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Abstract. We review the general model of a computer as defined in
the Mizar system. The main emphasize is on specializing and using this
model to formulate algorithms and prove their correctness. We give ex-
amples for a concrete machine over the integers derived from the general
model. The further development of this model – especially towards the
complexity of algorithms – is discussed.

1 Introduction

The development of the Mizar system [Miz04] started 30 years ago with the
proposition of a formal language intended to match mathematical vernacular.
The initial goal of this language – also called Mizar [Try78] – was not to write
or check mathematical proofs but rather to assist mathematicians in writing
and preparing their papers. Since then, however, Mizar has evolved to a proof
checker [RT01] with one of the largest known repository of checked mathemat-
ical knowledge covering a variety of topics such as analysis, algebra, topology,
graph theory, category theory, and others. The most ambiguous projects have
been the formalization of a text book on continuous lattices [GHK+80] and the
formalization of Jordan’s curve theorem [Jor87].

Not widely known outside the Mizar community, however, are the efforts
concerning programs and program verification in Mizar. Started already in the
early 90th of the last century a theory of abstract computers has been developed
and formalized in Mizar. The basic Mizar model of a computer [NT92] is quite
general giving a conceptual framework in which computations take place. On
top of this a number of so-called macro instructions resembling the structure
of familiar procedural programming languages has been introduced and used to
show the correctness of several algorithms, for e.g. of the Euclidean algorithm
[TN93].

In this paper we give an overview of abstract computers and their algorithms
as defined in Mizar. Based on the general abstract computer we discuss the pos-
sibilities of specializing this model to different – concrete and generic – machines.
After that we concentrate on the SCM-FSA machine [TNR96], a ”Simple Con-
crete Model” of a computer over the integers. We present the mechanism of
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macro instructions which allows to formulate algorithms for this machine in a
programming language fashion. Finally we consider the question of describing
and proving the complexity of algorithms. The basics of complexity theory have
been formalized in Mizar [KRS01b], however not been applied to algorithms for
abstract computers, yet.

2 The Mathematical Model of a CPU

The basic model of a computer has been defined in a quite general matter [NT92].
It does not resemble a special kind of programming language nor even a partic-
ular kind of machine. The idea was to capture the general structure of computa-
tions on a machine in this way providing a framework which can be instantiated
to realize different models of computation. Consequently, the Mizar computer in
fact models a central processing unit by introducing among others the concept
of instructions and instruction counter. This means that memory and mem-
ory management is explicitely addressed. Here is the definition of the structure
AMI-Struct [NT92].

definition let N be set;
struct (1-sorted) AMI-Struct over N

(# carrier -> set,
Instruction-Counter -> Element of the carrier,
Instruction-Locations -> Subset of the carrier,
Instruction-Codes -> non empty set,
Instructions -> non empty Subset of

[:the Instruction-Codes,((union N) \/ the carrier)*:],
Object-Kind -> Function of the carrier,

N \/ {the Instructions,the Instruction-Locations},
Execution -> Function of the Instructions,

Funcs(product the Object-Kind, product the Object-Kind) #);
end;

The carrier plays the role of the memory and the set N gives the data that can
be stored within it. Note that both the instruction counter and the locations of
instructions are placed in the same memory. The functor Object-Kind indicates
which kind of information – about data or instructions – can be stored in a given
memory location. A state of the computer is thus a function from the memory
– the carrier – which respects these kind limitations, hence an element of
product Object-Kind. Finally, an instruction is given by an instruction code
and a data or memory element. Thus for example [J,<*a*>] can be read as
the instruction ”jump to a”, that is the instruction counter is set to a. The
interpretation of an instruction, however, is not fixed. Its meaning is given by
the functor Execution which maps each instruction to a function from states to
states.

This definition just establishes the basic concepts of a central processing unit,
thus does not give a machine with usually expected properties. Such properties
– if desired – are enforced in a second step using Mizar attributes. A natural



restriction, for example, is that only instruction locations can be put into the
instruction counter, which gives a von-Neumann-like machine. Note, for a second
example, that in principle the execution of an instruction can change the given
program by overwriting the value of an instruction location. A machine, in which
this does not occur, is called steady programmed.

