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Chapter 1

Introduction

One of the main purpose of computer science is to develop software. Or,
to be more precise, to design and develop methods, programming languages,
tools, and software that support application programmers in developing their
software. Today’s goals of software construction, however, are not restricted
to realizing a particular behaviour efficiently. Of course the development of
efficient algorithms is still and will stay one prevailing goal, but there are
other aspects obtaining more and more importance if high-quality software
is striven for [Som01, Mey97]. First, of course, correctness of software is
always a subject matter. Due to software employed in safety-critical appli-
cations, the desire for doubtless demonstration of correctness has grown over
the last decades. Second, software should be developed so that it can be
easily adapted and, hence, used for a number of applications. This prevents
users from rewriting large parts of a software, or even writing new software,
if another, related application is to be realized. Along with this goes the
development and the supply of software libraries. A programming language
for which commensurable libraries exist is much more convenient for users.
They can fall back on the software contained in a library and need not de-
velop their software completely from scratch. In this sense special purpose
libraries such for example for sorting and searching or graph algorithms are
of particular interest. Both can be seen in the context of reusability of soft-
ware or program code. A last point we like to mention in some sense is also
connected with reusing software. The intention that a piece software is to
be applied and refined by a number of different users should be taken into
account. In other words using the software should be as clear and easy as
possible. This calls for the design of appropriate interfaces for accessing the
software and algorithms. Because users often come with strongly varying
prerequisites this can lead, in the extreme, to different interfaces for different
kinds of users.
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6 CHAPTER 1. INTRODUCTION

Generic programming [JLM00, MDS01, BJJM99] is a growing area that
aims at developing high-quality reusable software and software libraries, thus
addresses the above mentioned issues. The overall goal of generic program-
ming is to provide methods that allow ”to express algorithms and data struc-
tures in a broadly adaptable, interoperable form that allows their direct use in
software construction” [JLM00]. To achieve this goal generic programming
introduces new abstractions: the main observation is that an algorithm’s
method is often independent of the data structure or its representation being
used. An easy example are sequence algorithms; here it does not matter
which kind of objects is stored and, to some extent, not even how sequences
are represented. Thus generalized algorithms should be provided abstracting
from these details and allowing to plug in different data structures, repre-
sentations or even algorithms. Then the user can fill in the abstract parts
according to his needs, in this way adapting and reusing the generic software.

However, it is obviously not completely arbitrary what can be plugged
in. Sorting algorithms for example expect that the elements of a sequence
can be compared. This leads to the notion of requirements [MSL00]: the
code plugged in must come with a number of properties so that the result-
ing algorithm works properly. In addition, as mentioned above, users should
be equipped with efficient algorithms. This raises the question of how far
algorithms should be generalized. Often it is possible to ”overgeneralize” an
algorithm. For example, searching in sequences can be done if the elements
can be accessed one after the other only. However, efficient searching, in par-
ticular binary searching, needs to access element in the middle of a sequence
quickly. Thus in some sense there are two contradicting demands for generic
programming: on the one hand algorithms should be generalized as much
as possible, that is come with rather weak requirements, so that they are
applicable for a wide range of situations. On the other hand the resulting
algorithms when instantiated by the user should still be efficient which calls
for rather strong requirements ruling out non-efficient solutions. As a conse-
quence developing and using generic algorithms appropriately requires deep
inside into the algorithms’ underlying methods.

The application of formal methods, that is the use of languages, methods
and tools based on rigorous mathematical semantics, in software develop-
ment has a long tradition. Since the seminal papers [GTWW77] on algebraic
specification of data types and [Hoa69] on program correctness the benefits
of formal specification and verification have been recognized and numerous
languages and tools have been developed using elements from logic, model
theory, universal algebra, and category theory [EM85, AKK99, LS87]. A for-
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mal specification is a precise mathematically-based description of a system’s
behaviour. This not only aids in implementing a system, for example by refin-
ing the specification towards a program. Formal specification also supports
prototyping for early testing of a system’s behaviour as well as communi-
cation with non-expert customers. In addition, a mathematical description
allows to formally prove properties of software; though time-consuming and
most often not performed, a complete verification of software is possible in
principle. Nevertheless trying to prove correctness can help in finding subtle
errors in a software at an early stage. This goes along with the development
of high-performance mechanized reasoning systems [Rob01], that is theorem
provers and proof checkers. These allow to express and prove necessary theo-
rems with machine assistance, in this way automating the process to a certain
extent. Thus formal methods are a means of supporting the development of
more reliable software and software systems, despite the growing complexity
of software construction.

Consequently, it seems appropriate to apply formal methods to generic
programming in order to enhance reliability of generic algorithms and li-
braries. Correctness of generic algorithms should be formally specified and
verified. Here, correctness is understood in a broad sense: it means validity
of various properties of generic algorithms and their instances. Note that
in general validity of properties depends on the requirements attached to a
generic algorithm. In addition, in the field of generic programming the user
himself has to deal with some kind of correctness also: the question whether
an instantiation is legal for a generic algorithm, that is whether it fulfills the
requirements attached, cannot be answered in advance, especially if users
themselves provide code to be plugged in. Thus formal requirements and
their applications should be made visible to users in order to support them
in applying generic algorithms correctly and efficiently.

This thesis aims at inspecting the field of generic programming with re-
spect to both existing and possible future methods and tools supporting for-
mal specification and verification in this area. As mentioned above generic
programming introduces new abstractions; thus formal methods are of in-
terest to safely handle the development and the application of generic algo-
rithms. Due to the level of abstraction generic algorithms come with two
different facets can be identified. First formal methods and tools for the
verification of generic algorithms are of interest. This means proving that if
an instance comes with the properties required by a generic algorithm, the
resulting instance meets the algorithm’s specification. Note however that
generic algorithms are usually written for a (possibly infinite) number of ap-
plications which actually rules out testing as a ”verification method”. This
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should be reflected in the specification and verification process, that is generic
algorithms should be verified for all these applications at once, independent
of the particular case in which they are applied. This leads to the question
of what requirements are necessary in order that a generic algorithm works
correctly for a class of instantiations and how this can be expressed in a for-
mal manner. Second, using generic algorithms can lead to errors even if the
algorithm is correct: the intended application may not fall into the ones the
generic algorithm can handle correctly. Formal support should also be given
to check whether a generic algorithm is applicable in a particular situation
and, the other way round, information should be provided to the user if a
generic algorithm is not applicable. Thus in generic programming formal
methods not only aid in developing correct algorithms provided for the user,
but also supports him in correctly applying generic algorithms.

The thesis is organized as follows. In chapter 2 we give an introduction to
the field of generic programming. We discuss the ideas and goals of the field
and how they contribute to the problems of software development mentioned
above. Then we present different facets of generic programming found in the
literature focussing on features of programming languages such as overload-
ing and polymorphism. Afterwards we give an overview of techniques for
generic programming that can be found in recent programming languages
such as e.g. C++ or Haskell. Then we discuss the necessities and possibili-
ties of generic programming in the area of computer algebra. We show that
the demands on generic programming are much more involved in this area,
in particular semantic properties of the operations involved have to be taken
into account. This is due to mathematical results, both definitions and theo-
rems, the development of algebraic algorithms is based on. This leads to the
observation that generic algorithms come with both syntactical and semantic
requirements on possible instantiations.

Much effort has been spent over the last years to develop libraries with
a high degree of reusability, most of them based on the programming lan-
guage C++ using new techniques such as for example template parameters.
Therefore chapter 3 is devoted to libraries of generic algorithms. The ul-
timate goal of a library is to provide the user with support for developing
algorithms and applications. Thus it is quite natural to use generic algo-
rithms because they offer a high degree of reusability. On the other hand
due to the requirements generic algorithms come with using the algorithms is
more error-prone than in conventional libraries. Thus a well-designed generic
library should also come with support to apply and instantiate generic al-
gorithms contained. We present some existing C++ libraries—the Standard
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Template Library, excerpts from the Boost Library, the Loki Library, and
the GILF Library—and demonstrate to what extent they use and support
the paradigms of generic programming according to chapter 2. Thereby we
particularly address the role of a library user.

How semantic requirements can be adequately represented for the pur-
pose of generic programming is the topic of chapter 4. We start with a
rationale that the description of generic requirements corresponds to consid-
ering a set of operations together with associated requirements as an algebra.
A natural starting point to describe such requirements thus is the use of al-
gebraic specification languages allowing to exactly state domains and their
properties, which are then briefly reviewed. However, generic programming
not only calls for such an exact representation of requirements, but also for
using them in order to check for valid instantiation. This has been adopted in
the concept description language Tecton, in which classes of algebras, called
concepts, are specified heavily reusing already existing concept descriptions.
Finally we present an approach focussing on the properties of operations,
which is therefore well-suited to support checking of generic instantiation.
The last section deals with algorithmic requirements, that is with proper-
ties of algorithms not concerning their correctness. The need to specify such
requirements, too, is discussed and examples how this could be done are
given.

The main outcome of a formal specification is the possibility to employ
provers or proof checkers to verify properties of specifications and their con-
nected algorithms. Therefore we investigate in chapter 5 mechanized reason-
ing systems with respect to their possibilities to support generic programming
based on properties. We briefly discuss particular characteristics mechanized
reasoning systems should meet in order to support generic programming.
We in particular take into account the use of the corresponding libraries and
the profile of users being more interested in applying theorems for generic
programming than in theorem proving itself. Four mechanized reasoning
systems—Imps, Mizar, PVS, and Theorema—are considered in detail.

Finally, Chapter 6 presents some applications of the properties-based ap-
proach in different areas of generic programming including type checking,
verification of generic algorithms and the design of libraries. First, the ideas
of chapter 4 are generalized so that, instead of simply checking for inclusion
of properties, sets of properties can be deduced. For this a small calcu-
lus based on a rule set incorporating knowledge of the application domain
is presented. Then generic type checking is discussed in detail: a small
programming language is described allowing to state semantic properties of
generic type parameters. This allows to check the legality of instantiations
based on the calculus just mentioned. The verification of generic algorithms
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shows that every instantiation fulfilling requirements attached to the algo-
rithm is legal. Thereby the properties-based approach enables to relax these
requirements in a flexible way. We present a case study on Euclid’s algorithm
for computing greatest common divisors. Finally we briefly explain how the
properties-based approach supports not only type checking of generic algo-
rithms, but also the design of libraries, for instance mathematical libraries,
by allocating them a more active role in maintaining knowledge. This is
achieved by representing knowledge not with respect to domains but based
on properties. Then again deduction takes place in order to validate theo-
rems for particular domains.



Chapter 2

Generic Programming

In this chapter we give an introduction to the field of generic programming.
We briefly outline the main ideas and goals of this field and give an overview
of the techniques for generic programming and their realization in today’s
programming languages. This includes basic techniques like for example
overloading and type coercion as well as more involved ones like (bounded)
polymorphism. The inspection of genericity in the area of computer algebra
finally leads to the emphasizing of semantic requirements of generic algo-
rithms and their instantiations as a major concern of generic programming.

2.1 Overview

Generic programming is a discipline of computer science that aims at devel-
oping methods to write and organize algorithms that are broadly adaptable
and interoperable, thus allowing for a maximum of reuse. The main obser-
vation is that most algorithms contain parts that are not specific for the be-
haviour of the algorithm. In other words, the algorithm’s underlying method
works well for a whole class of specializations, which means that a generic
algorithm essentially works for a number of different types of its arguments.
For example, sorting a sequence of elements does not depend on whether
integers or real numbers or even characters are sorted. Similarly, the way
a sequence of elements is stored is of no effect to the method implemented
in sorting algorithms, and even the specific order a sorting algorithm works
with can be seen as a non-necessary detail of sorting a sequence of elements.
Therefore, generic programming introduces another level of abstraction into
programming: compared with ordinary algorithms generic algorithms are
much more abstract, they only include what is an essential ingredient of the

11
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algorithm’s underlying method leaving the rest to be completed later. Thus
generic algorithms can be considered as algorithm schemes. Then a generic
algorithm should work for every instantiation, that is for every completion
of the scheme. This means in particular that a great part of program code
can be reused for different types.

The identification of these generic parts leads to the expression of algo-
rithms with minimal assumptions about data abstractions: generic program-
ming deals with finding abstract representations of algorithms with respect
to minimal requirements that make such an algorithm work. This includes
in particular requirements a possible instantiation has to meet in order to be
considered legal. Therefore generic programming is also called requirement
oriented programming [MSL00].

Requirements of generic algorithms can serve different purposes. Though
requirements of course have to ensure the correctness of a generic algorithm
and its instances, there are other matters to bear in mind. Consideration of
efficiency is a major concern of generic programming. Providing an algorithm
that can be correctly used for a large class of specializations is only one side:
inside such a class there may be special cases allowing for more efficient
solutions. It is not desirable to bring in general application at the expense
of an efficiency loss. Different algorithms should be provided for these cases,
that is generic programming has to deal with the fact that there may be more
than one algorithm to solve a problem. Consider the problem of searching
an element in a sequence. Though it is possible to obey the same generic
algorithm for unsorted and sorted sequences, this is not appropriate. The
additional knowledge that a sequence is sorted leads to a much better way of
searching. Therefore requirements for generic algorithms have to be carefully
identified so that the efficiency of a method is kept. This means that different
generic algorithms should be made available, if a problem can be solved more
efficiently in some special cases.

Putting it the other way round: starting with well-known non-generic
algorithms a goal of generic programming is to lift these algorithms, that is
to identify the class for which the method of the algorithm works [Sch96].
This essentially includes paying attention to whether during generalization
the properties responsible for the efficiency of the non-generic algorithm are
not lost.

These considerations pose new problems and questions: requirements
have to be identified and represented in order to make clear for which class
of specialization a generic algorithm is suited. Also, if a generic algorithm
is to be instantiated, the question is whether the actual instantiation meets
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the requirements connected with the algorithm. Note again that this need
not be restricted to the correctness of the instance, but also may concern its
efficiency. On the other hand, given an instantiation the question is which
generic algorithm should be chosen to solve a particular problem for which
there is more than one algorithm available. Note that this in fact implies that
there may be not only different generic algorithms for the same problem, but
also generic algorithms bearing the same name. Then based on properties
the instantiation obeys a decision has to be made. And, last but not least,
all this should be organized in forms of generic libraries, so that users are
supported when using generic algorithms.

In the literature the term generic programming has been used in a number
of different meanings, programming with generic parameters, programming
with polymorphic functions, programming with parameterized components,
programming by abstraction, or programming with requirements, to name
a few. In the rest of this chapter we discuss some of these techniques and
clarify how they contribute to our view of generic programming. Genericity
in computer algebra is also treated as the problems occurring there are the
main motivation of this work.

2.2 Overloading and Polymorphism

The goals generic programming is based on are by no means new. Also tech-
niques enabling current programming languages to handle aspects of generic
programming were introduced decades ago. Especially the idea that the same
algorithm can work for different types of its arguments was already addressed
in the late 1960s. This phenomenon is called polymorphism and is in fact the
basis of generic programming. In this section we give a short overview of the
most important occurrences of polymorphism that can be found in the lit-
erature and discuss their impact on generic programming. Thereby a major
point of concern is the question of whether the same program code can be
used for different types.

Strachey [Str67] already distinguished between two cases of polymor-
phism. First, an algorithm can work on different types though the behaviour
of the algorithm for these different types is not related at all. This means
in particular that the code realizing the different variants of the function
may be completely different, hence not the same code is used for different
types. Strachey refers to this kind of polymorphism as ad-hoc polymorphism.
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Today we would rather call it overloading as described below. Ad-hoc poly-
morphism or overloading is in fact a pure syntactic criterion: the same name
is used for different algorithms with different argument types. Renaming
the function for each combination of argument types allows to eliminate the
polymorphism completely and this is what compilers internally usually do.

