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Abstract

We report on the development of algebra in the Mizar system. This in-
cludes the construction of formal multivariate power series and polyno-
mials as well as the definition of ideals up to a proof of the Hilbert basis
theorem. We present how the algebraic structures are handled and how
we inherited the past developments from the Mizar Mathematical Library
(MML). The MML evolves and past contributions are revised and gener-
alized. Our work on formal power series caused a number of such revisions.
It seems that revising past developments with an intent to generalize them
is a necessity when building a data base of formalized mathematics. This
poses a question: how much generalization is best?

1. Introduction

Mathematics, especially algebra, uses dozens of structures: groups, rings,
vector spaces, to name a few of the most basic ones. These structures are
closely connected to each other giving rise to inheritance. For example,
each ring is a group with respect to its addition and hence every theorem
about groups also holds for rings. There is a trend towards introducing
more general structures: semi-rings as a generalization of rings, modules as
a generalization of vector spaces, etc. Again, theorems about a structure
are trivially true for any structure derived from it. The derived structure
inherits everything from its ancestors.

In mechanized proof-checking systems, the issues of inheritance have
to be made explicit. It is not trivial to build a proof-checker for which
theorems for groups apply also to rings. Generalizations, as mentioned
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above, may result in building a sizeable graph of inheritance and only
extensive practice can say how good a particular solution is. The issue is
further complicated by inertia induced through the existing developments
in a proof-checking environment. On the one hand, one would like to
inherit as much as possible from the past, on the other, one wants to
modify the past developments, if they turn out to be inconvenient for the
task at hand—and the task at hand is usually too big to start everything
from scratch.

In this paper we describe the construction of formal multivariate power
series and polynomials and the development of the theory of ideals in the
Mizar system. During this work we had to deal with the aforementioned
problems. We discuss the tools that Mizar offers to build algebraic struc-
tures; tools, which we believe provide a flexible mechanism supporting
the kind of inheritance omnipresent in mathematics. The main mecha-
nism here is based on defining and combining attributes for a hierarchy of
structures. This allows one to formulate and prove theorems while striving
for minimal assumptions about the underlying structure. Via inheritance,
theorems are automatically accessible for more specific structures.

Generalization is a more complex task. For example, one can derive
rings from semi-rings; however, there is a challenge when the rings have
already been introduced in the past and one aims to introduce semi-rings.
The question is what to do with the theorems about rings already proven
and stored in the Mizar Mathematical Library (MML), a number of which
would also hold for semi-rings. Stating and proving them again would not
only be a tedious job but would “overwhelm” the library. Alternatively,
the library could be revised as a whole.

The plan of this paper is as follows. After giving general information on
Mizar in section 2, we describe in detail how algebraic structures are con-
structed in Mizar in section 3. This includes the basic definitions needed
to define single domains like groups, fields or vector spaces. We discuss
how the natural connection between these domains can be made explicit
in Mizar and how this enables the reuse of already proven theorems. Sec-
tions 4 and 5 are devoted to the development of polynomials. We first
define formal power series and show how polynomials are constructed as
a special sub-case of them. Next we consider the evaluation of polynomials
proving its homomorphism property, with minimal algebraic requirements
on the underlying coefficient domain.

In section 6, we define ideals in rings and introduce some basic opera-
tions on ideals and the notions needed for the proof of the Hilbert basis
theorem. The Mizar version of the Hilbert basis theorem is presented in
section 7 where we discuss the helper notions and facts needed for the
proof. We close with a discussion on mathematical libraries in section 8
where we point out some problems that occurred during our work and
resulted in revisions of the MML, which generalized some of the already
defined concepts. The last two sections give some pointers to the related
work, offer some conclusions and sketch our plans for the future.
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2. Mizar

The Mizar system has been presented in (Rudnicki, Trybulec, 1999a);
a number of additional documents are available through the Mizar web
page at mizar.org; here we only give a brief overview. Mizar is a proof
checking system where proofs are written in the Mizar language and then
checked for correctness by the Mizar processor. Mizar proofs are written
using terminology and facts stored in the MML.

Mizar’s logical basis is classical first order logic similar to the calculus
of natural deduction of (Jaśkowski, 1934). In some contexts, free vari-
ables of second order are permitted and this enables, for example, the
definition of induction schemes. The development of MML is based on
Tarski-Grothendieck set theory, a variant of ZF in which the axiom of
infinity is replaced by Tarski’s stronger axiom (Tarski, 1939) postulat-
ing the existence of arbitrarily large, strongly inaccessible cardinals. The
axiom of choice is then proven as a theorem (Bancerek, 1990).

Mizar objects are typed, these types form a hierarchy with the funda-
mental built-in type set. New types are constructed using type construc-
tors called modes. A type does not necessarily denote a set, it may denote
a proper class. For example, a mode Ring can be defined although the
collection of all rings is not a set. Modes can be decorated with bipolar
adjectives formed by attributes which are adjective constructors. This ex-
tends the type hierarchy: given an attribute commutative, a new mode
commutative Ring can be defined; then a variable of type commutative
Ring is also of type Ring. The user has to provide an existence proof be-
fore such a new type can be used. Mizar structure modes denote entities
that consist of a number of fields accessible by selectors. Structure modes
are used to define algebraic domains and will be described in detail in the
next section.

Atomic formulae are formed with constructors called predicates and
terms are built by constructors called functors. We borrowed the name
“functor” from (Rasiowa, Sikorski, 1968), p. 148:

... some signs in the formalized language should correspond to
the mappings and functions being examined. These signs are
called functors, or—more precisely—m-argument functors pro-
vided they correspond to m-argument mappings from objects to
objects (m = 1, 2, ...).

A definition of a functor includes a correctness proof in which one has to
demonstrate existence and uniqueness of the functor being defined. Mizar
functors must not be confused with functors as used in category theory.

The proofs written in the Mizar language resemble proofs written in
common mathematical practice; however, to make them mechanically
checkable they typically need to be very detailed. For example, the in-
troduction of a variable x of type t with a property p[x] is written as:

consider x being t such that p[x] by L1, . . . Lm.

The labels Li refer to other statements in the proof or to already proven
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theorems and indicate the premises of the inference. In this case the
premises must provide a guarantee of the existence of an object x of
type t with property p[x] as the conclusion of this inference is an implicit,
existentially quantified formula. Whether inferences are correct is estab-
lished by the Mizar checker. Inferences from the source Mizar text are
converted into formulas of the following shape:

premise0 ∧ premise1 ∧ . . . ∧ premisek ∧ not conclusion

and in order to prove the conclusion, the checker tries to infer a contra-
diction. It may happen that a logically correct inference is rejected by the
checker. Then the user has to introduce further “smaller” steps or even
subproofs into the proof script to get the original statement accepted. The
Mizar checker is tuned towards speed, not power.

The “dry” texts of all Mizar formalizations are available in the MML
and maintained by the MML committee. The formalizations (almost 700
articles by some 130 authors) accepted by the committee are presented
in various forms in the electronic Journal of Formalized Mathematics on
the WWW at mizar.org. This electronic journal allows for browsing the
MML through hyper-links and offers substantial help in locating defini-
tions of the used notions (and there are some 10,000 of them). Paper
counterparts of the formalizations appear in a parallel journal named
Formalized Mathematics published by University of Bia lystok in Poland,
ISSN 1426-2630. These documents are typically difficult to follow with-
out additional explanations. In this paper, we would like to discuss the
process of formalizing mathematics in Mizar and the Mizar features sup-
porting such formalizations—in particular, those features that make the
past formalizations reusable in the area of abstract algebra.

