing results of the general theory and deducing new
results for the particular case.

We believe that mathematical repositories should reflect this way of ”working”
with mathematical theories. Continuing the work of [GS04] where combination
of theories has been investigated, we focus in this paper on theory refinement
in the Mizar system [Miz05,RT01]. We consider the theory of Gröbner bases
[Buc98] as an example. Gröbner bases are a method to decide among other
things the ideal membership problem in polynomial rings: Via computing normal
forms of polynomials with respect to a given ideal — a reduction in the sense
of rewriting systems — ideal membership can be decided by syntactic equality,
if the polynomials generating the ideal form a Gröbner base. We thus have
polynomials as basic objects, usually defined as lists of elements from a coefficient
ring or as functions from terms into a coefficient ring. Note that the definition of
polynomials already uses a theory, the theory of rings. In the theory of Gröbner
bases, however, polynomials are also used as special elements for different, more
general theories:

1. Polynomials are considered as elements of a ring, that is addition and mul-
tiplication of polynomials coincide with ring addition and multiplication.

2. Polynomials are considered as elements of ideals, that is, though almost
trivial, polynomials coincide with elements of sets while still obeying their
addition and multiplication.

3. Polynomials are considered as elements of a relation, the reduction relation,
that is polynomials coincide with the elements of relations.

Not taking into account the second item from above, we thus get the theory
structure illustrated in figure 1. Of course one can define polynomials and all
the concepts necessary for Gröbner bases from scratch without even employing
theories for rings and reduction systems (see for example [The01]), but in reposi-
tories for mathematical knowledge management we should — if possible — build
new theories by reusing and refining older ones.

The plan of the paper is as follows. After an introduction to the Mizar lan-
guage we briefly recall polynomials, rings, ideals, and rewriting systems by re-
viewing their Mizar formalization as done in [RT99,BRS00,Ban95]. Section 4
and 5 describe the development of Gröbner bases based on these theories. In the
last two sections we discuss the Mizar approach for refining and reusing theories
and compare it to other approaches in the literature. Conclusions for the design
of mathematical knowledge repositories are also drawn.

2 The Mizar System

Mizar’s [RT01,Miz05] logical basis is classical first order logic extended with
so-called schemes. Schemes allow for free second order variables, in this way
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Fig. 1. Theory structure for the development of Gröbner bases

enabling, for example, the definition of induction schemes. The current develop-
ment of the Mizar Mathematical Library (MML) is based on Tarski-Grothen-
dieck set theory — a variant of Zermelo Fraenkel set theory using Tarski’s axiom
on arbitrarily large, strongly inaccessible cardinals [Tar39] which can be used to
prove the axiom of choice —, though in principle the Mizar language allows for
other axiom systems also. Mizar proofs are written in natural deduction style
similar to the calculus of [Jaś34]. The rules of the calculus are connected with
corresponding (English) natural language phrases so that the Mizar language
is close to the one used in mathematical textbooks. The Mizar proof checker
verifies the individual proof steps using the notion of obvious inferences [Dav81]
to shorten the rather long proofs of pure natural deduction.

Mizar objects are typed, the types forming a hierarchy with the fundamen-
tal type set [Ban03]. New types are constructed using type constructors called
modes. Modes can be decorated with adjectives — given by so-called attribute
definitions — in this way extending the type hierarchy: For example, given the
mode Ring and an attribute commutative a new mode commutative Ring can
be constructed, which obeys all the properties given by the mode Ring plus
the ones stated by the attribute commutative. Furthermore, a variable of type
commutative Ring then is also of type Ring, which implies that all notions
defined for Ring are available for commutative Ring. In addition all theorems
proved for type Ring are applicable for objects of type commutative Ring; in-
deed the Mizar checker itself infers subtype relations in order to check whether
theorems are applicable for a given type.



4 C. Schwarzweller

3 Polynomials, Rings, Ideals, and Rewriting Systems

In this section we briefly review the theories used to define Gröbner bases —
polynomials, rings and ideals, and reduction systems. The main purpose is to
present the basics of their Mizar formalization needed later to develop the theory
of Gröbner bases.