The second kind of polymorphism, called parametric polymorphism in
[Str67], appears when an algorithm uniformly behaves on a range of types.
Here the idea is that the algorithm actually does the same on all types in this
range, except for some details from which can be abstracted away, nowadays
usually by employing a type parameter. The name parametric polymorphism
stems from the fact that already Strachey thought of type parameters—
though in [Str67] he did not use this phrase—which he illustrated with a
polymorphic mapping function for lists of arbitrary element type.

In some sense parametric polymorphism is a better way of generic pro-
gramming as the same code is used to work with different types. Note that, in
principle, parametric polymorphism works for infinitely many cases: because
a parametric function does the same work independent of its arguments’
types, the same code can be used together with code connected to the pa-
rameter. In contrast ad-hoc polymorphism is restricted to finitely many
cases: each time an additional meaning is given to the algorithm, the com-
plete code realizing this meaning has to be provided. Nevertheless ad-hoc
polymorphism is important for generic programming as it allows to deal with
the fact that one has usually more than one algorithm realizing a given func-
tion.

The view on polymorphism has been further refined by Cardelli and Weg-
ner [CW85]. They split both ad-hoc polymorphism and parametric poly-
morphism as mentioned above into two facets. According to [CW85] ad-hoc
polymorphism comes in two occurrences. Overloading corresponds to what
Strachey called ad-hoc polymorphism: the same name is used to denote dif-
ferent algorithms and the context, that is the arguments’ types, decides what
algorithm is applied. Thereby the code for each variant of the algorithm is
completely separated from the others. For example, + can denote the addi-
tion of integers and real numbers and the conjunction of boolean values as
well as the concatenation of strings.

The second kind of ad-hoc polymorphism is coercion. Coercion means
that the type of a given argument is transformed into a type fitting to the
argument type of an algorithm, that is arguments may have more than one
type. In other words, not the algorithm works on different types, but the
arguments may have more than one type, one of which must match the
argument type of the algorithm. Thus coercion allows the user to omit type
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conversions necessary to apply a function with fixed argument types.
Both overloading and coercion do not affect the way an algorithm is im-

plemented. In both cases the code of the algorithm itself is not reusable for
different types: for overloading different pieces of code get the same name,
which as already mentioned above is a purely syntactical phenomenon. Co-
ercion, in contrast, is a semantic operation: the type of an argument is con-
verted, which clearly is not possible for each pair of types. However, when
coercion takes place, always the same code for the function is executed, the
arguments are transformed so that they fit to the given code. So, here we
have no code working for more than one type, thus it is reasonable to subsume
them as ad-hoc polymorphism as done in [CW85].

Though overloading and coercion do not support reusable code for differ-
ent types directly, they, nevertheless, are necessary for generic programming
languages. Consider for example the addition of numbers, where numbers
may be of type integers and of type real. Then, all of the following four
expressions should be legal.

3 + 4
3.0 + 4
3 + 4.0
3.0 + 4.0

There are several possibilities to do so: pure overloading for each of the four
cases, pure coercion implementing addition for the real numbers only or a
mixture of coercion and overloading where addition is overloaded for integers
and real numbers and the other cases are handled via coercion to the real
number case. This has been already pointed out in [CW85] and overloading
and coercion are rather obvious features of today’s programming languages.
From the view of generic programming the key point is that there may be
several algorithms for the same operation, addition of numbers in the exam-
ple. This gives the possibility to provide more efficient algorithms if more
knowledge of the parameters is present without explicitly stating which one
is used. In our example though, if coercion is present, having only one algo-
rithm for addition of real numbers is enough to handle addition of integers
and real numbers, a pure integer addition algorithm is probably more ef-
ficient and should therefore be used. This is one essential goal of generic
programming and would not be possible without overloading.

The second category of polymorphism presented in [CW85] is univer-
sal polymorphism, which allows to provide code working for more than one
type of arguments. It includes parametric polymorphism as explained above:
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parametric polymorphism occurs when an algorithm has an explicit or im-
plicit type parameter. Here, the same code is executed for each application
given by a realization of the type parameter. In other words, the same code
can be applied to a number of types without changes such as e.g. coercions.
Typical examples are lists, trees or vectors over arbitrary element type, that
is containers for arbitrary elements. We will see in the next section how this
idea has been adopted and extended for the design of the Standard Template
Library [MDS01].

The other kind of universal polymorphism is inclusion polymorphism.
Here, similar to coercion, arguments may have different types. However,
these types need not be disjoint, so that in contrast to coercion types they
do not have to be transformed. Consequently, the same code can be used for
different types, which is the reason for considering inclusion polymorphism as
a special case of universal polymorphism. Inclusion polymorphism is typical
for object-oriented languages. Here, elements of a subclass can be used as
arguments for functions defined in the superclass. This means, that a func-
tion can be called not only with arguments having the given type, but also
with all elements having a subtype of this type without any transformation.
Therefore inclusion polymorphism is sometimes also called subtype polymor-
phism [CE00].

Parametric polymorphism is often identified with generic programming;
in fact the term generic function is used in [CW85] for functions exhibiting
parametric polymorphism. However, our point of view is somewhat different:
generic programming aims at providing algorithms in a more general form
that allows to apply them to a wider range of applications. Parametric poly-
morphism is one technique that can be used to do so. However, other kinds
of polymorphism as indicated by the examples given above also contribute
to achieve the goals of generic programming.

In particular, subtype polymorphism allows to provide different algo-
rithms for the same polymorphic function: consider for example polygons
and their specialization rectangles. An algorithm for computing the perime-
ter of polygons can be used to compute the perimeter of rectangles because
rectangle will be a subtype of polygon. However, a more efficient algo-
rithm computing the perimeter of rectangles can be provided for the subtype
rectangle which is automatically used depending on the argument’s type.
In contrast to coercion the programmer itself can add new algorithms by
introducing new subtypes as we will see in the next section. Note that again
overloading is necessary to enable the use of the same name for both algo-
rithms.
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Nevertheless, parametric polymorphism is the most involved form of poly-
morphism as it allows to define functions operating on different types without
requiring a relation between these types: a type parameter in fact implicitly
states that the part being instantiated should provide both data and some
functions operating on that data. Thus a type parameter can be considered
as a description of an abstract data type, hence parametric polymorphism
allows to develop algorithms working for the whole class of realizations of an
abstract data type. Consider, for example, the following piece of C++-style
code.

template<class T>

T minimum(T x, T y) {
return x < y ? x : y;

}

Here, T is the type parameter indicating that the function minimum works
for arguments of arbitrary type. However, this is not really true: to execute
minimum a function < defined for the actual instantiation of the type T is
necessary. Unfortunately, this is only specified in the code where < is used.
The possibility to provide type parameters with properties a type must have
to be used as an instantiation, is known as bounded polymorphism [AC96,
CCH+89] or constrained genericity [Mey97].

Properties a type parameter should provide can be roughly considered at
two levels: First, functions operating on the elements of the type have to be
present, as < in the example above. However, this is not enough to ensure
that the instance of the algorithm behaves as expected, the instantiated part
must behave in a particular way. In other words, in the above example x <

y for elements x and y of type T must be true if and only if x indeed is less
than y. Thus there is a second level of properties concerning the semantics
of the instantiated functions. This nicely fits to viewing type parameters
as descriptions of abstract data types: an abstract data type consists of
a signature corresponding to the first, syntactic level and a set of axioms
corresponding to the second, semantic level. We believe that such semantic
requirements of type parameters are crucial for generic programming. This
topic will become more important if we consider generic programming in the
field of computer algebra.
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2.3 Genericity in Programming Languages

In the last section we have presented different facets of polymorphism and
discussed their impact on generic programming. In this section we investi-
gate how and to what extent these approaches can be found in recent pro-
gramming languages. As already stated overloading and coercion have made
their way into today’s programming languages. Languages like e.g. C++
[Str97], Java [AG97], Lisp [Ste90], or Haskell [Tho99], to name only some of
the most used ones, provide overloading and coercion at least for basic data
types like numbers. More involved examples of overloading and coercion will
be discussed in the next section about computer algebra. Here we concen-
trate therefore on universal polymorphism, that is parametric, inclusion, and
bounded polymorphism.

Object-oriented languages such as e.g. Smalltalk [GR83], Eiffel [Mey92],
and to some extend C++ [Str97] and Java [AG97] are the most prominent
examples for languages supporting subtype polymorphism, that is inclusion
polymorphism restricted to subtypes. Inclusion polymorphism is realized
via subclasses: classes are in fact descriptions of new types the user can
introduce and afterwards use like built-in types. Thus subclasses derived
from a superclass correspond to subtypes. They inherit data and algorithms
from its superclass, hence algorithms defined in the superclass are applicable
to elements of all its subclasses.

Using the technique of overriding it is also possible to provide different
more efficient algorithms for the same problem for subclasses: overriding or
redefinition in subclasses allows for replacing the algorithm of the base class
with another one. Note that this can be done by the user himself by simply
defining a new subclass in which the more efficient algorithm is provided.
Consider for example a class polygon in which there is an algorithm to com-
pute the area of polygons. For rectangles this can be done much better, so
the user defines a new class rectangles which is a successor of polygons. In
the subclass rectangles the better algorithm overriding the one in the su-
perclass polygon can be defined. However, redefinition of algorithms is the
responsibility of the user. Object-oriented programming languages do not
check1 whether the more special algorithm does not change the semantics,
that is whether it is correct or it indeed computes the same function as the
general algorithm given in the base class.

1Eiffel is in some sense an exception as it uses assertions to express pre- and postcon-
ditions of algorithms.
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The first programming language to include parametric polymorphism was
ML [Mil84, Pau96]. ML is a typed functional language based on a type cal-
culus by Milner [Mil78]. This calculus allows to infer the type of expressions,
thus provides strong typing without the need of explicitly stating expres-
sions’ types. More important from the view of generic programming is that
ML types may include type parameters, thus allow to define polymorphic
functions. The major example are functions on lists with arbitrary element
type such as computing the length of or reversing a list. However, this does
not work if operations on the elements are involved, that is if a type param-
eter is considered as a data type with operations, and not only as a set of
elements. The reason is that ML does not allow overloading of functions.2

So for example, the type of

fun sum [] = 0

| sum (x::xs) = x + sum xs;

evaluates to int list -> int; in other words sum is no polymorphic func-
tion. As a consequence sum([1.2,3.4]); results in a type error although
1.2 + 3.4 is a valid ML-expression of type real.

This problem has been adressed in Haskell[Tho99]. In [WB89] type classes
are introduced to enable certain kinds of overlaoding. A type class is a col-
lection of operations with associated types, that is in some sense an abstract
prototype for a type. For example, a type class Num for numbers can be
defined as follows.

class Num a where

+,* :: a -> a -> a

negate :: a -> a

0 :: -> a

Then a type belongs to the type class Num if it provides functions named
+, *, negate and 0 of the appropriate types declared by Num. Now, if the
type of sum is derived, Haskell identifies sum’s addition with the one in Num

and uses the type information of the type class as a precondition, that is
in Haskell the type of sum evaluates to Num a => [a] -> a. This means,
that for every type a belonging to Num the type of sum results in [a] -> a.
Instances of Num can be built for the integers and reals by providing appro-
priate binding for the operations occuring in Num. This allows to use sum

2Exceptions are addition and multiplication which are overloaded for int and real, as
well as a few other built-in operators.
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to compute sums of lists over both integers and reals, that is in particular
sum([1.2,3.4]) results in 4.6.

Another interesting approach—also called generic programming—not men-
tioned so far was realized using functional programming languages: polytypic
programming [JJ96]. Polytypic programming is a generalization of how func-
tions are defined in abstract data types. There, functions are defined by
induction on the constructors of a set of data. A polytypic function is a
function that is defined by induction on the structure of data types, that is
by induction on type constructors. Consider for example a function fmap

which gets a function f as input and is expected to apply f to all elements
of the collection given as a second argument. This collection may be a list
or a tree or something else. The types of lists and trees, for instance, can be
described as follows.

List = () + Par x Rec

Tree = Par + Rec x Rec

Here, () denotes the empty product, Par gives an element of the under-
lying element type and Rec is a recursive type constructor. An algorithm
defined by case distinction for all the involved type constructors can now be
used to handle both lists and trees and every other type that may be gen-
erated using these type constructors only. Polytypic programming has been
implemented as PolyP [JJ97], an extension of a subset of the programming
language Haskell [Tho99].

Polytypic programming allows to provide code working for different types,
in fact for a whole class of types given by a set of type constructors. How-
ever, the approach is quite different from our view of generic programming:
generic programming looks for properties making an algorithm work, that is
type parameters are descriptions of abstract data types. In contrast, poly-
typic programming operates on a fixed set of type constructors. Nevertheless
polytypic programming allows to write flexible, reusable code as has been
elaborated in particular in [Hin00].

C++ [Str97] probably is the most prominent programming language en-
abling parametric polymorphism. We already used C++-like code for the
maximum example in the last section. C++ feature templates to introduce
type parameters based on which algorithms can be written. Note that though
not explicitly stated such a type parameter can include operations to be used.
This shows again, that a type parameter in fact stand for a collection of data
and functions operating on that data, thus for an abstract data type. Maybe
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even more important from the view of generic programming is that using
templates not only functions but also classes can be parameterized. For ex-
ample

template<class T>

class List {
...
T sum(List& l);
...

};

introduces a class for lists over elements of arbitrary type T, which among
others contains an algorithm sum to accumaulate the elements of a list. In-
side the class list operations are written with respect to the type parameter
T. This allows to implement list operations independent of the element type,
the same code can be used for all instantiations of the parameter T. For ex-
ample,

List<int> l;

List<float> l;

List<my_elements> l;

declare lists over integers, reals, and a user-defined type, respectively. How-
ever, this will compile only if the instantiation fulfills all the requirements
implicitly postulated by the operations in the list class. In our example el-
ements of type T must be summable due to algorithm sum, that is the class
being instantiated for T must come with an operator +.

In the original design the Java programming language [AG97] did not
include type parameters, that is parametric polymorphism. However, as
already mentioned Java provides inclusion polymorphism with which some
cases of parametric polymorphism can be simulated [CE00] although this is
quite cumbersome as it requires wrapping classes and casting of types.

Extensions of Java including parametric polymorphism have been pro-
vided, e.g. GJ [BOSW98]. GJ allows the use of type parameters for Java
classes, thus introducing parametric polymorphism. GJ code is translated
back to Java code. In fact, GJ provides bounded polymorphism using an in-
terface technique: interfaces describe functions that must be present in every
class implementing such an interface, for example
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interface Collection<A> {
public void add (A x);

public void Iterator<A> iterator();

};

interface Comparable<A> {
public int compareTo (A x);

};

The interface Collection defines some kind of container by requiring an
operation add and an iterator. Note that the interfaces are parameterized
with a parameter A and that Iterator<A> in fact is another interface. Now,
GJ allows to state that classes are realizations of interfaces, e.g.

class Byte implements Comparable<Byte> {
...

};

class Collections {
public static <A implements Comparable<A>>

A max (Collection<A> xs) {
...

};
};

Then, the class Byte has to provide implementations of at least the func-
tions stated by the interface Comparable, that is of the function compareTo.
A class List could be for example an implementation of the second inter-
face Collection. In the class Collections a static member function max

is defined. To call max successfully the instance of the type parameter A

must provide a method to compare elements of type A. This is ensured by
extending the type parameter A to <A implements Comparable<A>>. This
means that only those instances I are legal for A which in fact are an imple-
mentation of Comparable<I>, and hence provide a compare algorithm.3 For
instance, Byte can be used as a realization of A as it implements Comparable.