3. Defining Algebraic Domains in Mizar

The Mizar construction of formal multivariate polynomials was aimed at
defining the ring of polynomials over a minimal algebraic domain permit-
ting such a construction. The definition of an algebraic domain is founded
on a structure mode providing the primitive notions, that is the signature
(carriers and operators) of the domain. Then the axioms for a specific
class of structures are defined as properties of the underlying structure
mode.

In our case, the structure mode of interest is doubleLoopStr, defined
in (Kusak et al., 1990). It provides a carrier, two binary operations over
the carrier and two distinguished elements of the carrier, hence the sig-
nature of a ring. Note again that a structure mode besides typing infor-
mation does not state anything else about the properties of the operators
it introduces. Figure 1 illustrates the relationship of doubleLoopStr to
other structure modes in the type hierarchy. (See (AMU, 1995), (Trybulec,
1990) and (Kusak et al., 1990) to learn more about these structures.) The
bottom definition introduces the following constructors:
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struct 1-sorted

(# carrier -> set #);
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struct (1-sorted) ZeroStr

(# carrier -> set,

Zero -> Element of the carrier #);

6

struct (ZeroStr) LoopStr

(# carrier -> set,

add -> BinOp of the carrier,

Zero -> Element of the carrier #);

HHH
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struct (1-sorted) HGrStr

(# carrier -> set,

mult -> BinOp of the carrier #);

6

struct (HGrStr) multLoopStr

(# carrier -> set,

mult -> BinOp of the carrier,

unity -> Element of the carrier #);

6
XXXXXXXXXXXXXXXXy

struct (ZeroStr, multLoopStr) multLoopStr 0

(# carrier -> set,

mult -> BinOp of the carrier,

unity -> Element of the carrier,

Zero -> Element of the carrier #);

XXXXXXXXy

��������:

struct (LoopStr, multLoopStr 0) doubleLoopStr

(# carrier -> set,

add -> BinOp of the carrier,

mult -> BinOp of the carrier,

unity -> Element of the carrier,

Zero -> Element of the carrier #);

Figure 1: Derivation of doubleLoopStr in the Mizar Mathematical Library

• the structure mode doubleLoopStr, that may be used to qualify
variables, e.g. let S be doubleLoopStr or to form predicates, e.g.
T is doubleLoopStr. However, a T for which the latter holds, may
have other fields besides those listed in Figure 1, if the type of T is
derived from doubleLoopStr.

• the attribute strict which when used as strict doubleLoopStr
gives the type of structures that have no additional fields besides
the ones mentioned in the definition; note that any type derived
from doubleLoopStr widens to doubleLoopStr but not necessarily
to strict doubleLoopStr. The attribute symbol strict is heav-
ily overloaded as every definition of a structure mode defines a new
attribute denoted by this symbol.

• the aggregate functor that is used to construct terms of structured
types, in our case doubleLoopStr(#c,a,m,u,z#) is such an aggre-
gate whenever c is a set, a and m are binary operations on c, and u
and z are two fixed elements of c. Structures denoted by aggregates
are strict.
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• the forgetful functor which when used as the doubleLoopStr of S
creates a strict structure from S (provided S has a type widening to
doubleLoopStr). This functor denotes the aggregate:
doubleLoopStr (# the carrier of S,

the add of S, the mult of S,

the unity of S, the Zero of S #)

If S is of type strict doubleLoopStr, then S = the doubleLoopStr
of S.

The mode doubleLoopStr is derived from LoopStr and multLoopStr 0.
This means that type doubleLoopStr widens to, or in other words that
it is a subtype of, both LoopStr and multLoopStr 0.

Typically, a structure definition also introduces some selector func-
tors to access its fields. The selector functors are introduced in the first
structure definition in the structure hierarchy in which the selector ap-
pears. The structure mode 1-sorted defines the selector functor the
carrier of. It may be used for any 1-sorted structure, e.g. ZeroStr,
LoopStr, doubleLoopStr. The selector functor the Zero of is intro-
duced by ZeroStr and the selector functor the add of by LoopStr. In
the case of multLoopStr 0 no new selectors are introduced, the mult
of and the unity of are inherited from HGrStr and multLoopStr, re-
spectively. Also in the case of doubleLoopStr all selector functors are
inherited.

ZeroStr is a common ancestor of LoopStr and multLoopStr 0. In this
way we ensure that carrier and Zero are the same in both. The definition
of ZeroStr introduces the Zero of as a new selector, the carrier of is
inherited from 1-sorted which is a common ancestor for most algebraic
structures in the MML.

If S is defined to satisfy S = doubleLoopStr(#c,a,m,u,z#) then

the 1-sorted of S = 1-sorted(#c#)
the ZeroStr of S = ZeroStr(#c,z#)
the LoopStr of S = LoopStr(#c,a,z#)
the multLoopStr_0 of S = multLoopStr_0(#c,m,u,z#)
the doubleLoopStr of S = doubleLoopStr(#c,a,m,u,z#)

and in particular the doubleLoopStr of S = S.
The order of selectors in a structure definition serves syntactic purposes

only. It can be chosen arbitrarily (with the obvious restriction that a
selector s1 that occurs in the type of a selector s2 must be put before
s2). The structures in Mizar are not tuples but rather partial functions
on selectors, and selectors must not be identified with just a place in the
aggregate functor. When defining a derived structure, all the inherited
selectors must be repeated to fix the order of arguments in an aggregate.

A structure mode defines only a backbone on which algebraic domains
are built. The desired properties of an algebraic domain are then ex-
pressed by attributes which are introduced one at a time. For example,
associativity of addition is defined in (Trybulec, 1990) as:
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definition
let S be non empty LoopStr;
attr S is add-associative means
for a, b, c being Element of the carrier of S
holds (a + b) + c = a + (b + c);

end;

Here, a + b is a shorter notation for (the add of S).[a,b]; this nota-
tion is usually defined right after the selector functor is introduced, see
(Trybulec, 1990). The . functor is the function application and since the
add of S is a binary operation on the carrier of S it takes an ordered pair
as an argument. Note that the structure parameter S does not occur in
the term a + b; it is hidden in the type of a and b, i.e. Element of the
carrier of S.

The attribute add-associative is defined for mode LoopStr, in which
the selector the add of is introduced. The mode doubleLoopStr widens
to the mode LoopStr as the latter is an ancestor of the former and through
inheritance the attribute is applicable to objects of mode doubleLoopStr.

Using separate attributes one can define various properties of algebraic
domains. These attributes can then be combined into clusters:

definition
cluster add-associative right_zeroed right_complementable

Abelian commutative associative left_unital
right_unital distributive Field-like
non degenerated (non empty doubleLoopStr);

existence
Demonstrate the existence of an object with all listed attributes.

end;

The attributes in the cluster above were introduced for various struc-
ture modes, all inherited by doubleLoopStr. For example, empty is de-
fined for 1-sorted, Abelian for LoopStr, commutative for HGrStr and
degenerated (stating that the Zero and the unity of the structure are
equal) for multLoopStr_0. Finally, the attribute distributive is defined
for doubleLoopStr as it could not have been defined earlier.