3.1 Mizar Formalization of Rings and Ideals

In Mizar rings, or more generally algebraic domains, are defined as attributed
structures, see [RST01]. That is, based on a structure mode giving carriers and
operations of the domain properties of these operations, e.g. commutativity of
addition or multiplication, are introduced by Mizar attributes. For rings the
underlying structure mode is called doubleLoopStr:

struct (LoopStr, multLoopStr_0) doubleLoopStr
(# carrier -> set,

add, mult -> BinOp of the carrier,
unity, Zero -> Element of the carrier #);

and the mode Ring is nothing else than this structure mode decorated with
attributes describing the ring axioms. Note that doubleLoopStr is a descendant
of two other structure modes LoopStr and multLoopStr_0, and thus a subtype
of these. Now given a subset F of a structure mode L one can easily define an
attribute describing that F is closed with respect to addition, left- and right-
multiplication, for example

definition
let L be non empty LoopStr, F be Subset of L;
attr F is add-closed means

for x,y being Element of L st x in F & y in F holds x+y in F;
end;

Combination of these properties then gives the definition of ideals. Note that
using the already defined attributes it is trivial to additionally define left and
right ideals. Also ideals generated by a subset F can be easily defined as a functor
from subsets of the domain into ideals.

definition
let L be non empty doubleLoopStr;
mode Ideal of L is

add-closed left-ideal right-ideal (non empty Subset of L);
end;

definition
let L be non empty doubleLoopStr, F be Subset of L;
assume F is non empty;
func F-Ideal -> Ideal of L means

F c= it & for I being Ideal of L st F c= I holds it c= I;
end;
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Note that both definitions actually do not use the mode Ring, but only the
underlying structure mode doubleLoopStr: The existence of ideals and gener-
ated ideals does not depend on algebraic properties of the ring (just take the
whole domain). Hence such objects should be defined without using these. Nev-
ertheless, due to Mizar’s type system, the so-defined notions of (and theorems
proved for) ideals are available for rings in Mizar, because the mode Ring is
based on and thus a subtype of doubleLoopStr.

3.2 Mizar Formalization of Polynomials

Polynomials are defined as functions from terms (called bags in Mizar) into coef-
ficients, see [RST01,RT99]. Thus a polynomial is a subytype of Series of n,L,
where n gives the number of indeterminates used to build terms and L the struc-
ture mode describing the coefficients. The attribute finite-Support ensures
that the Support of a polynomial, that is the set of terms with a non zero
coefficient, is finite.

definition
let n be Ordinal, L be non empty ZeroStr;
mode Polynomial of n,L is finite-Support Series of n,L;
end;

In the theory of Gröbner bases terms are assumed to be ordered. In Mizar
we can use the mode Order of X, where X is an arbitrary set to do so. This
will enable us to develop Gröbner bases for arbitrary orderings on terms and is
actually another example for reusing theories in Mizar: The set of all terms for
a given set of variables — remember that n gives the number of variables — is
denoted by Bags n. Thus we get term orders, that is orders on terms, by just
defining

definition
let n be set;
mode TermOrder of n is Order of Bags n;
end;

A term order is admissible, if the empty term — in Mizar denoted by
Empty Bag n — is the smallest one and the order respects multiplication of
terms, that is if we have for all terms t, t1, t2 both Empty Bag n ≤ t and
t1 ≤ t2 implies t1 · t ≤ t2 · t. In Mizar this can be straightforwardly formal-
ized as an attribute admissible for the mode TermOrder. Thus the Mizar type
admissible TermOrder describes arbitrary admissible term orders. Note, that
an admissible term order is well-founded.