Other programming languages providing bounded polymorphism are Eif-
fel [Mey92], Ada [Bar95], and CLU [Lis92], the first programming language to

3Note the recursive use of the type parameter A. This is sometimes called F-bounded
polymorphism [CCH+89].
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include constrained polymorphism. Based on work on OBJ [GM97] Goguen
developed a theory for specifying libraries of parameterized modules for Ada,
which is known as parameterized programming [Gog96]. Similar work has
been done for C++. For the development of the Boost Graph Library [SLL02]
concept checking was employed. Concept checking consists of providing tem-
plate classes, so-called concept-checking classes [SL00b], in which valid ex-
pressions for the instantiations are listed. These classes are then instantiated
with the instantiations of the type parameters, thus checking at compile
time whether all necessary functions are present. In particular, this leads to
much better compiler-generated error messages in case the algorithm’s re-
quirements are not matched.

Another approach has been adopted in the language SuchThat [SL00a].
The generic programming language SuchThat [SL00a], originally designed
for generic computer algebra algorithms, combines a concept base and a pro-
gramming language: concepts are abstract descriptions of domains and are
expressed in the concept description language Tecton [Mus98]. Algorithms
are then written for functions described in concepts using the programming
language Aldes [LC92], that is algorithms are written over domains given by
concept descriptions. As concepts in fact describe minimal requirements of
domains SuchThat allows for bounded polymorphism.

To include an algorithm the user has to define a concept describing the
properties necessary for the algorithm or a lifted version of it. As a con-
sequence, the algorithm can be instantiated with every domain that is a
realization of this concept. The Tecton language allows for concept inclusion
and stating lemmas about concept implications. These can be used to check
whether a given domain is a realization of a concept, thus whether a generic
algorithm written for a concept can be instantiated with this domain.

The programming language Views [Gas01] goes even further: it extends
types by type classes and considers generic parameters of algorithms as type
classes. This means that a type T is a legal instantiation of a generic algo-
rithm if T is an element of the type class describing the algorithm’s generic
parameter. Then a resolution-based type checker is used to prove that a
given type is in a type class, that is whether a generic algorithm can be in-
stantiated with this type.

The realization of bounded polymorphism is important for generic pro-
gramming as it supports the user in checking whether a particular instan-
tiation fits to a generic algorithm. In [CW95, Cen95] this has been called
semantic typing. Here, a calculus for checking semantic properties of instan-
tiations of parameterized algebraic specifications is developed. This is done
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in two steps: first a calculus of implementation is presented which allows to
check for signatures, thus syntactic requirements. This calculus is then ex-
tended to capture semantic requirements by introducing so-called conditions
which are interpreted as model class inclusion.

This again shows that the above problem comes with two facets. First,
as has been already mentioned above, one has to check whether necessary
operations are provided by an instantiation. But this only ensures that the
instance of the algorithm is executable, it does not ensure that the instance
of the algorithm will behave as expected, that is the instance is correct. The
reason is that usually a generic algorithm in addition expects a particular
behaviour of the functions being instantiated. In other words, a generic al-
gorithm considers its type parameter as a description of a data type that
includes the semantics of the operations. This will become even more im-
portant in the next section where we consider a special application area of
genericity and generic programming—computer algebra.

2.4 Genericity in Computer Algebra

Computer algebra deals with the development and the implementation of al-
gorithms for solving mathematically formulated problems [GKW02, BCL83].
The basis thereby is a symbolic, exact, and finite representation of the in-
volved finite or infinite mathematical objects, which distinguishes computer
algebra from numerical computation. The use of structural mathematical
knowledge during the design is one of the major characteristics of computer
algebra. This means in particular that theorems about mathematical do-
mains are incorporated leading also to investigations about mathematical
structures in general. For example, the question of how greatest common
divisors can be computed in polynomial rings over the integers or the real
numbers has yielded the notion of pseudo division that can be carried out
in every commutative ring. The use of abstract mathematical structures
in computer algebra naturally gives raise to genericity by abstracting away
from a particular domain. For example, algorithms for polynomial addition
and multiplication in principle work well for every polynomial ring no matter
which coefficient domain is actually considered. Thus parametric polymor-
phism is inherent in computer algebra. However, as we will see, parametric
polymorphism is not the only kind of polymorphism naturally occurring. In
the following section we investigate the appearance of the phenomena de-
scribed in section 2.2 in the field of computer algebra.
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Overloading is omnipresent in computer algebra, just because the oper-
ations of mathematical structures themselves are heavily overloaded. The
same symbol *, for instance, is used for the multiplication in numbers, rings,
and vector spaces. In vector spaces it even denotes both the multiplication
of vectors and the multiplication of a scalar and a vector. Sometimes * is
also used for the concatenation in free monoids as well as for conjunction in
Boolean algebras. Another example is the symbol 1 used for units in various
algebraic structures, for true in Boolean algebras and sometimes for the top
element in lattice theory. It would be quite confusing to force a different
notation depending on the structure under consideration.

Also coercion plays an important role. In fact, the example concerning
integers and real numbers given in section 2.2 occurs in computer algebra,
too. However coercion can become much more complicated as in the case of
numbers. For instance, an element of an integral domain I can be considered
as an element of the field of fractions FF(I) over I; this again can be coerced
into a polynomial over FF(I). Also it should be noted that FF(FF(I)) is
isomorphic to FF(I), and thus elements of the former can be naturally con-
sidered as elements of the later. The other way round a constant polynomial
can be understood as an element of the coefficient domain.

Subtyping in order to reuse algorithms defined for a supertype is a natural
feature in computer algebra. This is due to the implicit hierarchy mathemat-
ical structures come with. For example a field is a Euclidean domain, a Eu-
clidean domain is an integral domain and so on. In fact, this can be extended
even for structures with different sets of operations: a ring, for instance, is
a group and a group is a semi group that is a field in particular is a semi
group. All these domains provide a set of operations the more specialized
ones rely on. In other words, algorithms written for semi groups should be
applicable in fields.

The type system of AXIOM [JS92] allows for defining categories which
resemble the hierarchy of mathematical structures. Thus it is possible to
inherit algorithms from one domain to another. That a special domain is
an element of a category is by assertion, that is the user states for example
that the integers are a Euclidean domain. Operations and algorithms of the
hierarchy can then be used for the integers; AXIOM checks whether this is
legal by inspecting the whole hierarchy. However, as category membership
is by assertion, it is not guaranteed that a special domain fulfills semantic
requirements of a category. These are given in the documentation only, so
that the user bears responsibility for that. Thus, for instance, a Boolean
algebra could be claimed to be an element of the category of rings though
this is certainly not the case.
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As already mentioned, parametric polymorphism is quite natural in com-
puter algebra, because algebraic algorithms are based on properties that
correspond to or follow from the axioms of mathematical structures. Thus
methods developed work well for each realization of such a mathematical
structure. However, requirements posed on the instantiation of a generic al-
gebraic algorithm are much more involved. In fact, for such an algorithm an
instance is correct only if it fulfills the axioms of the structure the algorithms
is based on.

Let us start with a rather pathological, nevertheless illustrating example.
Consider again a generic sort algorithm which includes a type parameter T for
the elements to be sorted. As already mentioned in the last section, to make
the algorithm executable the instantiation of T has to come with a realization
of the operation ≤. But this is not sufficient to make the algorithm behave
as we expected. Assume that the type parameter T is instantiated with the
integers and an algorithm that implements the binary predicate ≤ on the
integers given by i ≤ j for all i and j being integers. Clearly, the in this way
instantiated generic algorithm will run properly, however given a sequence s
of integers, the result of running the algorithm with input s will be s itself.
This is not what we expect of sorting integers. But note, that s is a correct
answer with respect to our particular choice of ≤: trivially, s is a permutation
of s and—assuming that s is indexed by integers—for i and j with i < j we
have si ≤ sj, that is s is sorted with respect to ≤. The problem is that the
relation ≤ we have chosen is no order: it does not fulfill antisymmetry, that
is i ≤ j and j ≤ i does not imply i = j. In other words, the algorithm
will behave as expected only if some semantic requirements on the operation
instantiated for ≤ are fulfilled. In our example, the relation should be an
order—and in addition total to ensure that every sequence can be ordered.
Thus the type parameter T in fact stands for a mathematical structure (T,≤)
where ≤ is a total order on T. This what in [Mus98] is called a concept and
can be compared to an abstract data type with loose semantics: only an al-
gebra that fulfills the requirements can serve as a legal instantiation. On the
other hand, each algebra that fulfills the requirements is considered as a le-
gal instantiation, which provides the great flexibility of generic programming.

In the area of computer algebra the situation just described is the normal
case: algorithms are written for mathematical structures given by a set of
axioms, such as fields or polynomial rings. Hence generic algorithms only
work as expected if the instantiation indeed is a realization of the underlying
structure, that is if it fulfills the axioms required. In addition requirements
here are much more involved than in ordinary programming. This is naturally



2.4. GENERICITY IN COMPUTER ALGEBRA 27

due to the use of mathematical structures. The same holds for the realization
of more efficient algorithms. Efficient algorithms in computer algebra often
take advantage of properties specific to a domain. Hence, it is both not
easy to generalize such algorithms to generic ones and to check whether a
particular instantiation meets these properties. We will see some examples
later in this section.

The problem again can be seen in terms of executability and correctness:
the changeover from executability to correctness consists of checking whether
the operations necessary to ensure executability fulfill some implicit require-
ments. In computer algebra these requirements are much more involved thus
much harder to handle. In other words, the distance between executabilty
and correctness is much greater here.

Let us illustrate these issues in detail for multiplication of polynomials.
An algorithm for doing so is straightforward, and is not the main concern
here. The point is that the algorithm can be naturally parameterized by the
underlying coefficient domain. Hence, a generic multiplication algorithm for
polynomials is executable if the instantiation of the type parameter provides
addition and multiplication of coefficients. However, the instance only com-
putes polynomial multiplication in the usual sense if the instantiation fulfills
the axioms of a ring which is much more involved than the axioms of an
order. So to say, it is quite safe to use the generic algorithm with obvious
instantiations such as the integers or the rational numbers, but using more
elaborated structures it is hard to check whether this is legal.

Furthermore, there is quite a number of rings with additional properties:
commutative rings, integral domains, principal ideal domains, and fields to
name a few basic ones. A generic polynomial multiplication algorithm works
correctly for all of them. However, considering a closely related problem,
namely the evaluation of polynomials, things change. Obviously, polynomials
can be evaluated if the coefficients form a ring. But to establish polynomial
evaluation in the mathematical sense, that is as a homomorphism from the
ring of polynomials into the coefficient domain, this domain has to be com-
mutative with respect to multiplication. Hence, the class of mathematical
structures that may be legally instantiated, may change even if two generic
algorithms handle the same class of objects, rings of polynomials in the ex-
ample.

Another example showing the demands of genericity in computer algebra
is the computation of greatest common divisors. The well-known Euclidean
algorithm can be used to compute greatest common divisors for integers,
and in fact for every Euclidean domain. Given two elements of a Euclidean
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domain, the idea is to use division with remainder recursively until one of
the input elements equals one so that the other one is the greatest com-
mon divisor. Again it quite easy to formulate a generic algorithm working
for arbitrary Euclidean domains. However, there are two points of concern.
First, what are possible instantiations of such an algorithm? The answer is
not straightforward: although there are greatest common divisor algorithms
for polynomial rings based on division, that is although the syntactical re-
quirements are fulfilled, this does not lead to a legal instance of the generic
Euclidean algorithm. Polynomial rings are not Euclidean in general, thus do
not fit to the algorithm’s semantic requirements. Second, the efficiency of the
Euclidean algorithm may strongly vary for different domains as it is mainly
given by the effort spent for division with remainder. Thus the question
is to what extent the generic Euclidean algorithm works efficiently for Eu-
clidean domains, or whether different versions should be provided for special
Euclidean domains.

Efficiency in computer algebra also strongly depends on the represen-
tation of mathematical objects. Thinking again of polynomials, there are
so-called sparse and dense representations. Often algorithms are efficient for
only one representation of polynomials. Writing efficient generic algorithms
in this case thus includes stating requirements on the representation of poly-
nomials. In other words, considered as a description of a concept the generic
type parameter T does not only include properties of the algebraic structure
but also representation details.

The integers modulo n where n is an integer with n > 1, denoted by
Zn, are another interesting example. Zn is a field if and only if n prime,
and algorithms for computing the inverse in such a field are well-known,
e.g. based on the extended Euclidean algorithm or Fermat’s theorem. Of
course the methods are independent of the particular value of n, so these
algorithms can be considered as generic for Zn with respect to the parameter
n. However, again one has to be a bit careful. If n is not prime, Zn is no
field, indeed not even an integral domain as there are zero divisors. Hence,
there are elements having no inverse that is although each instance of the
generic inversion algorithm computes something, in some cases the result
is not what was expected in the sense that the properties of this result do
not fit to the algorithm’s description. In other words, the generic inversion
algorithm is executable for every instantiation of the parameter n, but correct
only if the instantiation fulfills the additional requirement of being a prime
number. Note that in this case the requirement is not on the domain, but
on a particular element that is instantiated.

Another problem arising in computer algebra is the combination of dif-
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ferent concepts such as for example combining rings with orders. Consider
again the integers modulo p, where p is prime. The question is, can Zp be
processed by generic algorithms that include an order as a generic parame-
ter? From a technical point of view the answer is simply ”yes”, as Zp can be
considered as the subset {0, 1, . . . , p− 1} of the integers, so an order for the
integers can be used. On the other hand, from an algebraic point of view it
is not that simple: it depends on the specification of the algorithm. If the
algorithm expects a domain with an order only then we are in a secure po-
sition. But if the algorithm is specified for ordered rings the answer is ”no”,
because Zp as a finite field does not allow for orders that are compatible with
addition and multiplication.

The key point is again that in all examples the correctness of the instance
of an algorithm depends on implicit semantic requirements on the used op-
erations. So, as already said, parameters in generic algorithms should be
considered as implicit descriptions of data types: they describe a concept,
e.g. a set of operations together with properties the operations have to fulfill,
and only those instantiations are legal that fit to this concept. In computer
algebra the properties of the operations are a major concern, in fact devel-
oping computer algebra algorithms mainly consists of taking advantage of
these properties. Hence, genericity in computer algebra much more depends
on the semantic requirements of the parameters and therefore much more
calls for checking semantic requirements during instantiation.
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Chapter 3

Generic Libraries

As we have seen in chapter 2 generic programming aims at providing algo-
rithms that are flexible and easily adaptable to particular applications. This
goal is strongly connected with the design and development of libraries. Li-
braries are the connection between algorithm developers and users. Thus it
is not only important how powerful and efficient the algorithms contained in
a library are, but also how the user can apply and rely on these algorithms.
Genericity can contribute to both.

In this chapter we deal with libraries based on generic programming tech-
niques. Recently work on designing libraries with techniques from generic
programming is mostly done based on the programming language C++. We
therefore consider three C++ libraries—the Standard Template Library, the
Boost Library, and the Loki Library—in detail. We explain the underlying
concepts and techniques of these libraries and discuss the impact on users.