The existence proof in the cluster definition is necessary to avoid empty
types that are not allowed in Mizar. Once we have proven the existence
of an object with a cluster of attributes, we can introduce a mode of the
desired algebraic domain:

definition
mode Field is add-associative right_zeroed right_complementable

Abelian commutative associative left_unital
right_unital distributive Field-like
non degenerated (non empty doubleLoopStr);

end;

The mode Field is an abbreviation for a doubleLoopStr having the at-
tributes given in its definition. Note that through inheritance the def-
inition of Field just combines various notions; most of them exist on
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their own. Hence, a definition of a Ring could share the same backbone
structure with the Field and its attributes could be a subset of Field’s
attributes. As a consequence, each theorem about the Ring would be ap-
plicable to the Field.

Another Mizar mechanism for expressing and extending the sub-typing
relationship is provided by conditional clusters. A conditional cluster
states that any Mizar object that has some attributes also has some
others. For example, the rather trivial fact that a commutative binary
operator with a right zero also possesses a left zero can be expressed as
follows:

definition
cluster Abelian right_zeroed -> left_zeroed (non empty LoopStr);
coherence

Demonstrate that the promised implication holds.
end;

Once the above conditional cluster has been registered, it extends the
type hierarchy by the fact that Abelian right_zeroed LoopStr is a sub-
type of left_zeroed LoopStr. Hence, predicates and functors defined for
left_zeroed LoopStr are now also available for all other objects whose
type widens to Abelian right_zeroed LoopStr. Also, theorems proven
for left_zeroed LoopStr are now applicable to Abelian right zeroed
LoopStr and all other types widening to it. The Mizar checker tacitly
processes all available conditional clusters and they are not explicitly ref-
erenced.

4. Multivariate Power Series and Polynomials

The construction of formal power series and polynomials is presented in
(Rudnicki, Trybulec, 1999b). The power series are functions from power
products into a structure of coefficients. A power product itself is a func-
tion, called bag, from a given set of variables into natural numbers.

Variables are elements of an arbitrary set X. When we need the variables
to be ordered, we use ordinals (Bancerek, 1990) as X, but we prefer to be
as general as possible. A bag over a set of variables X is defined in terms of
the concept of ManySortedSet (Trybulec, 1993), a function with a fixed
domain, i.e. a function from X with unspecified range.

definition
let X be set;
mode bag of X is
natural-yielding finite-support ManySortedSet of X;

end;

The attribute natural-yielding means that the values of a bag are
natural numbers, whereas finite-support describes the property of a
function as having only finitely many non zero values. The set of all bags of
X, necessary to define power series as functions from bags into a structure,
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is then defined and named Bags X. It is not necessary that a collection
of all objects of a given type forms a set (but it is so in this case and we
have proven it).

Several operations on bags are defined, for example, addition b1 + b2
used for multiplying power products and restricted subtraction b1 -’ b2
used for dividing power products. We also introduced the lexicographic
order (when X is an ordinal) for power products and the concept of their
divisibility.

Given a structure S, a formal power series over S with the variables
from X assigns to each power product over X a coefficient which is an
element of S. Consequently, a Series of X,S is a function from Bags X
into S:

definition
let X be set, S be 1-sorted;
mode Series of X,S -> Function of (Bags X),S means
not contradiction;

end;

The above introduces the mode Series of X,S which widens to the mode
Function of (Bags X),S without any additional restrictions, as both
modes are identical with respect to their semantic properties; thus the
condition not contradiction which is always true and no proof is nec-
essary here.

Note that nothing is required from the structure S, in particular no
addition over S has to be available. These assumptions are introduced later
when necessary to ensure additional properties of series. For example,
defining addition of series requires addition of the elements of S, hence it
is defined for LoopStr:

definition
let n be set, L be non empty LoopStr,

p, q be Series of n,L;
func p + q -> Series of n,L means
for x being bag of n holds it.x = p.x + q.x;

end;

The keyword it denotes the object being defined.
Defining multiplication requires a bit more work: p * q on a bag b is

obtained by considering all decompositions of b into bags b1 and b2, such
that b = b1 + b2. This is done with the helper functor decomp which
gives the finite sequence of decompositions of b, ordered in increasing
order of the first component. For this we require that the variables are
identified with a certain ordinal:

definition
let n be Ordinal,

L be add-associative right_complementable
right_zeroed (non empty doubleLoopStr),

p, q be Series of n,L;
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func p * q -> Series of n,L means
for b being bag of n
ex s being FinSequence of the carrier of L
st it.b = Σ s &

len s = len decomp b &
for k being Nat st k ∈ dom s
ex b1, b2 being bag of n
st (decomp b)|.k = <*b1, b2*> & s|.k = p.b1 · q.b2;

end;

The functor |. is a function application that gives a term of the function
range, even if the argument is not in the function domain; it is defined
in such a way that f|.x equals f.x when x is in the domain of f. The
attributes add-associative and right complementable although intro-
duced by the same author (Trybulec, 1990) use different conventions for
hyphenation. There are no general rules for achieving uniformity in such
cases; the issue is minor but the difference can be annoying for a casual
reader of Mizar texts.

Remark. We would like to mention that proving the associativity of this
convolution product presented a technical challenge as it turned out to be
extremely tedious for the authors of (Rudnicki, Trybulec, 1999b). It is a
bit surprising that even in a thorough algebra text (Becker, Weispfenning,
1993) the proof is left as an exercise. In (MacLane, Birkhoff , 1967) the
corresponding proof for the univariate case occupies a quarter of a page
with half of it relegated to reasoning by analogy.

We also defined the operators p - q and -p with their obvious meaning
as well as the zero series and the unit series denoted by 0_(n,L) and
1_(n,L), respectively. The arguments n and L are necessary to determine
the proper type of these constants.

Polynomials are a special case of formal power series; they are the series
having only finitely many power products with non-zero coefficients, that
is series with a finite support (written finite-Support to distinguish
it from finite-support, introduced earlier). Due to this restriction the
underlying structure L must have a zero, hence L must be a ZeroStr.

definition
let n be Ordinal, L be non empty ZeroStr;
mode Polynomial of n,L is finite-Support Series of n,L
end;

Now, all the functors defined for series and resulting in series can be
applied to polynomials because the type Polynomial of n,L—which is
equal to finite-Support Series of n,L—widens to the type Series
of n,L. However, the return types of these functors are series and not
polynomials. We have to explicitly state that when performing operations
on polynomials we obtain polynomials, i.e. that the resulting series has
finite support. This problem is solved by employing functorial clusters, in
which exactly this is stated and proven, for example:
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definition
let n be Ordinal, L be right_zeroed (non empty LoopStr),

p, q be Polynomial of n,L;
cluster p + q -> finite-Support;
coherence

Prove that the result of adding two Polynomials has finite-Support.
end;

After the registration of this cluster, for p and q of type Polynomial of
n,L, the type of p + q is Polynomial of n,L and not only a Series
of n,L as given in the definition of addition. As a result of the clus-
ter above, the attribute finite-Support is added, leading to the type
finite-Support Series of n,L which by definition is a Polynomial
of n,L. The solution with functorial clusters is much more elegant than
a separate definition, or a redefinition, of addition for polynomials as we
inherit whatever we have proven about the addition of power series.

