Designing Mathematical Libraries based on
Minimal Requirements for Theorems

Christoph Schwarzweller
Wilhelm-Schickard-Institute for Computer Science
University of Tiibingen, Germany
schwarzw@informatik.uni-tuebingen.de

2nd October 2001

Abstract

The main observation of this paper is that theorems can be considered
independent of abstract domains; they depend rather on a set of proper-
ties necessary to prove the theorems correct. This leads to more general
theorems and hence to improved reuse of mathematical theorems. We
discuss how this view influences the design of mathematical libraries and
illustrate our approach with examples written in the Mizar language.

1 Introduction

At the end of the 19th century the interest of mathematicians turned away
from concrete objects like numbers or points and lines. Since then more ab-
stract domains like groups, rings, or vector spaces given by axioms only have
been considered. The advantage is obvious: Besides abstracting away from un-
necessary details, this allows to prove theorems in an abstract setting. So once
the theorem is proven for an abstract domain it holds in every particular do-
main fulfilling the axioms of the abstract one. However, this is not the end of
the line: Often a theorem proven for an abstract domain does not depend on
all properties of that domain; this can be usually observed in the proof of the
theorem where not all the domain’s properties are actually used. So we claim
that the basis of mathematical theorems is not an abstract domain, but rather a
set of properties. Consequently, theorems can be considered independent of do-
mains: They exist in their own merit, and there are different abstract domains
in which a theorem holds. In the following we explain this view on theorems in
more detail and discuss its impact on the design of mathematical libraries. We
give examples from (commutative) algebra formulated using the Mizar system
[3] which can be seen as an implementation of our approach (see also [4]).



2 Requirements for Theorems

Considering a theorem independent of an abstract domain, what does constitute
such a theorem? The answer is twofold: First, there are of course carriers
and operators on these carriers necessary to state the content of the theorem.
Second, a number of properties of the operators is necessary to prove the theorem
correct. We call the set of carriers and operators the signature of the theorem,
the set of properties the set of adjectives of the theorem. Note that not every
combination of a signature with a set of adjectives leads to a well-known domain
such as a ring or a vector space. The main advantage of viewing theorems this
way is that now theorems can be stated (and proven) using as less adjectives
as possible, hence for the minimal conditions under which they hold: Such a
theorem holds for every particular domain providing the necessary signature
and fulfilling all the adjectives required by the theorem. This gives maximal
possibility for reusing theorems.

Let us consider a straightforward example: An ideal is conventionally defined
over a ring R; it is a subset S of R that is closed with respect to both addition
and multiplication with arbitrary ring elements, that is for all a,b € S and all
r € R we have a+b € S and both r-a € S and a-r € S. It is rather obvious
that the set {0} is an ideal for an arbitrary ring R where 0 denotes the ring’s
zero element. However, to prove that fact it is sufficient to show

0+0 =0 and a-0 = 0 = 0-a forall a € R.

A closer inspection shows that this can be done using only that addition is
associative, provides a right zero and a right complement and that addition and
multiplication distribute. These four properties are the adjectives necessary
for this theorem, the signature consists of two binary operators +, * and the
element 0. In other words the set {0} is an ideal in much weaker structures
than rings.

3 Formalizing Requirements in Mizar

In this section we illustrate how requirements for theorems can be formalized in
the Mizar language [3]. To be more precise, we explain how to define signatures
and adjectives in Mizar and how these can be combined to describe requirements
for theorems. Again we use the theory of ideals and the theorem from the last
section as an example.’

First, we have to deal with the signature of a theorem, that is we have to
fix the carriers and the operators the theorem is about. For that purpose, the
Mizar language provides a special construct, the structure definition. Rings, for
example, are given by a carrier, two binary and two nullary binary operators, the
later ones denoting the zero and the unit element. Hence, the typical signature
for rings—called in Mizar doubleLoopStr—can be defined simply by

IThe basics of the theory of ideals have been formalized in Mizar [1] and are part of the
Mizar Mathematical Library.



definition
struct (LoopStr,multLoopStr_0) doubleLoopStr
(# carrier -> set,
add, mult -> BinOp of the carrier,
unity, Zero -> Element of the carrier #);
end;

Please note the terms LoopStr and multLoopStr_0 mentioned in the first line of
the definition. They also denote Mizar structures— LoopStr a carrier with one
binary operator add and a zero element Zero, multLoopStr_0 a carrier with one
binary operator mult and a unit element unit— which are now glued together
giving doubleLoopStr. As a consequence doubleLoopStr is in particular both
a LoopStr and a multLoopStr_O.