3.1 Introduction

Libraries are a major concern in software development. Based on program-
ming languages that well-support intended application areas in both devel-
oping programs and efficiency, libraries provide a collection of algorithms the
user can build upon. Thus a library together with its underlying program-
ming language serves two purposes. First, a library provides algorithms and
data structures so that a user need not start from scratch with the implemen-
tation of basic methods. For example, Leda [MN99] and CGAL [FGK+00]
supporting geometric computing come with the necessary data structure of
graphs and a set of algorithms operating on them. Consequently, a user can
focus on the geometric application he is interested in and need not again im-

31
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plement basic graph algorithms. Second, it is not only important to provide
a user with (implementations of) algorithms solving certain basic problems.
The algorithms contained in a library should furthermore be easily and safely
usable, that is incorporated in the user’s program development. Thus reusing
and combining algorithms is a major point in the development of libraries of
algorithms which consequently should be supported to aid users.

Libraries for generic algorithms, therefore are not only collections of
generic algorithms, but should also support the user in applying these al-
gorithms. However, the application of generic algorithms introduces new
challenges to the user. Generic algorithms have to be instantiated with pre-
defined or self-written code. Thereby, as we have seen, the correctness of
the resulting instance strongly depends on semantic properties of the instan-
tiation. Consequently, in particular the instantiation process has to be ad-
dressed because here lies the main source for errors as the instantiated piece
of code may not fulfill (semantic) requirements of the generic algorithm. The
user has to be supported in checking these requirements when algorithms of
a generic library are used. In case requirements are not met compilers should
generate meaningful error messages [SL00b], or even better should indicate
which requirements are not fulfilled by the actual instantiation.

Furthermore, generic programming aims at providing pieces of software
for a wide range of applications. This means that algorithms stored in li-
braries should be both flexible and easily adaptable. Then the user can
utilise the library algorithms as algorithm schemes that are in some sense to
be refined for a particular application. This for example can be achieved not
only by pure instantiation of generic algorithms but also based on iterators
and adapters [MDS01] or by providing implementations of design patterns
[GHJV95].

In addition, as we have argued especially in the field of computer algebra,
in generic programming there is usually more than one algorithm leading to
a correct instance. These will differ according to their efficiency and other
algorithmic requirements. Though it seems hardly possible to automate the
optimal choice completely, we believe that a library of generic algorithms
should support the user in deciding which instantiation to choose. This may
range from including the specification of properties important for such a de-
cision up to automatically choosing an instantiation based on a knowledge
base or heuristics [Kre02].

In the following we present some existing generic libraries. As a matter of
fact most work on designing and implementing libraries based on topics from
generic programming is done using C++ using and exploring the capabilities
of templates. Thus we decided to present three C++ libraries, the Standard
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Template Library [MDS01], parts of the Boost Library [SLL02, Jär02] and
the Loki Library [Ale01]. We give a brief overview of the main concepts and
discuss how these libraries use techniques of generic programming in order to
provide more than a collection of algorithms. We analyze in particular how
the idioms used support particular applications of users. We close with a new
approach based on [Wei03] focussing on the distribution of generic libraries
where an XML-based intermediate representation of generic algorithms is
used to embrace the demands of generic libraries.

3.2 The Standard Template Library

The Standard Template Library [SL94, MDS01] provides basic algorithms
and data structures, mainly for sorting and searching in lists, vectors,
maps, and other structures. The outstanding contribution of the Standard
Template Library (STL) is the way algorithms and data structures are pre-
sented: The STL introduces the concepts of iterators and containers. The
goal was to represent algorithms as general as possible without affecting their
efficiency. This was achieved by the use of iterators that are a generalization
of pointers, that is they provide access and navigation to containers without
being restricted to a particular type of container. Thus iterators are a tech-
nique to decouple algorithms and containers: Algorithms essentially work
on iterators and each container provides iterators used to link algorithms to
it. This allows to combine an algorithm with different containers such as
e.g. lists, vectors, or maps. Furthermore the STL comes with an iterator
hierarchy, that is with different kinds of iterators providing different sets of
operations. By choosing an iterator kind for an algorithm thus properties a
possible instantiation has to meet can be expressed. Consider for example
the binary search algorithm as found in the STL.1

template<class ForwardIterator, class T>

bool binary_search(ForwardIterator first,

ForwardIterator last, const T& value);

Besides abstracting away from the type of the elements being searched by
the template parameter T, this binary search algorithm can be instantiated
with every class of type ForwardIterator, one of five different kinds of it-

1We use C++ code to illustrate STL concepts, because this is most familiar. However,
in principle the STL is more a methodology to design a library that, in principle, can be
implemented in other programming languages, too.
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erators. ForwardIterator allows to access elements in a container one by
one, but not to go back or to access elements by an index. Note that the
type parameter ForwardIterator requires the existence of operations with
certain properties, that is it again can be considered as a description of an
abstract data type. Now, e.g. list and vector container classes as defined
in the STL provide iterators of type ForwardIterator2, hence the algorithm
works for both of these containers. Iterators for containers can be accessed
using member functions begin and end giving the range of the container in
which its element are stored. So we can call binary search as follows.

vector<int> v;

... initialization of v ...
bool binary_search(v.begin(),v.end(),3);

Note that in contrast to class instantiation the instantiation need not be
given explicitly, it is inferred from the actual parameters’ types. The same
way the algorithm can be called using lists as containers. In fact users can
also provide their own iterator classes; these will work well with the algorithm
as long as the requirements of a ForwardIterator are fulfilled. However, as
it stands it is not checked at compile time whether the class being instanti-
ated indeed fits to the semantic ForwardIterator requirements. Note that
the binary search algorithm of the STL is not a member of a class such as
lists. This allows to consider an algorithm as a stand-alone entity which
can be called with each triple of arguments where the first two are of type
ForwardIterator and the third of type T. However, again the instantiation
of T must provide a method to compare elements of type T.

The STL also adresses the problem of keeping efficiency while generaliz-
ing: A binary search algorithm usually requires logarithmic time. Though
a version of binary searching works for iterators of type ForwardIterator,
the time required is linear in the size of the container, although the number
of comparisons is still logarithmic. The reason is that using forward itera-
tors one cannot directly jump to the middle of a container. This operation
is available only for iterators of type RandomAccessIterator. Now, if the
binary search algorithm of the STL is called with such an iterator, the al-
gorithm is indeed logarithmic in the size of the container [MDS01]. Thus
the STL provides a more efficient binary search algorithm for the case that
more knowledge about the parameter of the algorithm is present. This is one

2In fact, both lists and vectors provide iterators with even more properties than
ForwardIterator, namely lists iterators of type BiDirectionalIterator and vectors
iterators of type RandomAccessIterator.
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essential goal of generic programming, realized in the STL by means of the
iterator hierarchy.

Algorithm binary search requires a <-operator with which elements of
type T can be compared. Because this operator is not explicitly stated in
the algorithm’s declaration, solely the operator < given by the instantiation
of the type parameter T is used. However sometimes it is useful to sort and
search with a different order, for example one wants to switch from < to >.
Therefore the STL provides another version of most algorithms with an ad-
ditional template parameter to describe the order to be used.

template<class ForwardIterator, class T, class Compare>

bool binary_search(ForwardIterator first,

ForwardIterator last, const T& value,

Compare comp);

Note that overloading is employed to identify the different realizations of
binary search. Thus the user need not care about which version will be
called. He only has to provide the arguments that shall be taken into account:
To use the second version he just defines a class MyCompare overloading the
function call operator operator(). Then this function object is passed to
the binary search algorithm to be used for comparisons.

vector<int> v;

... initialization of v ...
bool binary_search(v.begin(),v.end(),3,MyCompare());

STL containers store collections of objects and are divided into two cat-
egories: sequence containers and sorted associative containers. A container
defines how objects are stored and provides a number of operations to access
and manipulate the objects being stored. Information about the memory
model, however, is encapsulated in an Allocator class. Thus every con-
tainer comes with two template parameters, one for the type of the objects
and one for the allocator class:

template <class T, class Allocator = allocator>

class vector;

{

...

};
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Note the use of a default value for Allocator with the predefined STL
class allocator. Thus STL containers can work in principle with differ-
ent memory models provided by different allocator classes meeting a set of
requirements. This means that on the one hand users can develop and apply
their own memory model easily by plugging in such a class instead of using
allocator. On the other hand as the STL comes with a default implementa-
tion of the Allocator class, no user is forced to deal with the memory model
if he agrees to use allocator. This technique in fact can be considered as
using a policy class for the memory model as it has been further elaborated
in the Loki library (compare section 3.4).

The STL and, in particular its widely accepted implementation in C++,
now being part of the C++ Standard Library [C++98], has inspired both fur-
ther research in generic programming and the development of other libraries
based on C++ templates and the iterator concept. For example, the Matrix
Template Library [SL99] provides high-performance numerical linear algebra
algorithms. Here, two-dimensional iterators are used: They allow to access
rows or columns of a matrix which returns an ordinary iterator for dealing
with single elements. Special adapters enable reusing the same algorithm in
different situations. So, for example, there is a scaling adaptor, thus adding
two vectors or a scaled vector and a vector in the MTL is basically the same.

Another example are graph algorithms. Here the underlying data struc-
ture is a bit more elaborated: In contrast to STL containers and matrices
traversing a graph has to incorporate both edges and vertices. Note, that
in particular a graph’s adjacency structure has to be taken into account and
that graphs may contain circles. Nevertheless it is possible to develop and
implement a generic, iterator-based handling of graph algorithms. This have
been done, for instance, in the Boost library.

3.3 The Boost Library

The Boost library [Boo02] is the ongoing outcome of an online community.
Its goal is to provide portable high-quality C++ libraries working well with
the C++ Standard Library. To this end submitted libraries pass through
a review process before coming to a decision whether a library should be
included in the Boost Library collection. From the viewpoint of generic
programming there are two interesting sublibraries: The Boost Graph Li-
brary [SLL99, SLL02] implements a number of graph algorithms including
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for instance Dijkstra’s and Kruskal’s algorithm based on templates and iter-
ators similar to the STL. The Boost Lambda Library [JP00, Jär02] provides
lambda abstraction for C++, an alternative to the use of function objects
when instantiating generic C++ algorithms. In the following these libraries
and the techniques used to implement them will be described in more detail.

The Boost Graph Library (BGL) provides both interfaces and their im-
plementation for directed and undirected graphs. Edges and vertices are
handled by descriptors with very basic functionality. Additional information
can be attached and maintained to vertices and edges by means of so-called
property maps. A property map associates values of a particular property
with the set of vertex resp. edge descriptors. The BGL provides operations
on property maps to set or access the information stored by such a prop-
erty map. So, for example get(p map,key) gives the value of key under the
property map p map. This allows to keep graph algorithms generic without
shortening the information graphs may carry. Graph traversal is done using
edge and vertices iterators based on the adjacency structure of graphs. For
example the function

std::pair<out edge iterator, out edge iterator>

out edges(vertex, graph);

returns an iterator range containing the out-edges (for directed graphs) or
incident edges (for undirected graphs) of the given vertex.

BGL algorithms provide formal parameters to adapt their behaviour to
a particular application. This can be compared to the use of function object
parameters in the STL. Here, however, visitors are used which in some sense
are an extension of function objects: A visitor defines a number of functions
that are called at event points inside the algorithms. Thus a visitor does not
only define the behaviour of an algorithm’s operator but can also add extra
functionality to algorithms.

Two implementations of the graph interface are given. One is based on
adjacency lists, the other on adjacency matrices. This reflects efficient han-
dling of spare and dense graphs. Instantiating template parameters allows
to maintain details of the implementation, for example which kind of con-
tainer is used to store vertices and edges or whether a graph is directed or
undirected.

Graphs have a number of associated types such as the type of edge and
vertices descriptors and iterators or size types. These nested types have to be
accessible in order to provide generic graph algorithms. Note that assuming
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the graph class being instantiated provides all necessary type definitions is
no proper solution. To access nested types, that is types associated with
a graph type the BGL employs traits classes. Traits [Mye95, Ale00] are a
method where classes containing type definitions only are used to infer type
information at compile time. Traits have also been used in the SGI imple-
mentation of the STL to determine iterator categories [Aus99]. The idea is
to use template specialization to create different type definitions according
to the instantiation of template parameters.

template <class T>

struct graph traits {
typedef typename T::edges size type edges size type;

};

A user working with special graph representations not providing a definition
of edges size type then defines a specialization of the graph traits class
in which the type is set accordingly. Note that specializing the graph traits

class also allows to use BGL graph algorithms with graph representations as
defined in the Stanford GraphBase [Knu94] or the Leda library [MN99].

template <>

struct graph traits<MyGraph> {
typedef My edge size edges size type;

};

As a consequence generic algorithms need only work with edges size type.
The following type definition guarantees that when instantiating T the right
type is bound to edges size type due to instantiation of the graph traits

class.

typedef typename

graph traits<T>::edges size type edges size type;

Note that using partial template specialization it is not necessary to write
a traits class for every special graph type. For example, a graph type pa-
rameterized by its edge and vertices types such as used in Leda results in
a specialization of graph traits with two template parameters etype and
vtype. Thus traits are an appropriate method to encapsulate necessary in-
formation about nested types from generic algorithms.

In conjunction with this stands the macro BOOST STATIC ASSERT [Mad00].
It allows to attach requirements for constants and expressions to class tem-
plates. The idea is to use template instantiation to distinguish the positive
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from the negative case. Consider for example a template class with a param-
eter T for which only instantiations where T is an integral type are expected.
This can be expressed by defining a boolean variable isIntegral and in-
cluding BOOST STATIC ASSERT(T::isIntegral) in the template’s definition.
Then for an instantiation isIntegral must evaluate to true, which in fact
means that users writing the instantiation will define this way; otherwise a
compile error will occur. The macro is implemented with the help of a class
STATIC ASSERTION FAILURE with a parameter of type bool. The class sim-
ply does nothing if instantiated with true. The case of false, however, is
not defined which leads to the compile error mentioned. Note that due to
this implementation a compiler returns an error message in which the class
name STATIC ASSERTION FAILURE occurs, that is the message indicates that
some requirement is not met.

As already mentioned in the last section, function objects are used to
modify the behaviour of generic algorithms, for example changing the com-
parison operator used in search algorithms. However, structs overloading
the function call operator have to be defined in order to obtain these func-
tion objects. The Boost Lambda Library (BLL) adds some kind of lambda
abstraction to C++, thus allowing to create unnamed functions that can
be passed directly to the algorithms. The library was designed and im-
plemented so that it in particular works with the C++ Standard Library
[C++98]. Thus, for example, let foo be a function mapping from int to
int. Then the following code using containers from the Standard Template
Library compiles well.

vector<int> v;

... initialization of v ...
for each(v.begin(), v.end(), free1 = bind(foo,free1));

for each(v.begin(), v.end(), cout << free1 << endl);

The last parameter of for each takes an expression that may contain free
variables. Then during the loop this expression is evaluated for each element
of v. Thus in the first loop each element i of v is replaced by foo(i). The
second loop outputs the content of v separated by line breaks.

Free variables are introduced by placeholder variables having predefined
names, free1 in the example. Thus the use of placeholders implicitly con-
verts an expression into a lambda expression. bind is a BLL function used
to turn function calls into lambda expressions, in this way invoking function
foo with the actual value of free1. As the example shows also operators
like = and << have been overloaded for lambda expressions.
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Lambda expressions are implemented using expression templates [Vel95a]:
Operators are overloaded to create objects representing the expression and
its arguments. In this way the evaluation is delayed so that expression ob-
jects can be manipulated, in particular the actual arguments are substituted
for the placeholder objects. Note, that at least part of these manipulations
can be done at compile time. To summarize the BLL provides a mechanism
to include lambda expression into C++ making the use of function objects
and binders to adapt STL algorithms unnecessary.