Given an order T on terms, the head term of a polynomial p is the biggest
term in Support p with respect to T; head coefficients and head monomials are
defined analogously. In order to develop Gröbner bases for arbitrary term orders,
we defined functors HT(p,T), HC(p,T) and HM(p,T) taking the (admissible) term
order T as an additional argument. Note that in order to define head terms the
order T must be total (called connected in Mizar), but not admissible.
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3.3 Mizar Formalization of Rewriting Systems

Rewriting systems are an approach to handle structures defined via equivalence
relations. The idea is to decide a given equivalence by computing (unique) nor-
mal forms for the objects of concern: The objects are reduced until no more
rewrite rules are applicable. Then, if the set of rules is ”suitable”, deciding the
equivalence relaton is no more than syntactical comparison. Rewriting systems
have various applications in such different fields as specification and verification,
algebraic computation or pure theorem proving, see [DJ90]. In the following we
recall the basic definitions of general rewriting systems as defined in [Ban95].
Given a relation R a reduction sequence is a sequence over R in which each two
neighboured elements are in R. Thus the theory of rewriting systems actually is
an extension of the theory of relations.

definition
let R be Relation;
mode RedSequence of R -> FinSequence means

len it > 0 &
for i being Nat st i in dom it & i+1 in dom it
holds [it.i, it.(i+1)] in R;

end;

Then we have that a can be reduced to b (R reduces a,b), if there exists
a reduction sequence of R with a being the first and b the last element in the
sequence. Based on these definitions it is straightforward to introduce other
basic concepts of rewriting systems, such as confluence, local confluence or the
Church-Rosser property, for example

definition
let R be Relation;
attr R is locally-confluent means

for a,b,c being set st [a,b] in R & [a,c] in R
holds b,c are_convergent_wrt R;

end;

where are_convergent_wrt means that there exits an element d ∈ R such that
both b and c can be reduced to d. Termination properties such as strongly-
and weakly-normalizing are also introduced in [Ban95]. Finally, a complete
rewriting system is a strongly-terminating confluent one, that is a rewriting
system in which in particular for every element a unique normal form exists.

4 Reinterpreting Polynomials

In this section we describe how the general theories of rings and rewriting sys-
tems are refined with polynomials. This allows to use notations and theorems of
these theories for the special case of polynomials as well as further properties of
polynomials themselves when later developing the theory Gröbner bases. Note
that no special care has to be taken for ideals of polynomials; these are given
automatically because ideals have been defined for general rings.
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4.1 Polynomials as Rings

To get the theory of rings available for polynomials (the domain and) the opera-
tions of polynomials have to be interpreted as the ring (domain and) operations.
This is done by defining a functor Polynom-Ring(n,L) into the underlying struc-
ture mode of rings (see [RT99]), called doubleLoopStr in Mizar. Here, n gives
the number of indeterminates and L the structure mode describing the coeffi-
cient domain; note that the number of indeterminates need not be finite. In the
definition the components of the structure, that is the domain and the opera-
tions of the ring, are simply identified with polynomials and the corresponding
operations on polynomials.

definition
let n be Ordinal,

L be right_zeroed add-associative right_complementable
unital distributive non trivial (non empty doubleLoopStr);

func Polynom-Ring(n,L) -> strict non empty doubleLoopStr means
(for x being set holds

x in the carrier of it iff x is Polynomial of n, L) &
(for x,y being Element of it, p,q being Polynomial of n, L

st x = p & y = q holds x+y = p+q) &
(for x,y being Element of it, p,q being Polynomial of n, L

st x = p & y = q holds x*y = p*’q) &
0.it = 0_(n,L) & 1_ it = 1_(n,L);

end;

Now, to apply theorems proved for general rings we need not only that
Polynom-Ring(n,L) is a doubeLoopStr, but also that the attributes establish-
ing the type Ring hold. It turns out that for different attributes to hold different
properties of the coefficient domain are necessary. Therefore each attribute is
proved in a cluster registration stating exactly the properties of the coefficient
ring necessary to prove it (see [RT99]), for example

registration
let n be Ordinal,

L be Abelian right_zeroed add-associative right_complementable
unital distributive non trivial (non empty doubleLoopStr);

cluster Polynom-Ring(n,L) -> Abelian;
end;

The effect is that properties of Polynom-Ring(n,L) are automatically bound
to properties of the coefficient domain L: If L obeys the properties stated in
the registration, the Mizar checker itself infers that Polynom-Ring(n,L) has the
concluding property, hence is a subtype of Ring. This supports reusing theorems
of the general ring theory for the special case of polynomials.