Now adjectives can be introduced in Mizar by defining attributes over struc-
tures providing the necessary signature for this adjective. Note that in the
following definition associativity of addition? is introduced for LoopStr only,
just because multiplication is not necessary here. Nevertheless, the attribute
add-associative will be available for doubleLoopStr also, as LoopStr is an
ancestor of doubleLoopStr.

definition
let R be non empty LoopStr;
attr R is add-associative
for x,y,z being Element of R holds x+(y+z) = (x+y)+z;
end;

Further properties can be introduced analogously, for example right_zeroed,
right_complementable and distributive, which are the adjectives neces-
sary to state the example theorem of section 2. Note, that the attributes
right_zeroed and right_complementable can be defined also for LoopStr
only, whereas distributive requires a doubleLoopStr, namely addition and
multiplication.

In the same way adjectives necessary for a subset S of R to be an ideal
over R can be introduced using attributes. Again, in the first definition R is a
LoopStr that is R provides no multiplication. Similarly, the other two adjectives
are defined for HGrStr—an ancestor of multLoopStr_0— giving a carrier and
multiplication only.

definition
let R be non empty LoopStr, S be Subset of R;
attr S is add-closed means
for x,y being Element of R st x in S & y in S holds x+y in S;
end;

definition
let R be non empty HGrStr, S be Subset of R;
attr S is left-ideal means
for a,x being Element of R st x in S holds a*x in S;

2The operator + is just a shorthand for add using hidden arguments, so that the carrier R
of the operator + need not be explicitely stated.



attr S is right-ideal means
for a,x being Element of R st x in S holds x*a in S;
end;

Combining these three adjectives we get the notion of an ideal. Here we need
the signature given by doubleLoopStr, as now both addition and multiplication
must be provided. It may be worth mentioning that using our approach we
implicitely indroduced the notion of an ideal for much weaker domains than for
a ring; in fact we just used the signature of rings, but no further adjectives for
the given operators.

definition

let R be non empty doubleLoopStr;

mode Ideal of R is add-closed left-ideal right-ideal (non empty Subset of R);
end;

Also, we like to mention that this definition is not necessary as it is just syn-
tactic sugar, but it improves readability; in fact Ideal of R is just a syn-
onym for add-closed left-ideal right-ideal (non empty Subset of R).
However, independent of which name we choose, Mizar expects an existence
proof before such an attributed structure can be used. In our case we have
to show that for an arbitrary R that is a doubleLoopStr there indeed exists a
add-closed left-ideal right-ideal (non empty Subset of R).

Now we can state the theorem mentioned in section 2 by just combining the
signature, i.e. the appropriate Mizar structure, with the required adjectives, i.e.
the required attributes:

theorem

for R being add-associative right_zeroed right_complementable
distributive (non empty doubleLoopStr)

holds {0.R} is Ideal of R;

Note that in this theorem R provides exactly the adjectives necessary to prove
the theorem correct and nothing more.®> So this theorem is valid not only in
rings, but also in much more general domains. In addition the theorem is easier
applicable for a particular domain being a ring: We have to show only four
adjectives to apply it, whereas it takes to prove eight adjectives to show that
a domain is a ring. We will come back to that in section 5. Here we close
by mentioning that, similar to the situation above where we defined ideals,
the existence of an add-associative right_zeroed right_complementable
distributive (non empty doubleLoopStr) has to be shown before the theo-
rem can be stated the way we did.