3.4 The Loki Library

Loki [Ale01] pursues a slightly different goal than the libraries presented so
far. The goal is not solely to provide a library of generic algorithms but to
provide the user with pieces of software that are on the one hand adapted to
particular problems and their solutions, however on the other hand general
enough so that they can be used as a framework in which only code for details
of applications has to be filled in. This is done by implementing a number of
generic design patterns [GHJV95] in a way so that the user can easily plug-
in the application-connected code into the framework given by Loki. This
can be considered as putting genericity onto another level in the sense that
not algorithms are generalized, but a set of algorithms together generalizes
a solution strategy. This means that the instances the user has to provide
are not solely algorithms but can also be some kind of module realizing a
particular aspect of the desired application. However, generic programming,
here the extensive use of C++ template parameters, is used to implement
design patterns in Loki. In the following we present the underlying concepts
of this approach that we believe are most important as techniques for generic
programming.

The main idea in [Ale01] is to use so-called policy classes as the basis of
the design. Using policy-based class design isolates different aspects of the
system: A policy class focuses on one behavioral or structural aspect only.
Examples are the creation of objects of a type T or memory management
strategies depending on a type T or the length of objects considered. Classes
that use a number of policy classes—called host classes—thus are highly
adaptable with respect to the aspects covered by the policies: The user just
plugs in implementations of policy classes; the overall behaviour of the host
class is not affected.
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The crucial point is that a policy in fact establishes an interface for the
aspect concerned. As a consequence policies can be implemented in various
ways emphasizing different specific aspects. As long as the implementation
fits to the interface, it can be used in the host class. In other words a policy
class can be considered as a generic parameter of the importing host class.
This allows the user to decide which strategy he wants to apply. This may be
one of the strategies predefined in the library or even a new one for which the
user has written a policy class on his own. Note that a policy class can offer
more operations than required by the interface so that a user can extend his
policy with further functionality.

The idea of policy classes can be easily realized using template tem-
plate parameters. Consider for example an application in which objects
have to be created. This is formulated using a template template parameter
CreatorPolicy. Instances of CreatorPolicy are to define a creation strat-
egy for the objects being instantiated via the template parameter T. Then
Application inherits CreatorPolicy<T>; thus the application can create
objects based on application data given by the class T.

template <class T, template <class> class CreatorPolicy

= DefaultCreator>

class Application : public CreatorPolicy<T>

{
...

};

Then the library user can define his personal application as an instance of
Application. All he needs to do is to provide Application with a class
matching the interface of CreatorPolicy. This can be one of the policy
classes given by the Loki library or a self-written class MyCreator. The type
parameter CreatorPolicy is instantiated with this policy class and inherited
by Application. Thus the instance of Application can create objects ac-
cording to the strategy given in MyCreator. Note the use of partial template
specialization in the first example to concretize how objects are created while
leaving the objects in class T itself still arbitrary.

template <class T>

class Application<T, MyCreator>

{
...

};
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typedef Application<Int, MyCreator> MyApplication;

However, the user is not forced to deal with creation of objects. If a user is
not interested in a particular creation strategy he can ignore the template
parameter CreatorPolicy. This is due to the default value DefaultCreator
given in the definition of Application. Thus, if there is a class Polynomial
matching Application’s requirements on objects of type T, the following de-
fines an application for polynomials where polynomials are created following
the strategy the library developer has provided as default in the policy class
DefaultCreator.

typedef Application<Polynomial> PolyApplication;

Providing more than one policy class in the interface of an application
thus allows to abstract from various aspects and strategies used in the ap-
plication. The user then has the freedom to use particular implementations
of these policies in his application. In this way the user can easily configure
an application to his needs without even being forced to look to the inside of
Application. This is achieved by combining template template parameters
and inheritance.

Based on policy classes Loki implements, for instance, a generic inter-
face for the abstract factory design pattern [GHJV95]. An abstract factory
supports the creation of a family of related objects to be used together.
Loki’s AbstractFactory class template realizes this by providing a tem-
plate template parameter Unit for creating objects; again a default class
AbstractFactoryUnit is given. To build up a factory, that is a collection
of objects determined by the user, typelists are used. Typelists allow for
parameterizing a class by a mutable number of types. Type lists and their
operations are implemented using recursive template classes and partial tem-
plate instantiation. As a consequence such computations take place during
compile time. This technique is called compile time programming or template
metaprogramming [Vel95b, Unr94].

Now, given a typelist holding the types of the objects to be contained in
a factory AbstractFactory instantiates the instantiation of its second pa-
rameter Unit with every type in the list. In particular a class hierarchy is
generated in which the abstract factory inherits from every class constructed
this way. Thus the user automatically gets a uniform interface for the objects
of his factory for which implementations can be provided with the help of
the ConcretFactory class template. Again the user has the possibility to
chose between different policy classes for actually creating concrete objects.
To conclude with, other patterns, policies and techniques implemented in
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the Loki library include small object allocation, smart pointers, singletons,
visitors, and multimethods; for details see [Ale01].

3.5 The GILF Library

So far we have concentrated on methodologies and techniques present generic
libraries are designed and implemented with. However, there is a another as-
pect of generic libraries that completely differs from non-generic libraries—
their distribution. The standard way of distributing a library is to provide
a collection of already compiled object files. These are then linked to the
users’ application to get a running program. Unfortunately, this concept
does not work if generic algorithms come into play. Generic algorithms are
non-executable schemes of which parts are left for the user to complete by
instantiation. For a generic iterator-based STL algorithm, for example, the
memory layout is not known until the user provides an instantiation. In
addition operators used may end up in a function call or machine code in-
structions depending on the instantiation. Thus application programs rely-
ing on generic algorithms need to compile these again in order to incorporate
properties of actual instantiations. As a consequence object files for generic
algorithms cannot be provided at this point of time and the library as a
whole must be distributed with the complete source code.

This problem is addressed in [Wei03]. The observation is that the de-
sign of common compilation systems aims at the generation of machine level
code; this level, however, is not appropriate for generic algorithms which
due to their inherent abstraction until instantiation represent a much higher
level. Taking a somewhat more abstract view a compiler transforms a source
program in some intermediate representation distributed to be executed on
different machines. For non generic algorithms object files are an appropriate
representation, for generic ones not. Consequently, in [Wei03] a new inter-
mediate representation—called Generic Interface Link Format (GILF)—has
been developed in which generic programs should be compiled before being
distributed as a library. GILF is an abstract representation of programs that
can be compared to a parse tree. Like a parse tree a GILF program repre-
sents an analyzed version of the source program on which transformations
can be easily performed. In particular, information on the appropriateness
of instantiations is included. Therefore when given an instantiation on the
actual machine, code for an executable program can be easily generated from
a Gilf program.
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Note that this in fact results in new definition of front- and back-end.
The front-end now performs lexical, syntactic and semantic analysis of the
source code and generates a GILF representation. Code generation however
is delegated to the back-end, in addition to linking and loading the final
machine code. Nevertheless a GILF representation of generic algorithm can
be considered as compiled because, in particular, the time-consuming anal-
ysis of generic programs has not to be performed on the actual machine again.

To implement a prototype of such a compilation system a version of
GILF—XGILF—has been defined using the Extended Markup Language
XML [BPSM00]. The structure of an XGILF document is organized in com-
pilation units consisting of an import, a declare, a define, a bind, a store, and
an extend section. Thus a compilation units contains all information about
a particular piece of code necessary to generate a running instance of the
represented code and can be seen as a modularization of the XGILF library.

As of this writing the XGILF core library contains descriptions of ba-
sic data structures together with corresponding basic algorithms such as
Boolean, Integers, and other machine types as well as for example arrays.
In addition some general purpose function and type signatures are provided.

However, the GILF intermediate representation is in principle language-
independent, that is it can be seen as an interface for describing precompiled
generic algorithms. Thus generic programs from various generic program-
ming languages can be compiled into GILF and then distributed together as
a library of generic algorithms.



Chapter 4

Representing Requirements

In the last chapters we have seen that generic programming relies on the
abstraction of data requirements. Examples, in particular from the area of
computer algebra, have shown that type parameters used to implement this
abstraction should be understood as a description of an abstract data type:
Types describe data and operations as well as (minimal) requirements on
these operations. This means in particular semantic ones, that is properties
the operations have to fulfill in order to make the instance of the generic
algorithm work properly. However, in most existing programming languages
and libraries this aspect is not fully taken into concern. In this chapter we in-
vestigate how such requirements can be represented for generic programming
and, in particular, for supporting generic type checking. We also address the
description of algorithmic requirements.

4.1 Introduction

In generic programming type parameters are implicitly considered as descrip-
tions of an abstract data type, realizations of which are legal instantiations
of generic algorithms. That is generic type parameters describe a type class
[WB89] in which types are collected that are accepted as a legal instantia-
tion. Important for generic programming is, that descriptions of parameters
should also include semantic requirements in order to filter out non-legal
instantiations in the sense that though these instantiations provide all nec-
essary operations, their operations do not behave as expected by the generic
algorithm. Thus a description for both generic type parameters and possi-
ble instantiations is necessary emphasizing the need for checking whether an
instantiation meets the requirements given by a generic type parameter.

45



46 CHAPTER 4. REPRESENTING REQUIREMENTS

In the following, this is made explicit. To do so we use a standard ter-
minology from the area of algebraic specification: The semantics of generic
type parameters T are interpreted as model classes of algebras C(T). This al-
lows for precise formulation not only of the semantic requirements of generic
type parameters T, but also of the possible instantiations A, so that legal
instantiation can be described in forms of a predicate Leg(A, T). We may for
now think of the description of a generic type parameter T given by a sig-
nature Sig(T) giving carriers and operations and a set of first-order axioms
A(T) describing properties of the operations demanded by T. This implicitly
defines a class C(T) of algebras that provide the necessary signature Sig(T)
and whose operations fulfill the axiom set A(T); thus we have

C(T) := { A | Sig(T) ⊆ Sig(A) ∧ A |= A(T) }.

Note that an algebra A ∈ C(T) can provide more operations than given by
the signature Sig(T). This is quite natural as, for instance, a generic group
algorithm should be allowed to be instantiated with a realization of a ring
by just forgetting the multiplication of the ring.

Thus a type parameter T in a generic algorithm in fact represents the
requirements given by the associated class C(T), and instantiations have to
meet these requirements to be legal. Now the instantiated piece of code P

can be naturally interpreted as an implementation of an algebra AP : The set
of implemented operations gives the signature, and the (known or expected)
properties of the implemented operations constitute the set of axioms. Then
P is a legal instantiation for the generic parameter T if and only if the algebra
AP is an element of the model class of T, thus we have

Leg(AP , T) :⇐⇒ AP ∈ C(T).

Note that the definition of the predicate includes in particular the se-
mantic requirements represented by the class C(T). Hence, if an instanti-
ation is legal, the resulting instance of the generic algorithm will not only
be executable, but also be correct, that is behave as expected. This can, as
already mentioned, be compared to algebraic specifications with loose seman-
tics [AKK99] or to concept descriptions [Mus98]. Subtyping, also necessary
for coercion, naturally fits into this approach: A type T’ is considered as a
subtype of a type T, written T′ ≤ T, if every legal instantiation of T’ is also
legal for T, e.g.

T′ ≤ T :⇐⇒ C(T′) ⊆ C(T).
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Thus we have, for example, Ring ≤ Group. Note that C(Ring) ⊆ C(Group)
holds due to the fact that an algebra’s signature may contain more carriers
and operations than given by the description of a type T. As a consequence
algorithms with Group as a type parameter can be legally instantiated with
elements of C(Ring). In addition types in the usual sense easily fit into this
interpretation of generic type parameters: The type integer, for instance,
can be seen as the type class C(Int) in which there are exactly the algebras
having a restriction isomorphic to the integers, thus as a type class which
basically consists of one algebra only. Then all algebras A ∈ C(Int) in par-
ticular come with the properties of a ring; thus we have C(Int) ⊆ C(Ring)
and hence Int ≤ Ring ≤ Group.

Thus we have a general framework for describing types and type param-
eters for generic programming. The framework is based on the notion of
algebras thinking of an instantiated piece of code as a realization of an alge-
bra. This allows to describe (minimal) requirements of a generic algorithm
by means of giving a signature and a set of axioms specifying the necessary
properties; thus in particular semantic requirements are included. Moreover,
we have a precise formalization of what a correct instance of a generic algo-
rithm is: An instantiation is correct if viewed as an algebra is an element of
the class of algebras described by the generic parameter. Furthermore, the
notion of subtype, necessary for coercion especially in the area of computer
algebra, is both easy and flexible, it just corresponds to the subset relation
of classes of algebras.

Hence, from a theoretical point of view types as classes of algebras are
a quite elegant and straightforward description of generic type parameters
and their instantiations. However, to include this approach into a generic
programming language further issues have to be taken into account. First, of
course, the description of generic type parameters T should be formal in the
sense that proving using mechanized reasoning systems is enabled. This al-
lows to infer properties of the type classes C(T) following from the description
of T and also for generic algorithms themselves: Generic algorithms should
be verified with respect to a generic type parameter T. This means proving
that each piece of code P with AP ∈ C(T) can be instantiated resulting in
an instance of the algorithm fulfilling the generic algorithm’s specification.
Finally, it should be proven that particular instantiations are legal, that is
whether AP ∈ C(T) holds.

Second, as the check for legal instantiation should preferably take place
during compilation, it is clear that proving correctness as just described can-
not be done at compile time as a whole. This would slow done the compilation
process. Thus a representation of type parameters T is necessary that on the
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one hand is easy enough to enable fast compilation with some kind of instan-
tiation check indicating that AP ∈ C(T) holds. On the other hand it has to
be formal enough to allow (off-line) verification of legal instantiation, that is
proving that the instantiation check done at compile time is indeed correct,
that is indeed implies AP ∈ C(T).

Third, the description method should provide techniques allowing to build
up a library of type classes C(T). In particular the subtyping relation ≤ on
type parameters T should be reflected by the library so that algebras AP

with AP ∈ C(T′) and T′ ≤ T can be easily coerced to C(T). This in fact
supports both, the introduction of new type classes C(T) by a user and the
instantiation check during compiling. A user only needs to include the new
type class into the library at the level he is working on, coercing this class to
more general ones then takes place automatically. Note again, that algebras
of a type class C(T′) are legal instantiations for all generic algorithms with
type parameter T with T’ ≤ T.

And finally, one should bear in mind that the user of a generic program-
ming language intends to use algorithms for some application. That is, he
should not be overwhelmed with formal specification or theorem proving be-
fore being able to compile programs. Indeed, a user should be able to just
claim that algorithms or instantiations are correct to get programs compiled.
Nevertheless, this should be done in a way allowing to later incorporate mech-
anized reasoning systems to check whether these claims are really true. Also,
in the negative case, the user should be provided with information why the
program does not compile, that is with hints why the instantiation is not
considered legal by the compiler.

In the following sections we consider, starting with algebraic specification
languages [SW99], how to represent (semantic) requirements of type parame-
ters T in a generic programming language in order to meet the demands just
outlined. We particularly take Tecton [KM92, Mus98] into consideration,
a concept description language (re-)designed in view of specification of the
Standard Template Library. Finally, we present an approach focussing on
the properties of operations necessary for being a legal instantiation, thus
focussing on checking for legal instantiation of generic algorithms.

4.2 Algebraic Specification Languages

Considering requirements of generic type parameters T as a class C(T) of
algebras, algebraic specification languages are the natural starting point for
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a formal description of C(T). We therefore briefly review the basics of alge-
braic specification languages. Thereby we in particular focus on techniques
for structuring specifications as this is the key to build up a library of spec-
ifications in order to use them for generic instantiation checking, that is for
checking whether AP ∈ C(T′) holds.