4.2 Polynomial Reduction

Polynomial reduction establishes a generalization of polynomial division for the
univariate case: Each reduction step describes a single step in the division pro-
cess. Thus a non-zero polynomial f reduces to a polynomial g using polynomial
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p by eleminating term (bag) t if there exists a term s such that s · HT(p,T) = t
and g = (f - f.t/HC(p,T)) * s *’ p, which in Mizar can be easily defined
as a predicate f reduces_to g,p,b,T. Note that the reduction depends on the
term order T used to define head terms and head monomials.

Now, to introduce polynomial reduction as a special case of general rewriting
we have to define the reduction relation, that is the relation R which contains
all pairs (p

1
, p

2
) such that p

1
reduces (in one step) to p

2
with respect to a given

set of polynomials P. This is done with a functor PolyRedRel(P,T) returning an
object of type Relation of. Note that the ring of polynomials which is available
according to section 4.1 is used to describe the domain of the relation.

definition
let n be Ordinal, T be connected TermOrder of n,

L be Field, P be Subset of Polynom-Ring(n,L);
func PolyRedRel(P,T) ->

Relation of (the carrier of Polynom-Ring(n,L)) \ {0_(n,L)},
the carrier of Polynom-Ring(n,L) means

for p,q being Polynomial of n,L holds [p,q] in it iff p reduces_to q,P,T;
end;

Now, PolyRedRel(P,T) being of type Relation — the type Relation of
widens to Relation — allows reuse of the whole theory, that is both nota-
tions and theorems developed for rewriting systems, for polynomial reductions.
For example, to show that polynomial reduction is terminating we just use the
attribute strongly-terminating defined for arbitrary reduction systems and
prove in a cluster registration that PolyRedRel(P,T) fulfils it for an arbitrary
set P of polynomials and an arbitrary term order T:

registration
let n be Nat, T be connected admissible TermOrder of n,

L be Field, P be Subset of Polynom-Ring(n,L);
cluster PolyRedRel(P,T) -> strongly-normalizing;
end;

Also, showing that polynomial reduction with respect to a set of polynomials
P describes the congruence given by the ideal generated by P — a necessary
precondition to decide ideal membership with reduction techniques — needs no
further preparations: The reflexive symmetric transitive closure of the reduction
relation is given by the predicate are_convertible_wrt from rewriting theory,
whereas generated ideals and their congruences — the functor P-Ideal and the
predicate are_congruent_mod — are reused from general ideal theory. We thus
get the following

theorem
for n being Nat, T being admissible connected TermOrder of n,

L being Field, P being non empty Subset of Polynom-Ring(n,L),
f,g being Element of Polynom-Ring(n,L)

holds f,g are_congruent_mod P-Ideal
iff f,g are_convertible_wrt PolyRedRel(P,T);
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5 Mizar Formalization of Gröbner Bases

We start with a brief introduction to Gröbner bases, see also [BW93,CLO’S96].
Let K[X1, . . . Xn] be the ring of polynomials over a field K with n indetermi-
nates. For P ⊆ K[X1, . . . Xn] the ideal generated by P — the minimal ideal
including P — is given by <P> = {

∑n
i=0 fi · pi | fi ∈ K[X1, . . . Xn], pi ∈ P}.