Putting it all together, we get the ring of polynomials over a structure
L as a doubleLoopStr, in which the single components are identified with
the corresponding operators just defined (note that the underlying struc-
ture L is not a full commutative ring). We only used attributes necessary
to ensure that the operators for polynomials resulted in a polynomial.

definition
let n be Ordinal,

L be right_zeroed add-associative right_complementable
unital distributive non trivial
(non empty doubleLoopStr);

func Polynom-Ring(n,L) -> strict non empty doubleLoopStr means
(for x being set
holds x ∈ the carrier of it iff x is Polynomial of n,L) &

(for x, y being Element of it, p, q being Polynomial of n,L
st x = p & y = q holds x + y = p + q) &

(for x, y being Element of it, p, q being Polynomial of n,L
st x = p & y = q holds x · y = p * q) &

0.(it) = 0_(n,L) &
1_(it) = 1_(n,L);

end;

0. and 1 are unary functors returning the Zero and the unity of the
structure, respectively. 0 (n,L) and 1 (n,L) as already mentioned denote
the zero and the unit polynomials, respectively. Note that the symbol +
is overloaded. On the left side it denotes the addition in the ring being
defined, on the right side the addition of polynomials. Roughly speaking,
it says that the addition in the ring of polynomials is just the addition of
polynomials. The same holds for the symbol 1 .

So far we have only defined an instance of a doubleLoopStr; nothing
has been said about the usual algebraic properties of a polynomial ring.
To constitute Polynom-Ring(n,L) as a ring, the necessary attributes are
introduced in cluster registrations. For some of the attributes, additional
properties of L are necessary. For example, it turns out that in order to
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prove the commutativity of polynomial multiplication, we also need the
addition of the underlying structure L to be commutative.

definition
let n be Ordinal,

L be right_zeroed Abelian add-associative
right_complementable distributive commutative
unital non trivial (non empty LoopStr);

cluster Polynom-Ring(n,L) -> commutative;
end;

Finally, to prove distributivity of Polynom-Ring(n,L) we had to use at-
tributes implying that L is a ring with a unit, but not necessarily a com-
mutative one.

definition
let n be Ordinal,

L be right_zeroed Abelian add-associative
right_complementable distributive associative
unital non trivial (non empty doubleLoopStr);

cluster Polynom-Ring (n,L) -> unital right-distributive;
end;

5. Evaluating Multivariate Polynomials

The next natural step is to consider the evaluation homomorphism of poly-
nomials into the underlying structure L (Schwarzweller, Trybulec, 2000).
In order to define an evaluation of polynomials as a function from the ring
of polynomials over L into L, it is not necessary for L to be a ring. How-
ever, in order to prove that the evaluation is a homomorphism, further
properties of L are necessary, namely that L is a non trivial commutative
ring with 1.

First, we resolve the problem of evaluating a power product b which is
a bag of n.

definition
let n be Ordinal, b be bag of n,

L be unital non trivial (non empty doubleLoopStr),
x be Function of n,L;

func eval(b,x) -> Element of the carrier of L means
ex y being FinSequence of the carrier of L st
len y = len SgmX(RelIncl n, support b) &
it = Π y &
for i being Nat st 1 <= i & i <= len y holds
y|.i = power(L).((x · SgmX(RelIncl n, support b))|.i,

(b · SgmX(RelIncl n, support b))|.i);
end;

The evaluation of the variables is given by a helper function x. To get
to the evaluation of the finitely many variables occurring with non-zero
exponents in b, the functor SgmX (Madras, 1996) is employed. This functor
takes a finite set (here the support of bag b) and a linear order for this
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set (here the inclusion on ordinals) and returns a finite sequence in which
the elements of the given set occur in increasing order. This sequence
is composed with x to get the finite sequence of values for the variables
and with b to get the corresponding finite sequence of exponents. The
exponentiation is then performed point-wise yielding a finite sequence y
of elements of L. The result of the evaluation of b with respect to x is
the product of the values of y. We get this product using the functor Π
which takes a finite sequence over a structure allowing for multiplication
and returns the product of the elements of the sequence (Trybulec, 1991).

The structure L has to meet two requirements: the existence of a unity,
because we use the functor power, and that it is not trivial (i.e. has
at least two elements). However, in order to prove that the evaluation
respects multiplication of power products, that is

eval(b1 + b2,x) = eval(b1,x) · eval(b2,x),

it turns out that L has to provide a commutative multiplication with a
left and a right unity. As this property is necessary to prove the proper-
ties of the evaluation of polynomials, it will follow that the evaluation of
polynomials is a homomorphism only if the underlying structure L is a
commutative ring with 1.

The definition of the evaluation of a polynomial is analogous to the
evaluation of power products:

definition
let n be Ordinal,

L be right_zeroed add-associative right_complementable
unital distributive non trivial
(non empty doubleLoopStr),

p be Polynomial of n,L, x be Function of n,L;
func eval(p,x) -> Element of the carrier of L means
ex y being FinSequence of the carrier of L
st len y = len SgmX(BagOrder n, Support p) &

it = Σ y &
for i being Nat st 1 <= i & i <= len y holds
y|.i = (p · SgmX(BagOrder n, Support p))|.i ·

eval(((SgmX(BagOrder n, Support p))|.i),x);
end;

The requirements on L in the above definition only ensure that eval is
a function, not that it is already a homomorphism. Consequently, the
next goal is to prove—with as modest additional requirements on L as
possible—that the functor eval is a homomorphism from the polynomial
ring over L into L.

We introduce a helper functor Polynom-Ring(n,L,x), taking an ordi-
nal number n denoting the variables, a structure L and a variable eval-
uation function x as parameters, and assigning to each polynomial p in
Polynom-Ring(n,L) the value of eval(p,x) from L.
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definition
let n be Ordinal,

L be right_zeroed add-associative right_complementable
unital distributive non trivial
(non empty doubleLoopStr),

x be Function of n,L;
func Polynom-Evaluation(n,L,x)

-> map of Polynom-Ring(n,L),L means
for p being Polynomial of n,L holds it.p = eval(p,x);

end;

Proving that Polynom-Evaluation is indeed a homomorphism needs ad-
ditional assumptions concerning L: all three properties of a ring homomor-
phism require the addition of L to be an Abelian group, the multiplication
of L to provide a left and a right unity, and the distributivity law. For the
compatibility of addition with polynomial evaluation these properties are
already sufficient, whereas to prove that polynomial evaluation preserves
the unity we need also the associativity of multiplication. Finally, to prove
that the evaluation of polynomials is compatible with the multiplication
of polynomials we have to assume that the multiplication of L is not only
associative but also commutative, hence that the underlying structure L
is a non trivial commutative ring with 1. Thus we ended up with the
following:

definition
let n be Ordinal,

L be Abelian right_zeroed add-associative
right_complementable well-unital distributive
commutative associative
non trivial (non empty doubleLoopStr),

x be Function of n,L;
cluster Polynom-Evaluation(n,L,x) -> RingHomomorphism;
end;

6. Ideals

From our point of view ideals are interesting for two reasons. First, they
are necessary to develop the theory of Gröbner bases, which was one of
our motivations for starting this work. Second, the theory of ideals is an
algebraic topic in its own right with many applications, hence a good topic
for further study of algebraic structures and their inheritance in Mizar.