An algebraic specification language combines several ingredients, among
them constructs for specifying properties of individual components, struc-
ture mechanisms for building larger specifications in a modular way, a defini-
tion of the semantics and mechanisms for proving properties of specifications
[SW99]. Basic components, that is flat specifications, are usually established
by a signature and some kind of axioms, mostly first-order formulae. Out of
these new specifications can be constructed using operators on specifications
the specification language provides. The most basic structure mechanism is
enrichment which allows to add more sorts or operations to a specification.
Here, different forms can be distinguished depending on whether new sorts
are introduced by the enrichment or whether the enrichment is a conserva-
tive extension, that is whether all models of the original specification are
still models of the enrichment. The second most basic operation for building
specifications incrementally is the union operator. It puts together two spec-
ifications which may share some subspecification. The semantics of union
can be defined by pushouts based on signature morphisms at the specifica-
tion level and by amalgamation at the model level; for equational logic these
two are compatible [EM85]. Renaming of sorts and operations is needed, for
example, to avoid confusion when putting together two specifications, and
most specification languages also include a derive operator allowing to hide
auxiliary sorts and operations used for the construction of a specification
only. There exist quit a number of further operations but most of them can
be reduced to a sequence of the operations just presented.

A key concept for structuring and reusing specification is the notion of pa-
rameterization, which actually follows the same idea as generic programming
with type parameters. Several different approaches have been studied in the
literature. The classical approach is to consider a parameterization as an
enrichment, where the enriched part describes the admissible arguments for
building instances. Again the semantics is defined via signature morphisms
and pushouts [EM85]. The second well-known approach is more general by
considering any expression over a specification variable as a parameteriza-
tion. In [Wir86] a λ-notation is chosen, where the type of the specification
variable corresponds to the formal parameter specification. In addition, there
exist approaches based on the observation that any (adequately structured)
specification can be considered parameterized without explicitly defining pa-
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rameters [OSC89, Mus98]. Here, instantiation corresponds to substituting
parts of a specification by another.

In the following we give a brief overview of the most important existing
algebraic specification languages, see [AKK99] or [Wir95] for further details
and languages.

Clear [BG77, BG80] was the first algebraic specification language having
therefore a significant influence on the development of many other languages.
Clear already provided specification-building operators for constructing spec-
ifications out of individual components as well as parameterization based on
pushouts. OBJ3 [GWM+92] is an executable specification language which
can be seen as an implementation of a restricted version of Clear. OBJ3 is
based on order-sorted conditional equational logic, and thus becomes exe-
cutable employing associative-commutative rewriting. Order-sorted logic is
used to handle partial functions, errors and subsort polymorphism. Individ-
ual components in OBJ3 come in two versions: There are so-called objects
giving the initial semantics approach as well as theories giving loose seman-
tics of specifications. Structuring of specifications is realized by importing
both objects and theories. OBJ3 provides different kinds of imports with
different meanings, for example that the resulting specification is a conser-
vative extension of the original one. However, as it could require involved
theorem proving, OBJ3 does not check whether these import declarations are
correct, this is the responsibility of the user. In fact these declarations can
be considered as decorated with proof obligations to be proven externally to
ensure that the library of specifications indeed is correct.

ASL [SW83, Wir86] is a specification language with the intention to pro-
vide a clear and sound semantic basis for ”defining more user-friendly higher-
level specification languages” [AKK99]. Therefore it provides only a kernel
language with very basic nevertheless powerful specification-building opera-
tions which can be used to define further operations in a semantically clear
way. ASL is based on loose model-class semantics, that is specifications may
denote several, non-isomorphic algebras. However, generating constraints
are included using a specification-building operator called reachable. It in-
cludes, in contrast to Clear and OBJ3, parameterization based on λ-calculus.
ASL’s structuring mechanisms include, besides the basic ones mentioned
above, an operation observe used to express behavioural abstraction. With
respect to behavioural abstraction two algebras are considered equivalent if
they cannot be distinguished by a predefined set of observations This has been
used to improve the notion of implementation, see [ONS93] for an overview.
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CASL [CoF98, Mos97] is a specification language that allows to describe
both requirements and designs. It is intended to be the starting point for
a family of specification languages; this includes simpler languages obtained
by restrictions as well as more advanced languages obtained by extensions.
CASL, attempting to initiate a standard specification language, combines
what is considered as the most successful features of existing specification
languages. Thus it supports both total and partial functions as well as
predicates used for instance to handle errors. CASL provides a bunch of
specification-building operations, among them not only the basic ones but
also for instance translation, reduction, loose extension, and free extension,
as well as parameterization based on pushouts. In addition CASL allows for
so-called architectural specifications [BST99] which describe how to design a
specified software from separately developed pieces with the help of specified
interfaces. Thus CASL aims at not only supporting the specification phase,
but the whole process of software development.

SpecwareTM [SJ95, SM96] is both a language and a system for formally
specifying and developing software focussing on specification refinements. To
this end the notion of morphism is extended to the notion of interpretation.
Roughly speaking an interpretation from a specification A to a specification
B is a morphism from B into an enrichment of A, where the enrichment is
explicitly stated. This allows to construct models of the source specification
from models of the target specification by taking reducts after they have
been expanded along the enrichment. Thus interpretations are a suitable no-
tion of refinement. When sufficiently refined, specifications can be converted
into programs based on the theory of logic morphisms [Mes89]. Certain re-
quirements on a specification must be met so that the specification can be
translated following a predefined morphism into the programming language
Lisp. By providing further morphisms different programming languages can
be incorporated.

Larch [GH93] in fact stands for a family of specification languages. A
Larch specification consists of two parts: One specific for a chosen program-
ming language, written in the so-called Larch interface language, and an-
other common for all programming languages, written in the so-called Larch
shared language. The Larch shared language is a loose algebraic specifica-
tion language based on equational axioms to build individual components,
called traits. Equational theories are strengthened by providing generating
constraints and some structuring operators; in particular Larch traits can
import other traits, so that enrichment is available. Other structuring op-
erators are renaming and parameterization. In addition, there is a clause
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partitioned by indicating that all distinct values of a sort can be distin-
guished using just the mentioned operators. Furthermore using the keyword
implies assertions can be stated, that is theorems that are intended to hold.
Larch interface languages have been realized for a number of programming
languages, among them Ada, Smalltalk and C++.

Extended ML [KST94, ST91] is designed as a framework for the formal de-
velopment of programs in the Standard ML programming language [Pau96].
It extends (a large subset of) Standard ML by permitting axioms in module
interfaces, in this way describing required properties for module components.
This allows to attach both input and output interfaces to Standard ML func-
tions. Thus the semantics of Extended ML is based on the semantics of Stan-
dard ML, a loose model class based semantics to interpret the specification
part of the language is added. Hence, the relationship between Extended
and Standard ML is more formal than the rather informal one between the
shared and interface language in Larch.

Because the major advantage of formal specification is the possibility
to establish correctness in a rigorous sense, theorem proving techniques and
proof systems for algebraic specification have been extensively studied. Proof
methods for algebraic specifications aim to support proving logical conse-
quences of a specification, that is formulae that hold in all or particular
models of a specification. This serves for learning more about the system
being specified as well as for controlling whether the specification meets the
intended properties. Proving in algebraic specifications can be roughly di-
vided into two forms. Proofs in flat specifications, originating from the ver-
ification of data types, concentrate on deducing in basic specifications or
”flattened” structured specifications. Thus the starting point here is simply
a signature and a set of axioms, mostly first-order equations or Horn formu-
lae. This allows to incorporate theorem provers, or term rewriting systems in
the case of equations, easily. More involved approaches split up the function
symbols of a signature into constructors, that is functions generating the ob-
jects, and defined functions, that is functions completely expressed in terms
of constructors.

Structured proof methods [AKK99, Cen94], in contrast, take into account
the structuring operators of the language. Based on a proof system for basic
specifications, proof rules are given that mirror the individual specification-
building operations, in other words the proof system is defined by induction
on the structure of the specification. Thus formulae proven in a specification
can be lifted to other specifications the construction of which uses this spec-
ification. Often a compromise between both proof methods is used where a
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structured specification is transformed into some kind of intermediate normal
form [AKK99].

Coming back to generic programming now, that is to the specification and
verification of generic algorithms and their instantiations, three points are of
major concern: First, the individual components, that is the basic specifica-
tions, should correspond to both generic algorithms and possible instantia-
tions, that have to be described in order to fix their semantic requirements
and properties respectively. Then these specifications have to be compared
in the sense that they include each other, that is whether an algebra or a
model of an instantiation specification is also a model of the specification of a
generic algorithm. This is the major task in generic programming, to decide
whether an instantiation is legal and should be reflected in the specification
language. In the languages presented above the inclusion of specification is in
some sense implicit depending on the structure mechanisms used. However
given a particular algebra or specification checking whether it is included
in some other specification is not well-supported. Second, one should bear
in mind that specifying the requirements of generic algorithms is not only
concerned with correctness of algorithms and instantiations, but also with
requirements on complexity or performance of the algorithms and their in-
stantiations. Thus a language for the specification of generic algorithms
should also provide support to express such criteria formally, so that these
can become part of an instantiation check. And third, as already indicated,
a library of specifications for generic algorithms together with instantiations
is necessary. Thereby, the library should be designed in a way so that the
structure of the library supports directly the above mentioned questions of
algebra inclusion.

A precise definition of the semantics is in some sense self-evident if we are
looking for formal support. The same holds for proving properties of specifi-
cations which here corresponds to proving that generic algorithms are correct
and that instantiations are legal for them. However, we do not consider this
as an intrinsic component of the specification language. The reason is that
in generic programming proving should rather be done off-line because com-
plete proofs cannot be established at compile time. Thus the major concern
of specification here is to enable for instantiation checking with respect to a
given set of facts; in other words with respect to the knowledge given by a
library of specifications. Nevertheless, the wish to prove that the check done
at compile time is really true of course influences the way of specification:
it must be possible to construct formal proof obligations concerning both
the correctness of instantiation and the underlying library of specifications,
which then are delegated to some mechanized reasoning system.
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4.3 Concepts: Tecton

In the field of generic programming a concept stands for a set of requirements
[SLL02, Aus99] attached to a generic type parameter T. A realization of T
fulfilling these requirements can then be safely instantiated for T. This coin-
cides with the view of type parameters T as descriptions of classes of algebras
C(T) the elements of which correspond to legal instantiations. However, re-
quirements for generic algorithms go beyond the scope usually addressed by
the specification of abstract data types. They include guarantees concerning
complexity or performance [SL00a]. This allows not only to choose the best
realization of T with respect to some criteria, but also to decline an instanti-
ation if, for instance, the resulting algorithms does not perform well enough.
However, in existing programming languages, if any, both specification and
algorithmic requirements are usually given informally. That is they are part
of programming language descriptions or standards, as for example in the
case of the Standard Template Library [MDS01]. Consequently, algorithmic
as well as specification requirements are not part of the entire programming
language and therefore cannot be handled explicitly during compilation.

Tecton [Mus98, MS02c] is a language that allows to describe concepts,
that is collections of objects that satisfy a common set of requirements.
Though also based on algebraic specification—a concept is in fact a class
of many-sorted algebras—Tecton was designed to support formal software
development and, in particular, specification and verification of generic sys-
tem components [KM92]. Thus Tecton differs from common algebraic spec-
ification languages in some points. First, the signature given by a concept
description describes the sort and function that an algebra belonging to the
concept must at least provide, that is additional sorts and function may oc-
cur. Second, Tecton allows for parameterization without explicitly stating
what the parameters are. Nearly all constituents of a concept may be re-
placed later, this includes also subconcepts. Third, the language includes
the definition of legality conditions that must be met when using each con-
struct of the language. Also Tecton allows to state lemmas not only concern-
ing particular properties of a concept, but also concerning relations between
concept instances. The Tecton semantics assign to each concept C a set of
many-sorted algebras sem(C). Thereby, the syntax and formal semantics of
Tecton are such that a corresponding proof theory requires only first-order
and inductive proof methods.

In the following we briefly outline the major constructs of Tecton and
provide some examples (see [MS02c] for details and more examples), before
we give a discussion on how Tecton’s concept descriptions can be used to
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formally state semantic requirements of type parameters T so that legal in-
stantiation can be checked.

The basic objects of Tecton are simple concept descriptions, that is con-
cepts without inheritance from other concepts. Here, sort and function sym-
bols are introduced using the keyword introduces and properties of the con-
cept are defined in a first-order language following the keyword requires.
The concept of a reflexive relation, for instance, can be described the follow-
ing way. Actually, the Reflexive concept would inherit from a more general
concept Relation (see [LMSS99]), but for illustration purposes we here give
a stand-alone description.

Definition: Reflexive

introduces domain,

R: domain, domain -> bool;

requires (for x: domain) x R x.

A generates clause restricts the algebras belonging to the concept to those
in which the elements of a sort are finitely generated by the functions men-
tioned. This allows to use induction schemes for proving properties of the
corresponding sort. For example, the following description defines the con-
cept of natural numbers giving the usual induction scheme.

Definition: Natural

introduces naturals,

...

generates naturals freely using 0, succ;

...

Note that generates clauses can occur without the word freely. In this case
the terms generated need not be distinct. In our example, thus algebras may
identify, for instance, 0 and succ(succ(0)), which means that the concept
Natural would include the residue class rings Zn also.

Subsort declarations are possible in Tecton with their obvious meaning;
they are given in the introduces clause The non-zero natural numbers, for
instance, can be introduced in the concept Natural as follows.

nonzero < zero

However, if a subsort is introduced, Tecton requires the definition of a pred-
icate in the requires clause describing in which cases the downcast of an
element of the supersort to the subsort is possible. This is written with a
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special syntax using the in operator. For the example concept Natural the
predicate would look like this:

requires (for n: naturals)

n in nonzero = not(n = 0),

...

Now, the semantics sem(A) of a simple concept description A is just the set
of many-sorted algebras providing at least the sorts and functions given by
A, which means in Tecton notation that A belongs to the syntactic concept
syn(A), and fulfilling all the requirements, subsort relations and generates

clauses in the usual sense.

To reuse already described concepts Tecton provides refines and uses

clauses. In addition they also allow to identify parts of a definition that can
be treated as parameters and can thus be replaced in later concept descrip-
tions. The concept Quasi-order for example can be easily derived from the
concepts Reflexive and Transitive.

Definition: Quasi-order

refines Reflexive, Transitive.

The meaning of this concept description is that the requirements of the be-
quested concepts are combined in the new concept, that is roughly speaking
we have sem(C) = sem(A) ∩ sem(B) if C imports A and B. Note that in the ex-
ample this implies that each algebra belonging to the concept Quasi-order

also belongs to both concepts Reflexive and Transitive.

Concept descriptions using inheritance, of course, can also come with the
postulation of further properties using the requires clause. This can be
used to build special instances of general concepts, for example to introduce
the equivalence relation in commutative rings, saying that two elements are
associated to each other, if they only differ by a unit. To do so the concept
Equivalence-relation is combined with the concepts Commutative-ring-
with-identity and Unit to provide the necessary vocabulary. Then the
general equivalence relation equiv inherited is specialized in the requires

clause to give it the particular meaning used in commutative rings.