Note also that the memory is an unordered set, which means in particular
that it is not possible to speak of the k-th instruction (location) of a machine. To
overcome this, an ordering of instruction locations has been defined in [TRK01].
The ordering is given by the sequence of instruction locations that can be put
into the instruction counter during its execution. A machine such that there
exists a bijection between the natural numbers and the instruction locations
respecting this order is called a standard machine.

In addition the parameterization by the set N allows to consider special pur-
pose machines: N gives the data that can be stored, so one could for example
define a machine storing integer numbers or finite sequences of integers (the
SCM, SCM-FSA computer respectively, see [NT93,TNR96]). Note that by in-
stantiating the parameter N also operations of the data become available, in our
example addition of integer numbers or concatenating finite sequences. These
operations can be considered as the primitives of the machine, and be used
when defining the functor Execution, that is the effect of the instructions. It
is even possible to define generic machines that work over arbitrary algebraic
structures: N is instantiated with the (algebraic) structure – in Mizar realized by
structure definitions. Then the elements of the structure become the data and
the structure’s operations become the machine’s primitives. So for example a
machine SCM-Ring working over arbitrary rings has been defined in [Kor98].

Programming such a machine is not an easy task, basically it is the same
as programming in an assembler language. So an obvious goal is to extend the
model by introducing higher-level programming constructs that resemble ordi-
nary programming languages. This has been done for the SCM-FSA-machine
[TNR96], an extension of the SCM-computer over the integers, which in addi-
tion allows to store finite sequences of integers. Therefore in the following only
this machine is considered.

3 Macros

To facilitate writing of programs and algorithms and making them more readable
(more similar to programs written in languages like Pascal, C, etc.) a number of
macros have been introduced in MML. They allow writing of programs in terms
of Mizar terms. In this section we present two different definitions of macros and
discuss the impact of these definitions on composing the macros.

3.1 General Definition

As a very basic definition of a macro one can take the finite partial state of a
computer such that the domain of it is a subset of instruction locations. In fact,



it has been done so in MML, but one more condition has been added. Because
it was done for SCM-FSA [TNA97], and because the instruction locations of
SCM-FSA are constituted by natural odd numbers the authors decided to
assume that a macro must be initial, in the sense that a macro must occupy
the contiguous part of the memory starting from the first location. Having such
a condition one can assume that, when one executes a macro, we always can
(must) start the execution from the first instruction location. So, we do not
put any conditions on the structure of the macro. Then, the composition of two
macros (let’s say f and g) can be done in the following steps [TN96a,TN96b]:

– incrementation of all jumps of g by the length of f,
– shifting of incremented g by the length of f,
– changing all halts of f by jumps to the first location of incremented and

shifted g,
– concatenation of new f with new g.

3.2 More Specific Definition

From some point of view, the previous definition of a macro is not comfortable.
Why? When one wants to compose two macros, one must replace all halts of the
first macro by jumps to the beginning location of the second one. Therefore it
was decided to introduce a new definition of a macro, which is more suitable for
concatenation. Namely, this new definition additionally requires that a macro
is finished by a halt instruction, and only one halt instruction is allowed in a
macro, in contrast to the previous definition [TRK01]. Of course, this definition
is more restrictive than the original one, but to compose two macros it is enough
to remove the last instruction of the first macro and concatenate the second one,
instead of changing all halts by jumps. Then, the composition of two macros
(let’s say f and g) can be done in the following steps [Kor01]:

– incrementation of all jumps of g by the length of f minus 1,
– shifting of incremented g by the length of f minus 1,
– removing of the last instruction of f,
– concatenation of new f with new g.

The shortness of the second way of composition is well visible in the case,
when one concatenates macro instructions made of one “non halt” and one “halt”
instruction. Table 1 presents the composition of four such macro instructions.
Following the first way of concatenation we obtain as a result the macroinstruc-
tion containing 3 superfluous jumps. They do not appear in the case of the second
definition. (In Table 1, the notion il.n stands for the n-th instruction location,
and dl.n for the n-th data location.)