We do not introduce ideals as subsets closed with respect to addition
and multiplication by arbitrary ring elements in one step (Backer et al.,
2000). Rather, we introduce each property separately as an attribute and
combine these attributes in a second step using cluster definitions. Note
that by doing so we not only get left and right ideals for free but in
addition, the fact that ideals are both left and right ideals is captured by
the Mizar checker without any further justification.

In order to define ideals we need to be able to say that a subset of a
structure (indeed of the structure carrier) is closed under addition and
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multiplication by structure elements. To say that a subset of a structure
is closed under addition does not require the structure to provide a mul-
tiplication. So the attribute add-closed can be defined for LoopStr.

definition
let L be non empty LoopStr,

F be Subset of L;
attr F is add-closed means
for x, y being Element of the carrier of L
st x ∈ F & y ∈ F holds x + y ∈ F;

end;

The attributes left-ideal and right-ideal expressing the fact that a
subset is closed under multiplication by structure elements are defined for
multLoopStr providing a multiplication only.

definition
let L be non empty multLoopStr,

F be Subset of L;
attr F is left-ideal means
for p, x being Element of the carrier of L
st x ∈ F holds p · x ∈ F

attr F is right-ideal means
for p, x being Element of the carrier of L
st x ∈ F holds x · p ∈ F

end;

The intended structures are then defined using existential clusters. The
proofs of existence are simple here; just take the whole structure L as the
required subset. Note that no algebraic properties of L are necessary for
the proofs; L only has to provide the operators for addition and multipli-
cation, hence must be a doubleLoopStr:

definition
let L be non empty doubleLoopStr;
cluster add-closed

left-ideal right-ideal (non empty Subset of L);
cluster add-closed left-ideal (non empty Subset of L);
cluster add-closed right-ideal (non empty Subset of L);
end;

As a matter of convenience we also introduce the modes LeftIdeal,
RightIdeal and Ideal. As should be clear from the previous sections,
this is not necessary. One could work with the appropriately attributed
Subset of L. In fact, we stated a couple of theorems in this way since it
turns out that they can be proven with weaker assumptions; for example,
to prove that 0 is an element of a subset I of L it suffices to assume I is
left-ideal (and some further attributes for L must hold) rather than a
full ideal.
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definition
let L be non empty doubleLoopStr;
mode Ideal of L is add-closed

left-ideal right-ideal (non empty Subset of L);
mode RightIdeal of L is add-closed

right-ideal (non empty Subset of L);
mode LeftIdeal of L is add-closed

left-ideal (non empty Subset of L);
end;

As we already mentioned these definitions imply that an ideal over L is
both a left and a right ideal over L simply because all three modes are
defined over the same structure mode L and the attributes of the latter
ones are a subset of the attributes that an ideal must have.

The fact that for commutative structures left and right ideals coincide
with two-sided ideals is captured in Mizar by the following conditional
clusters. Note that the Mizar verifier will now treat left and right ideals
in commutative structures as if they were ideals.

definition
let L be commutative (non empty doubleLoopStr);
cluster left-ideal -> right-ideal (non empty Subset of L);
cluster right-ideal -> left-ideal (non empty Subset of L);
end;

We stated and proved basic properties of (left, right) ideals, for exam-
ple that 0 ∈ I and that x - y ∈ I if x,y ∈ I for all (left, right) ideals
I, also that {0.R} and the carrier of R are always (left, right) ide-
als. The phrase “always” means here for all non empty doubleLoopStrs
fulfilling the attributes necessary to prove these theorems; namely, no fur-
ther attributes in the second case and the attributes add-associative,
right_zeroed, right_complementable and distributive in the first.

We introduced some operations on ideals such as the sum +, the inter-
section ∩, the product *, the quotient % of two ideals and the radical

√

of an ideal. When formalizing and proving basic properties of these oper-
ations we tried again to use as few attributes as possible; finding out, for
example, that in order to prove (I % J) % K = I % (J * K) it suffices
that only I is a right ideal whereas J and K are simply subsets of the
underlying structure L:

theorem
for R being left_zeroed add-right-cancelable right-distributive

commutative associative (non empty doubleLoopStr),
I being add-closed right-ideal (non empty Subset of R),
J, K being Subset of R

holds (I % J) % K = I % (J * K);

In order to prove the Hilbert basis theorem we also needed the notion of
(finitely) generated ideals. Here we only handle the case of ideals (gener-
ated left and right ideals can be found in (Backer et al., 2000)). The ideal
generated by a subset F of a structure L is the smallest ideal that con-
tains F which is directly expressed in the Mizar definition. Note that the
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following definition, like all definitions of functors, requires an existence
and uniqueness proof and that no algebraic properties of the structure L
are assumed.

definition
let L be non empty doubleLoopStr,

F be non empty Subset of L;
func F-Ideal -> Ideal of L means
F c= it & for I being Ideal of L st F c= I holds it c= I;

end;

Given this notion one can prove basic properties of generated ideals, for
example, the following well known fact about ideals with two generators.
Here we need rather strong assumptions about the underlying algebraic
structure L, namely that it is almost a commutative ring with unity (the
property add-cancelable is a bit weaker than having a right inverse with
respect to addition).

theorem
for R being Abelian left_zeroed right_zeroed add-cancelable

well-unital add-associative associative commutative
distributive (non empty doubleLoopStr),

a, b being Element of R holds
{a,b}-Ideal = {a · r + b · s where r, s is Element of R

: not contradiction};

Finitely generated ideals are ideals having a finite basis, that is they are
generated by a finite subset F of L, so we introduce the following definition
of the attribute finitely_generated.

definition
let L be non empty doubleLoopStr,

I be Ideal of L;
attr I is finitely_generated means
ex F being non empty finite Subset of the carrier of L
st I = F-Ideal;

end;

Developing the theory of ideals so far was straightforward due to the
mechanisms Mizar provides for constructing algebraic domains. As we
described, the inclusion of left and right ideals can be done in Mizar quite
elegantly. Also the case of non commutative rings can be handled in a
natural way. The theorems, usually formulated in text books for commu-
tative rings but which do not require commutativity of multiplication,
can be stated without the corresponding attribute commutative and thus
would be applicable to non commutative rings. Due to the inheritance
mechanism implemented in the Mizar system, these theorems can be ap-
plied for commutative rings as well. Our attempt to state theorems with
a minimal set of attributes often leads to algebraic structures not found
in the literature; for example, a “ring” in which addition does not provide
inverse elements as in the theorem above. Not only do we get interesting
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new insights into algebraic domains, but we also believe it supports reuse
of these theorems.

7. Hilbert Basis Theorem

The Mizar formalization of this theorem follows (Becker, Weispfenning,
1993), p. 145 where the theorem is formulated as:

Theorem 4.6 (Hilbert Basis Theorem) (AC) Let R be a noetherian
ring. Then the polynomial ring R[X] is again noetherian.