Definition: Unit-equivalence

refines Equivalence-relation;

uses Commutative-ring-with-identity, Unit;

requires (for x, y: domain)

(x equiv y) = ((for some z: units) x = z * y).
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Note the difference between a uses and a refines clause [MS02b]. A use

clause indicates that the imported concept is a component of the resulting
concept, that is the imported concept is preserved in the sense that its seman-
tics are not changed. A refines clause in contrast, says that the imported
concept is modified. This means that after importing the concept some al-
gebras of the concept will be ruled out. To be more precise, not changing
semantics means that each algebra belonging to the original concept A must
also appear in the new concept B importing A and vice versa. However,
because the new concept B may introduce new sorts and function symbols
Tecton requires this for the restriction to the original signature. So let B|A be
the subalgebra of B whose sorts and function symbols are restricted exactly
to those available in A, and set

B|A = { B|A | B ∈ sem(B) }
for concepts A and B with sem(B) ⊆ sem(A). Note that B|A ⊆ A|A ⊆ sem(B)
holds. Then if a concept B imports a concept A via a use clause the condition
that B preserves A is formally given by

sem(B) ⊂ sem(A) ∧ B|A = A|A.
This allows to treat the inherited concept description as a parameter for
which any algebra belonging to it can be safely substituted and can be com-
pared with a conservative extension. This is not the case if a refines clause
is used, here inconsistencies between the properties of the inherited and be-
quested concepts may occur. Thus the legality condition in this case is

B|A ⊂ A|A ∧ B preserves any concept that A preserves.

That is, though B may change A, this is not allowed arbitrarily: Subconcepts
preserved by A may not be changed. This guarantees that the modification
of A is indeed a refinement and does not change A’s original intention. To
conclude with, in the example concept above the legality condition belonging
to the import of concept Commutative-ring-with-identity reads

Unit-equivalence|Commutative-ring-with-identity =

Commutative-ring-with-identity|Commutative-ring-with-identity

which means that all commutative rings with identity indeed appear in the
semantics of Unit-equivalence.

Instantiation is the most powerful Tecton construct. As already men-
tioned, concept descriptions do not have explicit parameters; instead many
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constituents of a concept description can be considered as parameters and
thus be replaced, for instance subconcepts given by uses or refines clauses.
Instantiations in a concept description are indicated using a with clause
which appears directly after the concept name. For example, the following
renames the function symbol equiv to the more usual notation ∼.

Unit-equivalence [with ∼ as equiv]

More important is concept instantiation where a whole part of a concept
description, a subconcept, is replaced by another one. We illustrate this by
giving the concept description of ample sets in commutative rings. A set of
representatives with respect to an equivalence relation is a set that contains
exactly one element out of each equivalence class. This has been introduced
in Tecton in the concept Set-of-representatives for arbitrary sets and ar-
bitrary equivalence relations (see [LMSS99]). Now, an ample set is a special
set of representatives where the set is a commutative ring and the equiva-
lence relation is the unit equivalence presented above. That is the concept of
ample sets emerges from the concept of set of representatives by restricting
both the possible sets and equivalence relations. Instead of repeating all the
requirements for commutative rings and unit equivalence, Tecton allows to
build a new concept based on Set-of-representatives by replacing the
subconcept Equivalence-relation with the concept Unit-equivalence.
Thus the concept Ample-set is given by

Definition: Ample-set is Set-of-representatives

[with Unit-equivalence as Equivalence-relation].

Note that in the concept description of Set-of-representatives it was not
explicitly stated that Equivalence-relation is a parameter that can be
replaced; Equivalence-relation was just inherited by a uses clause. This
gives the language user greater flexibility, because it is sometimes difficult to
foresee which constituents of a concept may be useful to substitute later.

However, replacement of concepts is not completely arbitrary. As already
mentioned there are again legality conditions avoiding incorrectness due to
uncontrolled instantiation. Consider for example the concept replacement D

= C[with B as A]; parallel replacements are allowed, but for illustration it
suffices to treat one only; for further details see [MS02c]. First of all, concept
A must be available in concept C, so that the instantiation can take place.
Now the intention is that if B preserves or modifies A, then after instantiating
B for A in C, the resulting concept D should preserve or modify B. So, if
B|A = A|A, that is if A behaves like a component in B, it is required that C ⊂ B

and C|B = B|B holds to ensure that B acts like a component of D. Similarly,
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if we have B|A ⊂ A|A, we require that C|B ⊂ B|B and that C preserves every
concept that B preserves, thus that B looks like an ingredient of D.

As a consequence each concept inherited by the base concept C through
a use or refines clause is actually a formal parameter and can be replaced
provided the legality conditions are fulfilled.

Tecton has been incorporated in the programming language SuchThat
[Sch96] to formally specify generic algorithms. Tecton concepts are used
to describe requirements under which a generic algorithm works correctly.
Therefore, the algorithm header does not only include an input/output spec-
ification, but also explicitly names some Tecton concept by a use clause.
These concepts not only provide the sorts and identifiers available in the
algorithm, but also specify semantic requirements for legal instantiations of
generic parameters T, that is C(T) is identified with the semantics of the
concepts imported. Thus if an algorithm A is specified with a concept C then
each instantiation P with AP ∈ sem(C) is a legal instance for A.

Consider as an example the well-known Euclidean algorithm for comput-
ing greatest common divisors. The method works for all Euclidean domains
given by the concept EuclideanRing. However, because greatest common
divisors are only unique up to units, ample sets have to be incorporated to
pick a result in a deterministic manner. This corresponds to taking the ab-
solute value in case of integers. Using these two concepts the algorithm can
be stated as follows.

Algorithm: w := Euclid(u,v)

uses EuclideanRing,

Ampleset [with A as set-of-representatives].

Input: u,v ∈ domain.

Output: w ∈ A such that w = gcd(u,v).

while v 6= 0 do {z := u mod v; u := v; v := z};
w := representative(u).

Note that the types used in the input/output specification correspond to
sorts introduced in the concepts imported. The same holds for the function
descriptor gcd describing the function computed by the algorithm. In the
algorithm body two function descriptors mod and representative appear.
They must also have a counterpart in the Tecton concepts. However, Tecton
concepts only specify properties of the function descriptors for which algo-
rithms must be provided. To find a (generic) algorithm realizing for example
representative algorithm headers have to be checked whether the output
specification states that this function is computed. To avoid this search,
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SuchThat therefore allows to replace function descriptors by algorithm de-
scriptors, which are not included in the original Tecton language. A function
descriptor corresponds to the name of a (generic) algorithm which then is
used as the realization of the function descriptor being substituted. In the
example one would thus replace representative by an algorithm descriptor
REP standing for the corresponding algorithm.

Algorithm: w := Euclid(u,v)

uses EuclideanRing,

Ampleset [with A as set-of-representatives

REP as representative].

Input: u,v ∈ domain.

Output: w ∈ A such that w = gcd(u,v).

while v 6= 0 do {z := u mod v; u := v; v := z};
w := REP(u).

As the example shows Tecton is a natural way to specify the application
range of generic algorithms in a natural though exact way. In comparison
with other algebraic specification languages Tecton possesses a number of
advantages for doing that. Signatures of algebras are not restricted to the
one of the concept description, they may contain further sorts or function
symbols. This is important for generic programming because, for instance,
group algorithms should be applicable to rings. As already mentioned con-
cept instantiation and replacement can be done without referring to explicitly
stated parameters. Nevertheless correctness of instantiation can be ensured
by verifying the corresponding proof obligations. This gives the user greater
flexibility when developing concepts and algorithms.

Furthermore, the way Tecton concepts are built naturally supports check-
ing for correct instances. If, for instance, the example algorithm is to be in-
stantiated with the integers, it has to be checked whether the integers, given
by the concept Integer, form a Euclidean domain, that is belong to the con-
cept EuclideanRing. Now, if the concept Integer imports EuclideanRing

by a use or refines clause this is obvious. Following the inheritance of
concepts a hierarchy of concept inclusions can be easily built. But, what is
more important, Tecton allows to formulate lemmas about concept inclusion
and equality. Thus the following states that every algebra belonging to the
concept Integer in particular belongs to the concept EuclideanRing.

Lemma: Integer implies EuclideanRing.

Of course Tecton lemmas come with corresponding proof obligations, namely
to verify the inclusion. However, as stated explicitly these concept inclu-



4.4. A PROPERTIES-BASED APPROACH 61

sions can be used for checking legal instantiation. Thus the Tecton language
provides constructs not only to build a hierarchy of structures, but also to
present it in a way supporting both the specification of generic algorithms
and the check for legal instantiation of generic algorithms. In particular,
Tecton allows to include special domains like the integers into a hierarchy of
abstract domains, which is crucial for the instantiation of generic algorithms.

4.4 A Properties-based Approach

In the last section it has been shown how the Tecton language allows to spec-
ify generic type parameters T by identifying the class of legal instantiations
C(T) with the semantics of a concept description CT of T. This description
provides both the set of operations and their semantic properties necessary
for a legal instantiation. Thus every instance of the concept, that is every
algebra A with A ∈ sem(CT) is a legal instantiation of T. However, though a
concept comes as a module, its definition may be distributed in a number
of imported concepts or extensions. This makes it sometimes difficult to see
which properties are actually required by a generic algorithm, which is in
particular necessary if a non-legal instantiation occurs. It may thus be bet-
ter to give the possibility to describe individual properties of operations in
a stand-alone manner. The combination of properties attached to a generic
algorithm as the description of a generic type parameter T then gives the
individual properties that as a whole are necessary for legal instantiations.
Though Tecton supports the combination of properties by providing various
constructs to extend, combine and refine concept descriptions, the descrip-
tion of the requirements necessary for a generic algorithm and the description
of the algorithm itself remain separated.

In the following section we present an approach for the description of
generic type parameters T focussing on the individual properties of the oper-
ators involved, that is on the operators and their properties necessary for an
instantiation to be legal. The idea is to define properties of operators inde-
pendently of domains or concept descriptions [Sch01b]. Properties can then
be arbitrarily combined for both the description of requirements for generic
algorithms and the description of properties a possible instantiation comes
with. These are directly attached to the algorithms allowing to specify re-
quirements of generic algorithms at an arbitrary level of detail. In particular
the required operations themselves to be provided by an instantiation are
explicitly given in the algorithm’s description. This simplifies the definition
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of legal instantiation and thus allows for a straightforward check.
Consider for example the property of being associative for an opera-

tion + over a domain R. This property is introduced as a predicate named
Associative. The arguments correspond to the sort and function symbols
necessary to state the property, here a domain R and the operation +.

Property: Associative(R,+)

with +: R x R -> R

means for all a,b,c ∈ R: a + (b + c) = (a + b) + c.

Thereby the (predicate) name of the property can be used to refer to it. Note
again that the sorts and operators necessary for the semantic requirement
are explicitly given as the arguments of the predicate. As already mentioned
combining such properties gives the description of a generic type parameter
T. Consequently, the description of a generic type parameter T is given by a
signature, and a set of properties defined over this signature, that is

T = (Sig(T), P rops(T))

where all sort and function symbols used in Props(T) must also appear in
Sig(T). Note that the signature Sig(T) may include more sort and function
symbols than necessary for the properties following. This allows to distin-
guish between applicability and correctness of an instantiation as mentioned
in chapter 2. The signature gives the syntactic requirements, that is which
operations an instantiation has to provide; the set of properties describes
the semantic requirements leading to a well-behaved instance of the generic
algorithm. In addition this enables to specify possible instantiations, that
is individual algebras, similarly by a signature giving the operations the in-
stantiation comes with and a set of properties of these operations. Using
this representation the class of structures a description of a generic type
parameter defines simply is

C ′(T) := { A | Sig(T) ⊆ Sig(A) ∧ Props(T) ⊆ Props(A) }.

Note that in contrast to C(T) where all properties of the algebras A following
from a set of axioms were taken into account, here a somewhat different
point of view is chosen: Not the properties an algebra A implicitly obeys are
considered, but only the properties explicitly stated about A. It follows that
an algebra A may not belong to C ′(T) just because properties A comes with
are not explicitly stated. Thus it may happen that algebras belonging to C(T)
are ruled out. The properties attached to an algebra A may be interpreted as
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the amount of knowledge available about A at a given point of time that may
evolve. Thus C ′(T) can be seen as an approximation of C(T) with respect to
properties explicitly known and stated.

On the other hand, however, the definition of the legality predicate with
respect to C ′(T) reduces to a simplified version of the one given in section 4.1.
Again only properties explicitly given in the description of type parameters
and algebras are considered. Thus, an instantiation A = (Sig(A), Props(A))
is legal, that is an element of C ′(T), if it provides the necessary operations
given by the signature of the parameter T and all the properties required by
T are included in the properties of A. Thus we get

Leg(A, T) :⇐⇒ Sig(T) ⊆ Sig(A) ∧ Props(T) ⊆ Props(A).

The subtyping problem can be simplified also. A type T’ is a subtype of
another type T, if C ′(T′) ⊆ C ′(T) holds, that is if T’ explicitly requires more
operations symbols or more properties than T. This can now, similarly to the
legality predicate, easily be checked by comparing both the signatures and
the set of properties of T and T’ with respect to inclusion, that is we have
the following refinement of the definition given in section 4.1.

T′ ≤′ T :⇐⇒ Sig(T) ⊆ Sig(T′) ∧ Props(T) ⊆ Props(T′)

Again ≤′ can be seen as an approximation of ≤ where only properties known
and explicitly stated about the types T and T’ are taken into account. How-
ever, the need to compare sets of algebras has been reduced to the need of
comparing sets of properties being represented by predicates. This can be
seen as a compromise between considering the complete set of algebras the
description of a generic type parameter T allows for and the effort necessary
to check whether an algebra belongs to this set. Nevertheless formal defi-
nitions of properties are provided so that there is the possibility to further
properties of generic algorithms and possible instantiations.

Properties-based descriptions of generic type parameters can be used to
specify generic algorithms in a way similar to the one used in SuchThat.
The description, that is a signature and a set of property predicates over this
signature, is attached to the algorithm header and in this way becomes part of
the programming language, which can be processed in order to check semantic
requirements of generic algorithms. Possible instantiations also come with
such a description and thus allow for this check by simply comparing sets of
properties with respect to inclusion. For example, the Euclidean property
can be formalized as follows.
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Property: Euclidean(R,+,*,0)

with +,*: R x R -> R,

0,1: -> R

means ex ϕ: R\{0} -> N:

for all a,b ∈ R st b 6= 0:

ex q,r ∈ R:

a = q * b + r & ϕ(r) < ϕ(b) or r = 0.

Note that the definition of this property allows to be used not only as usual
for integral domains, but can be applied to every domain obeying the neces-
sary operations. Defining the Euclidean property on top of integral domains
implies that every legal instantiation for an algorithm requiring this property
must in particular be an integral domain independent of whether this is nec-
essary for the algorithm to work properly. Using a properties-based approach
requirements can be easily split up in what is indeed necessary and in what
is not. For the Euclidean algorithm we get in particular that multiplication
of the underlying domain need not be commutative.

Algorithm: w := Euclid(u,v)

[(R,+,*,0,1,S,rep);

Group(R,+,0), Associative(R,*), Distributive(R,+,*),

Euclidean(R,+,*,0),

AmpleSet(S,R), AmpleFunction(rep,S).]

Input: u,v ∈ R

Output: w ∈ S such that w = gcd(u,v).

while v 6= 0 do

{z := u mod v; u := v; v := z};
w := rep(u).