3.3 Examples of Macros

There is a number of macros already introduced in MML. Let us list some of
them. We present macros defined only for SCM-FSA [Asa97a,Asa97b,Asa97c].



general
definition

specific
definition

il.n M1 M2 M3 M4 M1;M2;M3;M4 M1;M2;M3;M4

il.0 dl.1:=dl.0 dl.2:=dl.0 dl.3:=dl.0 dl.4:=dl.0 dl.1:=dl.0 dl.1:=dl.0

il.1 halt halt halt halt goto il.2 dl.2:=dl.0

il.2 dl.2:=dl.0 dl.3:=dl.0

il.3 goto il.4 dl.4:=dl.0

il.4 dl.3:=dl.0 halt

il.5 goto il.6

il.6 dl.4:=dl.0

il.7 halt
Table 1. An example of the concatenation of macro instructions

Then, they are macros in the sense of the general definition, but not always in
the sense of the second definition (not all of them are ended by halt).

1. Unconditional jump:

definition
let l be Instruction-Location of SCM+FSA;
func Goto l -> Macro-Instruction equals :: SCMFSA8A:def 2
insloc 0 .--> goto l;

end;

2. Conditional macro:

definition
let a be Int-Location;
let I, J be Macro-Instruction;
func if=0(a,I,J) -> Macro-Instruction equals :: SCMFSA8B:def 1
a =0_goto insloc (card J + 3) ’;’ J ’;’ Goto insloc (card I + 1) ’;’

I ’;’ SCM+FSA-Stop;
end;

3. The below repeats a times I :

definition
let a be Int-Location;
let I be Macro-Instruction;
func Times(a,I) -> Macro-Instruction equals :: SCMFSA8C:def 5
if>0(a,loop if=0(a,Goto insloc 2,I ’;’

SubFrom(a,intloc 0)),
SCM+FSA-Stop);

end;



4 Algorithms in Mizar

Developing of the theory of computers, and especially the theory of macro in-
structions in MML, has been started and it is being still continued with deep
confidence that such computers would be (are) suitable for verification of al-
gorithms. A typical way of saying that an algorithm is correct relies on the
comparison of the algorithm with a function that describes the semantics of
the algorithm. The comparison should be done in terms of predicate computes
[NT92], defined as:

definition
let N be with_non-empty_elements set;
let S be realistic halting IC-Ins-separated definite

(non empty non void AMI-Struct over N);
let p be FinPartState of S, F be Function;
pred p computes F means :: AMI_1:def 29
for x being set st x in dom F ex s being FinPartState of S st x = s &
p +* s is pre-program of S & F.s c= Result(p +* s);

end;

The function mentioned above is usually a partial function from the sets of all
finite partial states to the sets of all finite partial states of the computer such
that elements of the domain are related to inputs to the algorithm and elements
of the codomain to results of the algorithm. What is important is that it is not
necessary to define a function for each algorithm. If different algorithms solve
exactly the same problem, it means that they compute the same function.

As an example let us take into account Euclid’s algorithm defined and verified
in [TN93]. The algorithm is just the assignment of appropriate instructions to
the consecutive instruction locations.

definition
func Euclide-Algorithm -> programmed FinPartState of SCM

equals :: AMI_4:def 1
(il.0 .--> (dl.2 := dl.1)) +*

((il.1 .--> Divide(dl.0,dl.1)) +*
((il.2 .--> (dl.0 := dl.2)) +*
((il.3 .--> (dl.1 >0_goto il.0)) +*
(il.4 .--> halt SCM))));

end;

Then the related function can be defined as:

definition
func Euclide-Function -> PartFunc of FinPartSt SCM, FinPartSt SCM

means :: AMI_4:def 2
for p, q being FinPartState of SCM holds [p,q] in it
iff ex x, y being Integer st x > 0 & y > 0 &
p = (dl.0,dl.1) --> (x,y) & q = dl.0 .--> (x gcd y);

end;



It assigns partial states q of SCM that store the result (x gcd y) to relevant
partial states p containing inputs (x,y).