In the Mizar language (Backer, Rudnicki, 2000) the same is expressed
as follows (the symbol :: starts a comment that continues to the end of
the line):

theorem HBasis: :: Hilbert basis univariate
for R being Noetherian Abelian add-associative right_zeroed

right_complementable associative distributive
well-unital commutative (non empty doubleLoopStr)

holds Polynom-Ring R is Noetherian;

This theorem is first formulated about univariate polynomials which were
recently developed by R. Milewski (Milewski, 2000a,b,c). It turns out
that univariate polynomials are more conveniently handled using a sep-
arate and simpler framework than using multivariate polynomials with
one variable. Milewski used the simpler framework of algebraic sequences
introduced in (Muzalewski, Szczerba, 1991). We do not report on details
of Milewski’s work here but he has proven the fundamental theorem of
algebra, see (Milewski, 2000c). We are now working on the proof of the
corresponding fact for multivariate polynomials, i.e. the Hilbert Nullstel-
lensatz. For the multivariate case the Hilbert basis theorem is formulated
in Mizar (Backer, Rudnicki, 2000) as:

theorem
for R being Abelian add-associative right_zeroed

right_complementable associative distributive
well-unital non trivial commutative
(non empty doubleLoopStr)

st R is Noetherian
holds for n being Nat holds Polynom-Ring (n,R) is Noetherian;

This theorem in (Becker, Weispfenning, 1993), p. 145 is formulated as:

Corollary 4.7 If R is a noetherian ring, then R[X1, . . . , Xn] is again
noetherian for every n ≥ 1. In particular, K[X1, . . . , Xn] is noetherian if
K is a field.

The second part of this corollary has been stated in Mizar as a separate
theorem. Its proof is immediate as any field is Noetherian and the result
follows from the first part of the corollary.

The attribute Noetherian is defined in (Backer et al., 2000):
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definition
let L be non empty doubleLoopStr;
attr L is Noetherian means
for I being Ideal of L holds I is finitely_generated;

end;

Please note that the notion is definable for doubleLoopStr while (Becker,
Weispfenning, 1993), p. 144 do it for a ring:

Definition 4.4 A ring R is noetherian if every Ideal of R is finitely
generated.

Before embarking on the proof of the Hilbert basis theorem, we first
need to formalize the notion of a formal linear combination. This was
done for the multLoopStr, the smallest structure for which it is doable,
see (Backer et al., 2000):

definition
let R be non empty multLoopStr,

A be non empty Subset of the carrier of R;

mode LinearCombination of A ->
FinSequence of the carrier of R means

for i being set st i ∈ dom it
ex u, v being Element of R, a being Element of A
st it|.i = u · a · v;

mode LeftLinearCombination of A ->
FinSequence of the carrier of R means

for i being set st i ∈ dom it
ex u being Element of R, a being Element of A st it|.i = u · a;

mode RightLinearCombination of A ->
FinSequence of the carrier of R means

for i being set st i ∈ dom it
ex u being Element of R, a being Element of A st it|.i = a · u;
end;

(Of course, when we want to sum a linear combination we need a structure
that also provides an addition, i.e. a doubleLoopStr.)

We have actually needed only one type of linear combinations—as later
we are dealing with commutative structures—but we have also defined
the two sided linear combination that can be used in non-commutative
rings. Thus we ended up with three types of linear combinations. These
notions prompted a series of simple facts: there exist non empty linear
combinations, catenation of linear combinations is a linear combination,
multiplying a linear combination from the left or from the right results
in a linear combination of an appropriate kind, etc. For a while we hoped
that the above definitions were sufficient, but it turned out that at a
certain point we had to speak about a specific representation of a linear
combination. This has been handled with the helper predicate:
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definition
let R be non empty multLoopStr,

A be non empty Subset of the carrier of R,
L be LinearCombination of A,
E be FinSequence of

[:the carrier of R,the carrier of R,the carrier of R:];
pred E represents L means
len E = len L &
for i being set st i ∈ dom L holds
L.i = ((E|.i)‘1) · ((E|.i)‘2) · ((E|.i)‘3) & ((E|.i)‘2) ∈ A;

end;

([: ... :] denotes a Cartesian product while ‘1, ‘2 and ‘3 are projec-
tions.)

Analogous predicates have been introduced for the other linear com-
binations. This predicate has enabled us to formulate and prove what
happens to a linear combination under a map from a structure to a struc-
ture:

theorem
for R, S being non empty multLoopStr,

F being non empty Subset of the carrier of R,
lc being LinearCombination of F,
G being non empty Subset of the carrier of S,
P being Function of the carrier of R, the carrier of S,
E being FinSequence of
[:the carrier of R,the carrier of R,the carrier of R:]

st P◦F c= G & E represents lc
holds ex LC being LinearCombination of G

st len lc = len LC &
for i being set st i ∈ dom LC holds
LC.i = (P.(E|.i)‘1) · (P.(E|.i)‘2) · (P.(E|.i)‘3);

One may wonder why the linear combinations were not directly defined
through their specific representations. That was our original intention but
it seems that they are hardly ever needed.

The proof of the main theorem for the univariate case uses polynomials
as defined by (Milewski, 2000a,b). This seemed a justified solution as we
avoided the use of the heavier machinery of Bags needed for multivari-
ate polynomials. The Mizar proof of the theorem closely follows (Becker,
Weispfenning, 1993), p. 145, using the following lemma from p. 144:

Lemma 4.5 (AC) Let R be a ring and let I(R) be the set of all ideals
of R. Then the following are equivalent:
(i) R is noetherian.
(ii) For every B ⊆ R there exists a finite subset C of B with Id(C) =

Id(B).
(iii) Whenever {ai}i∈N is a sequence of elements of R, then there exists

m ∈ N with am+1 ∈ Id(a0, . . . , am).
(iv) There does not exist a strictly ascending ⊆-chain of ideals of R, i.e.,

a family {Ii}i∈N of ideals of R with Ij ⊆ Ik and Ij 6= Ik for j < k.
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In the Mizar language, theorems structured similarly to the lemma
above are stated as a sequence of implications: this is how they are usually
proven. In the proof (by contradiction) of the Hilbert basis theorem we
only needed the facts that (i) =⇒ (ii) and that (ii) =⇒ (iii) (but J. Backer
has proven all of them). The first two implications form the following two
Mizar theorems, see (Backer et al., 2000):

theorem :: Lemma_4_5_i_ii:
for R being Noetherian add-associative left_zeroed right_zeroed

add-cancelable associative distributive
well-unital (non empty doubleLoopStr)

for B being non empty Subset of the carrier of R
ex C being non empty finite Subset of the carrier of R
st C c= B & C-Ideal = B-Ideal;

theorem :: Lemma_4_5_ii_iii:
for R being (non empty doubleLoopStr)
st for B being non empty Subset of the carrier of R

ex C being non empty finite Subset of the carrier of R
st C c= B & C-Ideal = B-Ideal

for a being sequence of R
ex m being Nat st a.(m+1) ∈ (rng (a|Segm(m+1)))-Ideal;

In the course of proving the main theorem we needed to choose the poly-
nomials of minimal degree from a set of polynomials. This was achieved
with the helper functor minlen (we had to do some casting of types):

definition
let L be right_zeroed add-associative right_complementable

unital distributive (non empty doubleLoopStr),
I be non empty Subset of the carrier of Polynom-Ring L;

func minlen(I) -> non empty Subset of I equals
{ x where x is Element of I :

for x’, y’ being Polynomial of L
st x’ = x & y’ ∈ I holds len x’ <= len y’ };

end;

In Milewski’s treatment of univariate polynomials they are represented
as infinite sequences with a finite number of non-zero entries giving the
coefficients in increasing order of the exponents. The degree of such a
polynomial is the position where the last non-zero coefficient appears (this
is called the length of the sequence written len). The zero polynomial
has length 0, the constant non-zero polynomials have length 1, etc. which
slightly differs from the common definition of the degree of a polynomial.