The basic problem that can be algorithmically solved using Gröbner bases is the
following: Given f ∈ K[X1, . . . Xn] and P ⊆ K[X1, . . . Xn], does f ∈ <P> hold?
Denoting the reduction for polynomials introduced in section 4.3 by −→P it is
easy to show that f

∗−→P 0 implies f ∈ <P >. The other direction, however,
does not hold in general and can actually serve as a definition for Gröbner bases.
In our formalization we use the equivalent definition, that G ⊆ K[X1, . . . Xn] is
a Gröbner base if and only if −→G is locally confluent. Note again, that −→G

is terminating.
To check whether a given (finite) set P ⊆ K[X1, . . . Xn] is a Gröbner base it

is sufficient to consider the (finite set of) s-polynomials generated by P , that is

spoly(p1, p2) = HC(p2) ·
t

HT(p1)
· p1 − HC(p1) ·

t

HT(p2)
· p2

where t = lcm(HT(p1),HT(p2)) for all p1, p2 ∈ P : G is a Gröbner base if we have
spoly(p1, p2)

∗−→G 0 for all p1, p2 ∈ P , which in the view of general rewriting
can be interpreted as checking critical pairs. This gives rise to a completion
algorithm: If spoly(p1, p2) not reduces to 0, its normal form is added to P — note
that p1, p2 ∈ P implies spoly(p1, p2) ∈ <P>, so that the generated ideal <P>
is not changed — and s-polynomials are recursively computed. This is the basic
version of Buchberger’s Algorithm transforming a set P ⊆ K[X1, . . . Xn] into a
set G ⊆ K[X1, . . . Xn] such that <P > = <G> and −→G is locally confluent.
Further investigations and improvements of the algorithm can be found in the
literature (see for example [Buc79]).

In the following we present the main results of our formalization in Mizar so
far. Besides the definition of Gröbner bases and the usual characterization using
s-polynomials, we also considered other characterizations and the existence of
both ordinary and reduced Gröbner bases.

5.1 Definition and Characterizations

A Gröbner base for a given ideal I is a set G of polynomials such that the in-
duced reduction relation PolyRedRel(G,T) is locally confluent (hence a complete
rewriting system) and the ideal generated by G equals I. Note again, that the
term order T is a parameter of the reduction relation.

definition
let n be Ordinal, T be connected TermOrder of n,

L be Field, G,I be Subset of Polynom-Ring(n,L);
pred G is_Groebner_basis_of I,T means

G-Ideal = I & PolyRedRel(G,T) is locally-confluent;
end;
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We proved a number of further characterizations of Gröbner bases from
[BW93], so for example, that G is a Gröbner base if each polynomial in G-Ideal
is top-reducible with respect to G, if each polynomial in G-Ideal is reducible to
the zero polynomial 0_(n,L) or if each head term of a polynomial in G-Ideal
is divided by a head term of a polynomial in G. The main property of Gröbner
bases G — ideal membership of a polynomial p is decidable by reducing p with
respect to G — can be formulated as follows.

theorem
for n being Nat, T being connected admissible TermOrder of n,

L being Field, p being Polynomial of n,L,
G being non empty Subset of Polynom-Ring(n,L)

st G is_Groebner_basis_wrt T
holds p in G-Ideal iff PolyRedRel(G,T) reduces p,0_(n,L);

A completely different characterization of Gröbner bases, that is often used
to prove more involved theorems, relies on so-called standard representations of
polynomials [BW93]. A standard representation of a polynomial p with respect
to a set of polynomials P is a linear combination p =

∑k
i=1 mipi where the mi

are arbitrary monomials, the pi are from the set P and the head terms of the
mipi are bounded by HT(p,T), or more general by a given term t. The concept
of linear combinations again can be reused from ring theory [BRS00]:

definition
let L be non empty multLoopStr, S be non empty Subset of L;
mode LeftLinearCombination of S -> FinSequence of the carrier of L means

for i being set st i in dom it
ex u being Element of L, s being Element of S st it/.i = u * s;

end;

A standard representation of a polynomial f is then straightforwardly defined
as a LeftLinearCombination of P with the two additional conditions from
above. Now one can show that a set G is a Gröbner base if and only if there
exists a standard representation for each polynomial in the ideal generated by G.
Defining a predicate f has_a_Standard_Representation_of G,t,T with the
obvious meaning we thus get

theorem
for n being Nat, T being connected admissible TermOrder of n,

L being Field, G being non empty Subset of Polynom-Ring(n,L)
holds G is_Groebner_basis_wrt T

iff for p being Polynomial of n,L st p in G-Ideal
holds p has_a_Standard_Representation_of G,HT(f,T),T;