A more advanced algorithm that has been already defined and verified using
Mizar is bubble sorting of a finite sequence of numbers [CN98]. It involves macros
in its body and looks like:

definition
set a0 = intloc 0, a1 = intloc 1, a2 = intloc 2, a3 = intloc 3;
set a4 = intloc 4, a5 = intloc 5, a6 = intloc 6;
set initializeWorkMem =

(a2:=a0) ’;’ (a3:=a0) ’;’ (a4:=a0) ’;’ (a5:=a0) ’;’ (a6:=a0);
let f be FinSeq-Location;
func bubble-sort f -> Macro-Instruction equals :: SCMBSORT:def 1

initializeWorkMem ’;’ (a1:=len f) ’;’
Times(a1, (a2:=a1) ’;’ SubFrom(a2,a0) ’;’ (a3:=len f) ’;’

Times(a2, (a4:=a3) ’;’ SubFrom(a3,a0) ’;’
(a5:=(f,a3)) ’;’ (a6:=(f,a4)) ’;’ SubFrom(a6,a5) ’;’
if>0(a6, (a6:=(f,a4)) ’;’ ((f,a3):=a6) ’;’ ((f,a4):=a5),

SCM+FSA-Stop)));
end;

To verify the correctness of it the following function has been introduced:

definition
func Sorting-Function -> PartFunc of FinPartSt SCM+FSA,FinPartSt SCM+FSA

means :: SCMBSORT:def 3
for p, q being FinPartState of SCM+FSA holds [p,q] in it
iff ex t being FinSequence of INT, u being FinSequence of REAL
st t,u are_fiberwise_equipotent & u is FinSequence of INT &

u is non-increasing & p = fsloc 0 .--> t & q = fsloc 0 .--> u;
end;

It assigns partial states q containing sorted sequences u to partial states p con-
taining original sequences t.

5 Outlook: Complexity of Algorithms

Formalizing the complexity of algorithms on a machine is a complex task. One
needs a formalization of both the theoretical basis of complexity and a notion
that connects formalized algorithms with this basis. The usual approach is to
define step counting functions where often not all but only steps of main interest
– e.g. multiplications or comparisons – are considered.

The beginnings of complexity theory has already been formalized in Mizar
[KRS01a,KRS01b]. Here the basic notations such as domination and complexity
classes are introduced. In addition a number of examples and problems from
a textbook has been addressed. Thus [KRS01a,KRS01b] gives a framework for
defining the complexity of algorithms. This framework, however, has not been



applied to describe the complexity of algorithms, yet. In the following we briefly
outline how this can be done.

Mizar computers provide a number of possible ”one-step” operations on states,
from which programs, that is algorithms are built. It is therefore natural to con-
sider sequences of execution steps to capture the length of a computation. In
[NT92] the concept of a computation sequence – to identify halting computations
– has been already introduced. It has been defined using a functor Following
computing the immediate successor of a state s. Thus Computation s is the
sequence of states the machine is running through when initialized with state
s. Using this functor it is now straightforward to define a step function, that
counts the number of executions of the machine beginning with a state s [BR93].
CurInstr gives the instruction of a state, that is the instruction to be executed
next.

definition let N be with_non-empty_elements set;
let S be halting IC-Ins-separated definite

(non empty non void AMI-Struct over N);
let s be State of S such that s is halting;
func Complexity s -> Nat means :: SCM_1:def 2
CurInstr((Computation s).it) = halt S &
for k being Nat

st CurInstr((Computation s).k) = halt S holds it <= k;
end;

Note that a computation is in principle infinite. Therefore the attribute halting
saying that an instruction does not change a state is used to indicate the ”end”
of a computation. The functor can be easily modified to counting only the ex-
ecution steps that involve primitive operations given by the parameter N. This
means basically summing up the elements in Computation s with a certain in-
struction code. Analogously counting functions for only one operation such as
multiplication or comparison can be constructed. Thus based on the general ma-
chine model defined in Mizar it is possible to define step-counting and complexity
functions following the literature.

6 Conclusion

We have presented the general computing machine as defined in Mizar. The
macro mechanism allows to use this machine to formulate algorithms and prove
them correct by showing which function the algorithm computes. In principle,
this approach works for arbitrary programs though it seems hard to apply it to
algorithms occuring in everyday life. We believe, however, that this approach is
suitable to formalize the principles of algorithms – as for examples presented in
textbooks on this topic – in order to store in a mathematical repository.