The proof of the Hilbert basis theorem then follows the proof from
(Becker, Weispfenning, 1993), p. 145. The proof in the book is about
250 words long, the Mizar proof is about 4500 words long. This blow up
factor is not surprising as Mizar requires all algebraic manipulations to
be done at a low level and the proof involves many of them. The Mizar
proof probably could have been shorter if it were re-edited having just
its length in mind. However, once the proof is completed, there is little
incentive to beautify it.
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As far as the length of Mizar texts goes, we found a bigger surprise
proving the basis theorem for multivariate polynomials. In (Becker, Weis-
pfenning, 1993), p. 145 the proof of Corollary 4.7 is just:

Proof The proof is by induction on n. If n = 1, then the claim is identical
with the Hilbert basis theorem as stated above. If n > 1, it follows from

R[X1, . . . , Xn] = R[X1, . . . , Xn−1][Xn]

together with the induction hypothesis.

However, the hint given by the authors is discussed over pages 73–74
with references to a number of earlier lemmas (with simple but tedious
proofs). We needed to formalize all this material. The Mizar proof is also
by induction on n. Strictly speaking the equality mentioned above does
not hold in our treatment of polynomials but the rings are isomorphic
and the Mizar proof is slightly different. Let us first observe that if two
structures are isomorphic and one is Noetherian then the other is too:

theorem ISO3:
for R, S being Abelian add-associative right_zeroed associative

right_complementable distributive well-unital
(non empty doubleLoopStr),

P being map of R,S
st P is RingIsomorphism & R is Noetherian holds S is Noetherian;

We start the induction at 0 with the help of:

theorem ISO4:
for R being add-associative right_zeroed associative

right_complementable distributive well-unital
non trivial (non empty doubleLoopStr)

holds ex P being map of R, Polynom-Ring (0,R)
st P is RingIsomorphism;

that is we show that R is isomorphic with the ring of multivariate poly-
nomials over R with no variables. Next we show that:

theorem ISO5:
for R being Abelian add-associative right_zeroed

right_complementable associative distributive
well-unital commutative non trivial
(non empty doubleLoopStr),

n being Nat
ex P being map of Polynom-Ring(Polynom-Ring(n,R)),

Polynom-Ring(n+1,R)
st P is RingIsomorphism;

The proofs of these facts, although simple, are indeed tedious as they
require a construction of isomorphisms. With these facts in hand the
proof of the Hilbert basis theorem easily follows by induction. We have
the base case. The basis theorem for univariate polynomials gives us
the inductive step since when Polynom-Ring(n,R) is Noetherian then
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so is Polynom-Ring(Polynom-Ring(n,R)); the latter is isomorphic to
Polynom-Ring(n+1,R) which thus is also Noetherian. Here is the com-
plete proof:

theorem :: Hilbert basis for multivariate
for R being Abelian add-associative right_zeroed

associative right_complementable distributive
well-unital non trivial commutative
(non empty doubleLoopStr)

st R is Noetherian
for n being Nat holds Polynom-Ring(n,R) is Noetherian
proof
let R be Abelian add-associative right_zeroed

associative right_complementable distributive
well-unital non trivial commutative
(non empty doubleLoopStr);

assume
A: R is Noetherian;

consider P being map of R, Polynom-Ring(0,R) such that
B: P is RingIsomorphism by ISO4;
Base: Polynom-Ring(0,R) is Noetherian by A, B, ISO3;
Step: now let k be Nat such that

X: Polynom-Ring(k,R) is Noetherian;
consider P being

map of Polynom-Ring(Polynom-Ring(k,R)),
Polynom-Ring(k+1,R) such that

Y: P is RingIsomorphism by ISO5;
Polynom-Ring(Polynom-Ring(k,R)) is Noetherian

by X, HBasis;
hence Polynom-Ring(k+1,R) is Noetherian by Y, ISO3;
end;

thus thesis from Ind(Base, Step);
end;

The proof itself is short but proofs of all the helper lemmas occupy 1700
lines of Mizar text and are mainly due to J. Backer (Backer, Rudnicki,
2000). It would be hard to compare the length of the Mizar proof with the
corresponding proof from (Becker, Weispfenning, 1993), as the relevant
material in the latter is spread over many pages.

To conclude our development we proved the following:

theorem
for R being Abelian right_zeroed add-associative

right_complementable associative distributive
well-unital commutative non trivial
(non empty doubleLoopStr),

X being infinite Ordinal
holds Polynom-Ring(X,R) is non Noetherian;

That is, a polynomial ring with infinitely many variables has ideals that
are not finitely generated. The proof is by contradiction using an evalu-
ation that assigns unity to one of the variables which does not occur in
the finite basis and zero to all remaining ones.
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8. Library Revisions

When starting to define polynomials, we wanted to keep the number of
new definitions as small as possible. Hence we examined the MML to find
concepts that we could use. Several problems occurred.

To begin, we found out (not for the first time) that many basic theorems
were missing. For example, the functor Σ sums up elements of a finite
sequence; it is clear that if all but one particular element equal zero, the
sum is this element. This theorem had not been proven before.

It happens frequently that a Mizar author introduces a concept for a too
specific structure, which limits the reuse of theorems about the concept.
For example, the functor power, for exponentiation with natural numbers,
was defined for groups, whereas we wanted to use it in a structure provid-
ing only unity. Of course, one can define the functor again for the more
general case, but this does not seem appropriate in a library. The solution
is to revise the MML, that means generalizing the original definition and
reformulating the theorems concerning this concept. Sometimes it turns
out that the proof of a theorem actually does not use all properties of the
structure it is about and thus the theorem can be generalized.

On the one hand this problem seems natural. For example, if one is
writing an article about groups in which one needs a functor—and one
does not find it in the MML—one simply defines it. Why should one think
about more general solutions if it works well for the theorems intended
to prove? In addition, it is rather hard, if even possible, to estimate how
general a definition should be in order to provide optimal benefit for future
users of MML. On the other hand, while proving theorems about the new
concept, one usually observes which properties of the underlying structure
are necessary to prove it and which are not. The correctness proof of the
power functor, for example, did not use all the properties of a group. The
same holds for defining formal power series and polynomials: we first did
this for polynomials with a finite number of variables, before we realized
that we had already developed all the machinery for constructing power
series in arbitrary number of variables.