5.2 Construction of Gröbner Bases

The key point in the construction of Gröbner bases is the observation that
there exists a finite test to check whether a set of polynomials G is locally con-
fluent, hence a Gröbner base. Critical situations that have to be checked are
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given by s-polynomials describing the ”difference” between two polynomials p1
and p2. The Mizar definition is as follows. Note again that p1,p2 ∈ G implies
S-Poly(p1,p2,T) ∈ G-Ideal.

definition
let n be Ordinal, T be connected TermOrder of n,

L be Field, p1,p2 be Polynomial of n,L;
func S-Poly(p1,p2,T) -> Polynomial of n,L equals

HC(p2,T) * (lcm(HT(p1,T),HT(p2,T))/HT(p1,T)) *’ p1 -
HC(p1,T) * (lcm(HT(p1,T),HT(p2,T))/HT(p2,T)) *’ p2;

end;

Now, if for a given set G of polynomials we have that PolyRedRel(G,T)
reduces S-Poly(g1,g2,T) to 0_(n,L) for all p1,p2 ∈ G, then G is a Gröb-
ner base. Note that if G is finite there exist only finitely many s-polynomials.
Using the transition lemma, basically stating that if a polynomial p1-p2 is re-
ducible to 0_(n,L) with respect to G, then there exists a polynomial q such that
PolyRedRel(G,T) reduces both p1 and p2 to q, we proved the following

theorem
for n being Nat, T being admissible connected TermOrder of n,

L being Field, G being Subset of Polynom-Ring(n,L)
holds (for p1,p2 being Polynomial of n,L st p1 in G & p2 in G

holds PolyRedRel(G,T) reduces S-Poly(p1,p2,T),0_(n,L))
implies G is_Groebner_basis_wrt T;

This theorem gives rise to a completion algorithm to compute Gröbner bases
(see [Buc98]). Note, that the proof of the theorem’s opposite direction is almost
trivial using the characterizations from the section 5.1.

For the construction of Gröbner bases, however, not all s-polynomials need
to be considered, hence detecting such s-polynomials saves a number of re-
ductions in the construction process. In the literature theorems characterizing
such situations can be found (see e.g. [Buc79]). We formalized a first theorem
into this direction stating that s-polynomials of polynomials p1 and p2 with
lcm(HT(p1,T),HT(p2,T)) = HT(p1,T) · HT(p2,T), in other words the head
terms of p1 and p2 have no variables in common, need not be considered, they
always reduce to the zero polynomial:

theorem
for n being Ordinal, T being connected admissible TermOrder of n,

L being Field, p1,p2 being Polynomial of n,L
st HT(p1,T),HT(p2,T) are_disjoint
holds PolyRedRel({p1,p2},T) reduces S-Poly(p1,p2,T),0_(n,L);

5.3 Existence of Gröbner bases

Finally we consider the existence and uniqueness of Gröbner bases. It is a the-
oretically interesting fact that a finite Gröbner base exists for any given ideal



12 C. Schwarzweller

I; or from a rewriting point of view that there exists a (finite) completion for
every set G of polynomials. Using the characterization of section 5.1 — that G
is a Gröbner base if each head term of a polynomial in G-Ideal is divided by a
head term of a polynomial in G — and Dickson’s lemma from [LR02] it is easy
to prove the following

theorem
for n being Nat, T being connected admissible TermOrder of n,

L being Field, I being Ideal of Polynom-Ring(n,L)
ex G being finite Subset of Polynom-Ring(n,L)
st G is_Groebner_basis_of I,T;

which actually is another formulation (and another proof) of the Hilbert basis
theorem. Note that the theorem states even more, namely that a Gröbner base
for a given ideal exists for any total admissible term order T.