The development of a complexity theory for algorithms as mentioned above
is still in its beginning phase. The complexity function presented in [BR93], for
example, only considers a single state s. To describe the complexity of algorithms



it should be generalized to a function from all states of a machine S – or some
kind of input for S.3 To summarize the approach formalized so far has still to be
extended and worked out in order to become suitable for proving the complexity
of algorithms.

References

[Asa97a] N. Asamoto, Conditional branch macro instructions of SCM+FSA, Part I
(preliminary); Formalized Mathematics, 6(1), pp. 65–72, 1997.

[Asa97b] N. Asamoto, Conditional branch macro instructions of SCM+FSA, Part II;
Formalized Mathematics, 6(1), pp. 73–80, 1997.

[Asa97c] N. Asamoto, The loop and times macroinstruction for SCM+FSA; Formal-
ized Mathematics, 6(4), pp. 483–497, 1997.

[BR93] G. Bancerek and P. Rudnicki, Development of Terminology for SCM; For-
malized Mathematics, 4(1), pp. 61–67, 1993.

[GHK+80] G. Gierz, K.H. Hofmann, K. Keimel and J.D. Lawson, M. Mislove and D.S.
Scott, A Compendium of Continuous Lattices, Springer-Verlag, 1980.

[CN98] J. Chen and Y. Nakamura, Bubble Sort on SCM+FSA; Formalized Mathe-
matics, 7(1), pp. 153–161, 1998.

[Jor87] C. Jordan, Cours d’Analyse de l’École Polytechnique, 1887.
[Kor98] A. Korniłowicz, The Construction of SCM over Ring; Formalized Mathe-

matics, 7(2), pp. 295–300, 1998.
[Kor01] A. Korniłowicz, On the Composition of Macro Instructions of Standard

Computers; Formalized Mathematics, 9(2), pp. 303–316, 2001.
[KRS01a] R. Krueger, P. Rudnicki and P. Shelley, Asymptotic notation. Part I: Theory;

Formalized Mathematics, 9(1), pp. 135–142, 2001.
[KRS01b] R. Krueger, P. Rudnicki and P. Shelley, Asymptotic notation. Part II: Ex-

amples and Problems; Formalized Mathematics, 9(1), pp. 143–154, 2001.
[Miz04] The Mizar Home Page, http://mizar.org.
[NT92] Y. Nakamura and A. Trybulec, A Mathematical Model of CPU; Formalized

Mathematics, 3(2), pp. 151–160, 1992.
[NT93] Y. Nakamura and A. Trybulec, Some Remarks on Simple Concrete Model

of Computer; Formalized Mathematics, 4(1), pp. 51–56, 1993.
[RT01] P. Rudnicki and A. Trybulec, Mathematical Knowledge Management in

Mizar; in: B. Buchberger, O. Caprotti (eds.), Proceedings of the First Inter-
national Workshop on Mathematical Knowledge Management (MKM2001),
Linz, Austria, 2001.

[TN96a] A. Trybulec and Y. Nakamura, Modifying addresses of instructions of
SCM+FSA; Formalized Mathematics, 5(4), pp. 571–576, 1996.

[TN96b] A. Trybulec and Y. Nakamura, Relocability for SCM+FSA; Formalized
Mathematics, 5(4), pp. 583–586, 1996.

[TN93] A. Trybulec and Y. Nakamura, Euclid Algorithm; Formalized Mathematics,
4(1), pp. 57–60, 1993.

[TNA97] A. Trybulec, Y. Nakamura and N. Asamoto, On the compositions of macro
instructions; Formalized Mathematics, 6(1), pp. 21–27, 1997.

[TNR96] A. Trybulec, Y. Nakamura, and P. Rudnicki, The SCM+FSA computer;
Formalized Mathematics, 5(4), pp. 519–528, 1996.

3 This has been pointed out by one of the referees.



[TRK01] A. Trybulec , P. Rudnicki, and A. Korniłowicz, Standard Ordering of In-
struction Locations; Formalized Mathematics, 9(2), pp. 291–301, 2001.

[Try78] A. Trybulec, The Mizar-QC/6000 Logic Information Language, ALLC Bul-
letin, Vol.6, No 2, 1978.