Another point connected with this problem is that sometimes it may
be better not to be as general as possible. For example, although one can
build the theory of polynomials in one variable out of our approach by us-
ing Polynomial-Ring(1,R), this seems not to be the best solution. Doing
so would require R to be a commutative and associative ring, just because
these properties were necessary to prove the evaluation of polynomials to
be a homomorphism in the general case. It seems that for polynomials
with one variable, this property can be established with weaker assump-
tions on R. So the question remains: how much generalization is best?

Also, in some cases genericness does not lead to one general theory
including well-known ones as instances, but rather splits up the theory
by duplicating theorems. By duplication we mean that the same alge-
braic theorem can be proven in more than one way by assuming that
different attributes hold for the underlying structure mode. We illustrate
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this phenomenon with an example from (Schwarzweller, 2000): elements
of algebraic structures providing an addition can be multiplied with nat-
ural numbers—n · a standing for a + (a + (. . . (a + a) . . .) and a · n for
(. . . (a+a)+a) . . .)+a)+a—however in non associative structures n·a and
a·n are not necessarily the same. Consequently, one starts with two defini-
tions of this kind of multiplication, one for the left- and one for the right-
multiplication. Now, if addition is associative (and 0 · a = 0 = a · 0 holds,
that is the underlying structure is both left_zeroed and right_zeroed)
these two definitions coincide, that is

theorem
for L being left_zeroed right_zeroed associative

(non empty LoopStr),
a being Element of L, n being Nat

holds n · a = a · n;

It turns out that one can prove the same theorem for non associative
structures, if one assumes that addition commutes, so:

theorem
for L being Abelian (non empty LoopStr),

a being Element of L, n being Nat
holds n · a = a · n;

The next question is what to do if the property n · a = a · n is needed in
another proof: there is a choice of taking an associative or a non associative
structure, leading to different proofs, and hence again to two theorems. It
is hard to estimate which theorem will be more important for future work,
so both seem to deserve their place in the library. However, storing two
or more versions of the same theorem will ultimately inflate the library.

9. Related Work

An interesting and ambitious project named Theorema (Buchberger et
al., 1997) aims at extending current computer algebra systems towards
supporting mathematical proofs and is built around the Mathematica soft-
ware. At the time of this writing only a restricted prototype implementa-
tion was available.

Paul Jackson, in his PhD work (Jackson, 1995), explored the Nuprl
proof development system applying it to computational abstract algebra
with the plan of introducing the absolute notion of mathematical rigor into
the computer algebra systems. Jackson got as far as the theory of monoids
and polynomials. The hopes were to make the Nuprl proof checker inter-
act with the Weyl computer algebra system by extracting computational
contents from constructive Nuprl proofs. However, the work has not been
continued since 1995.

Coquand and Persson (Coquand, Persson, 1998) initiated a larger scale
project in order to develop computational algebra completely with Mar-
tin-Löf’s type theory. They advocate the use of the so called internal
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or integrated methods of algorithm development where an algorithm is
extracted from a constructive existence proof. Thus, they hope that from
an abstract proof of Gröbner basis existence one can extract an algorithm
for computing it. Their work is in progress but they already express fears
that the extracted algorithms may have high complexity.

Buchberger’s algorithm for computing Gröbner basis has been formal-
ized in (Théry, 2001) using the Coq proof assistant. Théry’s development
is essentially external, as he first defines the Buchberger’s algorithm and
then proves its correctness. For any algorithm defined in Coq, there is a
possibility to extract an implementation of the algorithm in Ocaml. Théry
investigated a number of variants of the Buchberger algorithm and the
optimized version performed well in comparison to Maple.

The group of H. Barendregt, also using the Coq proof assistant, for-
mally proved the fundamental theorem of algebra (Geuvers et al., 2000)
following the “Kneser” proof based on iteration of roots. In order to do so,
many basic algebraic domains—among them ordered fields—have been
constructed. In the proof of the theorem, the real numbers are treated
axiomatically, that is, every representation of the constructive real num-
bers can be used. In Mizar, the fundamental theorem of algebra has been
proven for a particular representation of the complex numbers (Milewski,
2000c). In order to change the representation here, the user has to provide
a proof that the new one is isomorphic to the complex numbers already
defined.

In the area of computer algebra there has been work on libraries of
algebraic structures. The AXIOM system (Jenks, Sutor, 1992), for in-
stance, provides the user with a large number of predefined algebraic
domains—called categories—such as Abelian groups, commutative rings
or more involved ones such as unique factorization domains and fields with
prime characteristics. Categories can extend previously defined ones; cat-
egories form a hierarchy. As a consequence operations are exported from
the “lower” categories to the “higher” ones, thus enabling reuse of algo-
rithms. However, properties of the categories such as commutativity of
an operator, apply as comments only. Therefore, whether it is legal for
a special algebraic domain to belong to a particular category cannot be
checked within the system.

10. Conclusions and Future Plans

In this paper we described the construction of formal multivariate power
series and polynomials as well as the initial development of the theory of
ideals in the Mizar system. The main concern was to present the possibili-
ties that Mizar offers in building algebraic structures: Mizar’s mechanisms
allow selective control over properties of algebraic domains when stating
and proving theorems. Although Mizar’s possibilities are elegant and in-
clude inheritance in the usual mathematical style, library revisions were
necessary during our work. It seems to us that revisions cannot be avoided
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during the development of a library for formalized mathematics and only
heavy usage can indicate the direction of needed changes.

We plan to go on with our work on polynomials. Among other goals we
would like to get more insight into dealing with inheritance in algebraic
structures. We want to investigate how applications of our general theory
of polynomials can be continued. One of the goals is to develop a theory of
polynomials over finite fields—as used in coding theory—thus to restrict
the underlying structure of a polynomial ring. As mentioned before, the
theory of one-variable polynomials has been developed separately with-
out using the framework of multivariate polynomials: it turns out to be
more convenient, although it could have been done using our approach.
This may serve as a case study concerning the question of what level of
generalization is best.

One of the specific plans for the future is to work towards the theory of
Gröbner bases and Buchberger-like algorithms. We have already collected
some experience in reasoning about computations in Mizar, see the series
about SCM and its derivatives in MML (Nakamura, Trybulec, 1992). We
favor the so-called external method, where the algorithm is given and
the proof of its correctness is given separately, in particular we prefer
the algorithm to be described as a program for an abstract machine.
In this way the algorithm is accessible as a mathematical object that
can be studied from any viewpoint and this facilitates reasoning about
the resources like time and space consumed by the algorithm. With this
approach, it is irrelevant whether the proof is constructive or not, or
what were the mathematical tools used in proving the correctness of the
algorithm (was the axiom of choice used or not). Most of the algorithms
in computer algebra and their proofs were prepared using this external
method. Mizar can provide an environment in which these algorithms and
any new ones can be proven formally.

In contrast, the prevailing approach in systems based on type theo-
ries consists of extracting a program from a constructive proof through
the internal or the integrated method (Coquand, Persson, 1998). It is an
attractive alternative, albeit to the best of our knowledge renders the
reasoning about resources difficult if not virtually impossible.

Our overall approach is slightly different than that of others: we are
aiming at a general case, including non-commutative structures. For that,
it seems reasonable to extend the theory of ideals developed so far. This
is an algebraic topic with many applications and its development could
shed some light on the problems we discussed here.
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