We also considered reduced Gröbner bases. In general a Gröbner base is of
course not uniquely determined by the ideal I, even if we choose a fixed term or-
der T. However, introducing the concept of reduced Gröbner bases, the situation
looks different. A set G of polynomials is called reduced, if every p ∈ G is monic,
that is HC(p,T) = 1 for all p ∈ G, and every p ∈ G is irreducible with respect to
G\{p}. Note that only the second condition can be reused from rewriting theory,
the other being a property of polynomials. Using a predicate is_reduced_wrt
we proved the following theorems showing existence and uniqueness of reduced
Gröbner bases.

theorem
for n being Nat, T being connected admissible TermOrder of n,

L being Field, I being Ideal of Polynom-Ring(n,L) st I <> {0_(n,L)}
ex G being finite Subset of Polynom-Ring(n,L)

st G is_Groebner_basis_of I,T & G is_reduced_wrt T;

theorem
for n being Nat, T being connected admissible TermOrder of n,

L being Field, I being Ideal of Polynom-Ring(n,L),
G1,G2 being non empty Subset of Polynom-Ring(n,L)

st G1 is_Groebner_basis_of I,T & G1 is_reduced_wrt T &
G2 is_Groebner_basis_of I,T & G2 is_reduced_wrt T

holds G1 = G2;

6 Mathematical Knowledge Repositories

6.1 Mizar Mathematical Library

The Mizar Mathematical Library [Miz05] is a long term project that aims at
developing both a comprehensive library of mathematical knowledge and a for-
mal language for doing so. At the time of writing the library consists of 904
articles stating about 40000 theorems and 8000 definitions. Also because of the
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huge number of covered areas Mizar is well-suited for our experiments concern-
ing building up new developments on existing ones. In the following we discuss
some issues of our formalization which we consider of general interest for the
development of mathematical repositories.

As a first point, we want to stress that adopting notations is a crucial is-
sue when building mathematical repositories. By ”adopting” we mean not only
reusing notations in a more specialized situation, but also slightly changing and
extending these. We illustrate this with reduced sets of polynomials already
mentioned in section 5.3. Irreducibility of sets stems from rewriting and can be
defined as follows.

definition
let R be Relation, A be set;
pred A is_irreducible_wrt R means

for a being Element of A holds a is_a_normal_form_wrt R;
end;

Reduced sets of polynomials, though based on this notion, are somewhat differ-
ent: Each polynomial must be irreducible with respect to all other polynomials.
Furthermore only monic polynomials are considered here. Hence, the predicate
concerning reduction has not only to be refined but also to be extended. In Mizar
this can be straightforwardly done as follows.

definition
let n be Ordinal, T be connected TermOrder of n,

L be Field, P be Subset of Polynom-Ring(n,L);
pred P is_reduced_wrt T means

for p being Polynomial of n,L st p in P
holds p is_monic_wrt T & {p} is_irreducible_wrt PolyRedRel(P\{p},T);

end;

Note, that the reduction relation PolyRedRel is used with the argument P\{p}
rather than P. We believe, that it is this flexibility that we need to built up large
repositories covering not only few theories.

Equivalence proofs are often cyclic, that is actually given by a number of
implications. Of course this can be easily mirrored in Mizar (or other repositories)
by stating each implication as a theorem. However, using such equivalences then
becomes rather tedious, because to get an equivalent formulation more than one
theorem is necessary. In [BW93], for example, theorem 5.35 gives 10 equivalent
characterizations of Gröbner bases, so that using these equivalences requires up
to 9 theorems in Mizar. Here, it might be helpful to extend the language of
mathematical repositories to also include ”equivalence theorems”.