4 Mathematical Libraries

In practice, domains in mathematical libraries are defined by introducing car-
riers and operators. Then further properties about these operators are stated

3The proof of the example theorem has been carried out and can be found in [1].



using some kind of axioms. So, here we also observe a distinction between sig-
nature and adjectives, because axioms can be considered as a special way of
writing adjectives. However, this distinction beween signature and adjectives is
not made when considering theorems: New theorems are stated (and proven)
for a particular domain, that is for a fixed signature and a fixed set of adjec-
tives. Whether or not all these operators and adjectives are necessary for the
theorem’s proof is seldom taken into consideration.® Consequently, theorems
are closely bound to particular domains.

In contrast, how would a mathematical library be organized dealing with
theorems based on this distinction between signatures and adjectives? First of
course there are theorems of the form explained above: They are not bound to a
particular domain, but exist with respect to a signature and a set of adjectives.
As we have seen in section 2, such theorems hold for all particular domains
providing at least the same signature and fulfilling at least the adjectives linked
to the theorem. Domains in the usual sense, e.g. rings, modules or the (ring
of) integers, are also part of such a library. However, again the perspective is
somewhat different: A domain also consists of a signature giving the operators
of the domain and in addition of a number of adjectives the domain’s operators
fulfill. As already mentioned, this perspective is quite obvious for abstract
domains, but also concrete domains in the classical sense can be considered
this way. For example, the signature of the integers would provide at least two
binary operators 4+ and % and at least two constants 0 and 1 with their usual
meaning. Adjectives for the integers would be among others associativity and
commutativity of + and * or that 0 is a unit with respect to +.

This organization of mathematical libraries enables straightforward appli-
cation of theorems: Having the necessary signature and adjectives for both
theorems and domains of the library, a given theorem holds for a given domain
if both the signature of the theorem is included in the signature of the domain
and the adjectives of the theorem are included in the (so far proven) adjectives
holding for the domain.

5 Reusing Theorems in Mizar

In the following we illustrate how Mizar can serve as a mathematical library
realizing the approach presented in the last section. In section 3 we already
saw how theorems based on the distinction between signature and adjectives
can be formalized (and proven) using the Mizar language. Now we explain how
particular domains can be constructed and how general theorems can be applied
to such domains. For abstract domain this is straightforward. An abstract ring,
for example, can be defined the same way as ideals in section 2: We just combine
the necessary structure with the necessary attributes:

40f course it is used, for example, that theorems about groups also holds for the addition
of rings. This in fact is shows that theorems are in some sense independent of particular
domains.



definition

mode Ring is Abelian add-associative right_zeroed right_complementable
associative left_unital right_unital distributive (non empty doubleLoopStr);

end;

Of course this again requires an existence proof. Note that the example theorem
from section 3 is true for Ring: The structures of Ring and the theorem are the
same and the theorem’s attributes are a subset of the attributes a Ring fulfills.
And in fact the Mizar checker accepts the theorem

theorem
for R being Ring holds {0.R} is Ideal of R;

by just referencing the general theorem from section 3. Please note again, that it
was sufficient to define the notion of an ideal for the structure doubleLoopStr
in section 3; no attributes were used. The simple fact that the definition of
Ring is based on a doubleLoopStr guarantees that the notion of an ideal is also
availble for Ring.

Constructing concrete domains in the classical sense requires a bit more
work. Let us consider the integers as an example. First we have to introduce
the signature of the integers. Here we consider the integers as a ring, that is the
signature is at least a doubleLoopStr. Further components of the integers can
be defined, e.g. to formalize an ordering, but for our purpose a doubleLoopStr
is sufficient. First we have to define the set of integers INT as well as addition
and multiplication of the integers denoted by addint and multint. Then we
can construct the ring of integers INT.Ring as a functor yielding a non empty
doubleLoopStr, in which the components are identified with the just mentioned
carrier and operators.’

definition

func INT.Ring -> non empty doubleLoopStr equals
doubleLoopStr (#INT,addint ,multint,1 in INT,0 in INT#);

end;