A last point we want to mention concerns the general development of reposi-
tories. Most projects are concerned with the formalization of a particular theorem
to illustrate the usability of a certain approach. Therefore, for obvious reasons,
often parts or theorems actually belonging to the theory considered are ignored
just because they are not really necessary to prove the goal. We believe that the
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development of a general mathematical repository as necessary for mathemati-
cal knowledge management has to go another way: Often it turns out that the
parts left out would enable a better development beyond the theorem originally
chosen. So we should seek for completeness in the sense that when formalizing
a theory we should bear alternative characterizations in mind. An example here
are standard representations. Of course one can define Gröbner bases and their
construction by s-polynomials without using standard representations. To prove
more involved results on s-polynomials, however, one finds that in the litera-
ture often standard representations are used, which implies that the definition
of standard representations cannot be left out.

6.2 Other Formalizations

Gröbner bases and polynomials have been defined in other systems; we first men-
tion [The01], where Buchberger’s algorithm is formalized using the Coq proof
assistant. From this development an implementation of the algorithm in Ocaml
has been extracted. In [MPAR04] a Common Lisp implementation of Buch-
berger’s algorithm is presented that has been verified in Acl2. This is part of
a larger project that aims at the computational formalization of polynomial
algorithms in the spirit of combining computer algebra and theorem proving.
Harrison [Har01] presents a Gröbner base algorithm for complex polynomials in
HOL and uses it as a semi-decision procedure for polynomial equations in his
work on quantifier elimination. Focusing on the algorithm, however, the nota-
tions of both rings and rewriting are not introduced, but defined from scratch
for polynomials only.

C-CoRN [CGW04] also includes polynomials as a result of the ”Fundamental
Theroem of Algebra”-Project. Here a real number structure is used is used to
develop polynomials in Coq so that an instantiation with a construction of the
real numbers results in a full constructive proof. Polynomials have been defined
in other repositories such as for example IMPS [FGT93] and Theorema [Buc01].
However, none of these approaches has been used to develop Gröbner bases so
far. It would be interesting to do so and to compare these developments with
our experiences in Mizar.

7 Conclusions and Further Work

We believe that mathematical repositories serves at least two goals. Firstly, of
course, repositories form the basis for other Mathematical Knowledge Manage-
ment activities by providing the knowledge to deal with. Secondly, it seems to us
that mathematical repositories are also the key for attracting mathematicians
and other users: The more knowledge we include in our repositories, the more
likely will be the acceptance of both mathematical repositories and its attached
software. Therefore developing mathematical repositories should

– be broadly based, that is a large number of different fields of mathematics
has to be covered.
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– be highly reusable and refinable to impress possible users how easily one can
adopt existing developments, in particular basic theories.

– aim at describing (basic) theories as completely as possible — and not only
at developing the proof a special theorem — in order to increase the number
of possible users.

We also believe that such development techniques will lead to the formalization of
contemporary mathematics easier just because a broad basic repository supports
— and is necessary for — more involved mathematics.

In this paper we have presented a case study in Mizar to illustrate what
such a broad theory development may look like. The Mizar type mechanism,
especially the possibility to extend types with adjectives to describe additional
properties, elegantly supports the refinement and reuse of existing developments
and theories: Adjectives allow not only to refine theories as a whole. In addi-
tion theorems itself can be formulated using only properties, that is adjectives,
necessary to prove them and can therefore be reused in every theory fulfilling
these adjectives. Because this kind of reasoning is present in nearly all areas of
mathematics, we claim that such a flexible type system is of major importance
for the development of mathematical repositories.

The work presented in this paper can be continued in two ways. Firstly, the
theory of Gröbner bases in Mizar should be further developed: Theorems con-
cerning avoiding s-polynomials should be formalized, also to explore the use of
”non-standard characterizations”, here by standard representations. Also, in the
spirit of section 6.1, the characterization of Gröbner bases by division with re-
mainder and of course generalizations of the topic such as for example syzygies
are of further interest. Secondly, it would be interesting to transform the formal-
ized material into an introductionary course on Gröbner bases. The main point
here would be to take into account both the underlying ring and rewrite theories
and the proofs as they have been written in the Mizar language. We think that
this would not only give insights in how to use Mizar for generating teaching
material, but also — due to the number of theories involved — how to structure
courses with larger number of prequisites.
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