Note, that this definition only results in a collection of the set INT with some
operations on this set, that is a concrete instance of a signature. In order
to apply general theorems to the integers we now have to prove that certain
attributes are fulfilled. In Mizar this is done using cluster definitions. Of course,
the fact that e.g. the addition of INT.Ring is associative can also be stated
(and proven) as a theorem. However, using clusters has the advantage, that
the attribute is linked to the structure: After the cluster definition the Mizar
checker can automatically infer that INT.Ring fulfills the clustered attribute.
The number and the order of attributes in a cluster definition is without meaning
and up to the user. In our example all attributes necessary for INT.Ring to be
a ring are put in one cluster definition:

5The term in INT just makes sure that 1 and 0 are indeed elements of the set INT as
required by the structure definition.



definition

cluster INT.Ring -> Abelian add-associative right_zeroed right_complementable
commutative associative distributive;

end;

After the cluster has been registered the following integer version of the theorem
from section 3 holds. As in the case of Ring this is due to the fact that the
involved structures are both doubleLoopStr and the theorem’s attributes are a
subset of the attributes INT.Ring fulfills due to (the proofs of) the clusters.

theorem
{0. (INT.Ring)} is Ideal of INT.Ring;

Again all we have to do to get this theroem accepted by the Mizar checker is
to reference the general theorem. Note also, that the clusters presented provide
much more adjectives of the integers than necessary to prove the theorem. To
do so, it is enough to show that INT.Ring is add-associative right_zeroed
right_complementable and distributive.

6 Conclusion and Future Work

Interestingly, there are properties of which it is not obvious whether they should
belong to a particular domain or not. For example, the natural numbers provide
the principle of induction. In fact the principle of induction is a major part in the
definition of the natural numbers used implicitly when defining the operators +
and *. One can consider this property as an adjective, but there are no examples
of other domains than the natural numbers fulfilling it. So it seems that this
property indeed belongs to a particular domain rather than exists in its on
merit. Consequently, the domains of our approach would be equipped with both
adjectives existing on their own and properties holding only for the particular
domain. On the other hand induction for natural numbers can be considered as
an instantiation of a higher order theorem saying that induction can carried out
on well-ordered sets. The question here is, whether it makes sense to generalize
every property as far as possible or whether it is more practicable to have
properties adapted for particular domains.

However, we believe that the approach we presented provides a flexible way
to organize mathematical libraries, in particular with respect to reusing theo-
rems included in such a library. Furthermore, it seems that our approach also
works for algorithmic libraries: The signature of an algorithm gives the nec-
essary carriers and operators, the adjectives of an algorithm describe minimal
conditions under which the algorithm works correctly. This kind of description
can be done using e.g. the concept description language Tecton [2]. Consider
for example a sort algorithm working on a domain giving a set and a binary
relation on this set. Then the signature of the algorithm consists of a carrier
and a binary relation over this carrier. Adjectives necessary for the correctness
of the algorithm are reflexivity, antisymmetricy, transitivity and totality of the
binary realation. The integers with its usual order fulfill all the adjectives, hence
the integers constitute a legal domain for the sort algorithm.



References

[1]

Jonathan Backer, Piotr Rudnicki and Christoph Schwarzweller, Ring Ide-
als. in: Formalized Mathematics, 2000. (to appear); available by anony-
mous ftp from http://mizar.org/JFM/Voll2/ideal_1.html.

D. Musser, The Tecton Concept Description Language. available by anony-
mous ftp from http://www.cs.rpi.edu/ "musser/gp/tecton, 1998.

Piotr Rudnicki and Andrzej Trybulec, On Equivalents of Well-founded-
ness. An Experiment in Mizar. in: Journal of Automated Reasoning,
23:197-234, 1999.

Piotr Rudnicki, Christoph Schwarzweller and Andrzej Trybulec Commu-
tative Algebra in the Mizar System. in: Journal of Symbolic Computation,
vol. 32(1/2), pp. 143-169, 2001.

Christoph Schwarzweller, The Ring of Integers, Euclidean Rings and Mod-
ulo Integers. in: Formalized Mathematics, vol.8(1), pp. 17-22, 1999. avail-
able by anonymous ftp from http://mizar.org/JFM/Volll/int_3.html.