Note the use of property predicates at different levels: The three usual prop-
erties describing the axioms of a group have been put together in one prop-
erty. This is nothing else than an abbreviation, of course they could have
been also stated themselves. This gives the user the freedom to work on the
level of abstraction he considers appropriate. In the example, because not
all properties the multiplication of a ring comes with are necessary for the
Euclidean algorithm the necessary ones has been attached separately, namely
that multiplication is associative and distributes with addition. Nevertheless
a user interested in ring only can apply the algorithm. Thus focussing on
individual properties of operations supports the attempt to present minimal
requirements of generic algorithms without bothering a possible user with
every detail.
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Legal instantiations can now be found by checking whether properties
required by a generic algorithm are attached to them. For example, a de-
scription of the integers with an appropriate ample set would include the
necessary properties for the above algorithm and thus constitute a legal in-
stantiation for the Euclidean algorithm. The problem of finding appropriate
subalgorithms can be also addressed. To find a generic algorithm that can
be applied the description attached to it is used. If the generic algorithm
does not require more properties than the algorithm to be used as a subalgo-
rithm, then the subalgorithm can be applied. In other words the signature
and the properties attached to the subalgorithm must be contained in the
generic algorithm’s signature and properties, that is the type T of the generic
algorithm must be a subtype of T’, the subalgorithms type. For example,
the computation of the mod operation does not require an ample set, but
only some properties concerning rings, among them of course the Euclidean
property to ensure termination. Thus a (non-efficient) generic algorithm for
the mod operation that can be used in the generic Euclidean algorithm can
be specified as follows.

Algorithm: w := mod(u,v)

[(R,+,*,0,1);

Group(R,+,0), Associative(R,*), Distributive(R,+,*),

Euclidean(R,+,*,0)]

Input: u,v ∈ R such that v 6= 0

Output: w ∈ R such that w = u mod v.

w := 0;

while u 6= 0 do

{u := u - v; w := w + 1};
w := u.

As we see, both the signature and the properties attached to the algorithm
are contained in the ones of the generic Euclidean algorithm, thus it is a legal
subalgorithm. Note that this can be easily checked due to the representa-
tion of properties predicates. Special non-generic algorithms can be easily
incorporated, too. Here one has to attach a description of the properties the
particular domain comes with, for example for the ring of integers. Note that
we have abbreviated the individual properties of the integers with a predicate
EuclideanRing. Then particular algorithms using special properties or rep-
resentations of the integers can be described. For example the mod operation
can be realized by the involved division algorithm following [Knu98], which
we have here simply abbreviated by MOD.
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Algorithm: w := mod(u,v)

[(Z, +Z, ∗Z, 0Z, 1Z);

EuclideanRing(Z, +Z, ∗Z, 0Z, 1Z)]

Input: u,v ∈ Z such that v 6= 0

Output: w ∈ Z such that w = u mod v.

w := u MOD v.

Now, the predicates stated for this algorithms include the ones necessary for
the generic mod algorithm, thus the algorithm (and every generic algorithm
using the mod algorithm that is to be instantiated with the integers) can
apply this particular integer version.

The same holds for the realization of the ample set and the rep subal-
gorithm in the generic Euclidean algorithm. The non negative integers, for
instance, constitute an ample set for the integers and computing a represen-
tative means nothing else than taking the absolute value. This can be easily
specified as follows.

Algorithm: w := rep(u)

[(Z, +Z, ∗Z, 0Z, 1Z);

EuclideanRing(Z, +Z, ∗Z, 0Z, 1Z),

AmpleSet(Z≥0, Z), AmpleFunction(rep,Z≥0)]
Input: u ∈ Z
Output: w ∈ Z≥0 such that w = rep(u).

w := |u|.

Note that the set of properties here has been extended to describe the chosen
ample set for the integers. Of course these properties hold for the integers,
and thus are independent of the particular algorithm they are attached to.
This suggests to keep properties of special domains as a module separated
from the entire algorithms from which they can be accessed if an algorithm
with this domain is taken into consideration.

4.5 Algorithmic Requirements

The most important characteristic of an algorithm is its correctness in the
sense that the algorithm’s formal specification completely and correctly de-
scribes what the algorithm computes. This of course holds for both generic
and non-generic algorithms, although as we have seen correctness of generic
algorithms comes in two facets, correctness of the generic algorithm itself
and correctness of its particular instances. However, apart from this more
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theoretical issue there are other relevant points, especially if the algorithm is
to be stored in a library and applied by users. The main reason is that if an
algorithm is stored in a library most users take the algorithm’s correctness
for granted and are more interested in topics like the algorithm’s running
time or memory management.

In particular, the algorithm’s efficiency is of major interest. However, for
generic algorithms this does not only depend on the algorithm itself, but also
on the efficiency of the subalgorithms being instantiated. There are generic
algorithms where the underlying method is, in principle, efficient, but the effi-
ciency of the final non-generic algorithm depends on the instantiation as well.
So for example, computing the greatest common divisor based on Euclid’s
method is accepted to be sufficiently efficient for the integers and other spe-
cial domains. However the efficiency of a generic version strongly depends on
the efficiency of the instantiated algorithm for computing remainders. That
is, the behaviour of an instantiated generic algorithm also depends on prop-
erties of the code being instantiated. Thus it seems reasonable to provide
the specification of generic algorithms with additional information on such
algorithmic requirements.

This can be information about the expected complexity of the instanti-
ated code as done in the (informal) specification for the Standard Template
Library [MDS01, Aus99]. In the area of computer algebra we find other ex-
amples for algorithmic requirements. Algorithms for computing with poly-
nomials are practically efficient only for a bounded degree. Another example
are matrices where the matrices’ dimension plays the role of the complex-
ity parameter. And, as already mentioned in section 2.4, even the correct
behaviour of the instantiated generic algorithm can depend on the instantia-
tion’s parameters, for example on the number n of elements when computing
inverses in finite fields. Specifying this explicitly does not only support users
but also enables automated checking whether instances will meet the ex-
pected algorithmic behaviour.

It is straightforward to include algorithmic requirements into the proper-
ties-based approach because properties are described symbolically. For ex-
ample, the fact that the algorithm rep computing associated elements of an
ample set should be of linear complexity can be easily expressed as follows.

LinearComplexity(rep)

Then this predicate can be included in both the generic algorithm’s specifica-
tion with the intention that only linear algorithms should be instantiated for
rep and in the instantiation’s specification expressing that the instantiation
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works in linear time. By comparing the sets of properties it can then be
ensured that only instances with a linear subalgorithm are legal.

The Tecton concept description language also allows for expressing algo-
rithmic requirements. Here, the necessary concepts have to be introduced
expressing the desired properties. After that importing these concepts into
the algorithm’s header specification restricts possible realizations to those
with the desired additional properties.

In the following we give an example for specifying algorithmic require-
ments in Tecton. Thereby we focus on computational complexity and extend
the Tecton Concept Library [LMSS99] so that various classes of complexity
can be described easily. Including these Tecton classes in the algorithms’
headers as already seen in section 4.3 then restricts the possible instantiated
algorithms to the ones of this class in this way expressing algorithmic re-
quirements for complexity.

To describe the complexity of functions usually sets of positive real-valued
functions, that is functions returning non negative real numbers, is used. In
the Tecton concept library a set of functions is given in the concept Map

together with a function apply assigning each pair consisting of a map m

and an element d of the domain an element of the range, thus the value of
m under d. The concept Function-set where different sets of functions are
denotable, can therefore be constructed by merging the concepts Map and
Set and identifying the domain over which sets are built with maps as done
in the following definition.

Definition: Function-set

refines Map,

Set [with maps as domain, set-of-maps as sets];

Now sets of positive real-valued functions are simply given by the concept
Function-set where the range is substituted with the positive real numbers.
In text books the real numbers are chosen because computing time functions
of algorithms are usually counting elementary operations, thus map into the
natural numbers. To define the complexity of functions, however, not the
real numbers are necessary, but only properties of an ordered ring in order
to compare function values. The real numbers thus represent a particular
choice of complexity functions which can be substituted if necessary. This is
exploited in the definition of the following concept Complexity which there-
fore does not import the concept Real but only the concept Ordered-ring

together with a sort positive-domain representing the elements greater than
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0. Note that the real numbers Real are a realization of this concept, thus
our approach is a slight generalization of the one found in text books.

The definition of the complexity of functions follows [Col74] where a bi-
nary relation ≤, called ”dominated by”, on positive real-valued functions
is introduced to compare functions with respect to their returned values.
Roughly speaking a function f is dominated by a function g, if all values of
f are not greater than the ones of g multiplied with a constant c. This is ex-
pressed using the function apply inherited from the concept Function-set.

Definition: Complexity

refines Ordered-ring

[with range as domain,

positive-range as positive-domain],

Function-set;

introduces ≤: maps x maps -> bool;

requires (for f,g: maps)

(f ≤ g) =

((for some c: positive-range)

(for a: domain) apply(f,a) ≤ c * apply(g,a)).

The concept Complexity can be extended by introducing some more or less
obvious notions derived from the definition of ≤ such as ∼, < or ≥. The
most important one here is the notion of a complexity class, that is the set
of all positive real-valued functions dominated by a given function. Thus
complexity-class is a function from maps into sets of maps. This will be
used in the following to define more special complexity classes that can be
attached to algorithms.

Extension: Complexity

introduces

complexity-class: complexity-functions -> set-of-maps,

≥: complexity-functions x complexity-functions -> bool,

∼: complexity-functions x complexity-functions -> bool,

<: complexity-functions x complexity-functions -> bool,

>: complexity-functions x complexity-functions -> bool;

requires (for f,g: complexity-functions)

(f ≥ g) = (g ≤ f),

(f ∼ g) = (f ≤ g and g ≤ f),

(f < g) = (f ≤ g and not(g ≤ f)),

(f > g) = (g < f),

(f in complexity-class(g)) = (f ≤ g).
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The above concept describes all functions and all complexity classes with
respect to ≤. To express the complexity of algorithms we in addition need
a concept defining a particular complexity class in which the algorithm’s
computing time function shall lie. Therefore in the following refinement of
concept Complexity a particular complexity function g is introduced and
the requirements says that all functions belonging to the concept must be
dominated by g.

Definition: Complexity-class

refines Complexity;

introduces g: -> complexity-functions;

requires (for f: complexity-functions)

f in complexity-class(g).

Particular complexity classes can now be easily defined by formulating fur-
ther requirements on the function g. For example attaching the requirement
g(a) ≤ c ∗ a for all a and some positive constant c restricts the maps of the
concept Complexity to linear ones, that is all linear functions are part of
the new concept. Note however, that for this requirement the domain and
the range of g must be the same in order to compare g(a) and c ∗ a. This is
why the with clause in the following definition is necessary, it identifies the
domain and the range.

Definition: Linear-complexity

refines Complexity-class

[with domain as range,

positive-domain as positive-range];

requires (for some c: positive-domain)

(for a: domain) apply(g,a) ≤ c * a.

In addition more special complexity classes can be built, also based on com-
plexity functions over particular domains like the real numbers. For example,
if g is intended to be the function that maps every real number r to r2 +r+3,
this can be done by substituting the concept Real for Ordered-ring. Note
that the concept Real need not be imported, the concept replacement is suf-
ficient.

Definition: Special-complexity-class

refines Complexity-class [with Real as Ordered-ring],

requires (for r: reals)

apply(g,r) = 5 * r * r + r + 3.
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So far we have formalized the basics notions necessary for specifying the
complexity of algorithms. The key point is that these descriptions can be
combined with the specification of generic algorithms similar to other require-
ments as done in section 4.3. To do so, we first define an abstract concept
for algorithms. Here, a sort algorithm is introduced on which functions de-
scribing properties of algorithms are working. The functions valid-input

and valid-ouput map an algorithm a to the sets of element serving as input
and output of the algorithm, respectively. Note, that valid-input(a) is a
subset of domain and valid-output(a) a subset of range.

The function sem maps algorithms a onto elements of algorithm-maps,
that is onto functions describing the input/output behaviour of a. Similarly
time associates with each algorithm a an element of complexity-functions,
that is the computing time function of a. Other characteristics of algorithms
such as a memory function space can be introduced the same way. We also
included requirements describing the relationship of valid-input(a) and
domain as well as valid-ouput and range.

Definition: Algorithm

uses Set [with sets-of-domain as sets],

Set [with range as domain, sets-of-range as sets],

Map [with algorithm-maps as maps],

Map [with complexity-functions as maps,

complexity-range as range];

introduces algorithms,

valid-input: algorithms -> sets-of-domain,

valid-output: algorithms -> sets-of-range,

sem: algorithms -> algorithm-maps,

time: algorithms -> complexity-functions,

space: algorithms -> complexity-functions.

requires (for a: algorithms; i: domain; o: range)

(i in valid-input(a)) =

(apply(sem(a),i) in valid-output(a)),

(o in valid-output(a)) =

((for some i: domain)

i in valid-input(a) and apply(sem(a),i) = o).

The semantics, that is the function sem, of particular algorithms can
be described in more detail by refining domain and range. For example,
to describe sorting algorithms both domain and range are identified with
sequences imported by the concept Finite-sequence-with-order, a re-
finement of the concept Finite-sequence in which the range of sequences
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is equipped with a partial order. Then valid-input is defined to be the set
of all sequences for an arbitrary sorting algorithm a. Finally, the seman-
tics, that is the input/output behaviour, of sorting algorithms are defined as
usual applying the functions permutation and ordered given by the con-
cepts Finite-sequence and Finite-sequence-with-order respectively.

Definition: Sorting-algorithm

refines Algorithm [with sequences as domain,

sequences as range];

uses Finite-sequence-with-order;

requires (for a: algorithms; s: sequences)

s in valid-input(a),

permutation(apply(sem(a),s),s),

ordered(apply(sem(a),s).

The same can be done for the description of complexity. Note that if a is
an algorithm, time(a) is a function mapping elements of domain, thus in par-
ticular of valid-input(a), into range; that is time(a) gathers the amount
of computing time for each individual input of the algorithm a. In concept
extensions time can be refined to characterize more common versions of com-
puting time functions. For example, using the concept of equivalence-classes
the maximum time function of algorithms can be described as usual. The
value of the worst-case complexity function worst-time for an equivalence
class is just the maximum value time returns for the elements of this class.

Extension: Algorithm

uses Equivalence-class,

Partial-order [with complexity-range as domain],

Map [with equivalence-classes as domain,

worst-case-complexity-functions as maps,

complexity-range as range];

introduces

worst-time: algorithms ->

worst-case-complexity-functions;

requires (for a: algorithms; e: equivalence-classes;

d: domain)

(for some max: domain)

(max in e) and

((d in e) and (d in valid-input(a))) implies

(apply(time(a),d) ≤ apply(time(a),max)) and

(apply(worst-time(a),equivalence-class(max)) =

apply(time(a),max)).
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Now, the combination of the concepts Algorithm and Complexity al-
lows to state algorithmic requirements of particular algorithms: The func-
tions such as time describing these properties are inherited from the concept
Algorithm. These functions are required to belong to complexity classes
given by the concept Complexity. This is realized by introducing complex-
ity functions, here called g and worst case, generating different complexity
classes. Note, that this is done for a newly introduced constant alg of sort
algorithms. This allows to instantiate the concept with various algorithms
in this way specifying their complexity.

Definition: Algorithm-complexity

uses Algorithm, Complexity,

Complexity [with worst-case-complexity-functions as

complexity-functions];

introduces

alg: -> algorithms,

g: -> complexity-functions,

worst-case: -> worst-case-complexity-functions;

requires

time(alg) in complexity-class(g),

worst-time(alg) in complexity-class(worst case).

The key point is that the functions g and worst case describing the
complexity of the algorithm alg can be refined so that appropriate require-
ments for the actual algorithm are given. For example, the following concept
defines linear functions. A special map linear is introduced whose values
are bounded by a constant c. This map is then used as an instantiation in
the case where linear functions are required.

Definition: Linear-function

refines Map [with domain as range];

uses Ordered-ring;

introduces linear: -> maps;

requires (for some c: positive-domain)

(for a: domain) apply(lf,a) ≤ c * a.

Thus, to specify for example that in the Euclidean algorithm the sub-
algorithm computing associated elements of an ample set should work in
linear time Linear-function is additionally imported. Then the function
linear can be substituted for the function worst case defined in concept
Algorithm-complexity in this way ensuring that the worst-case complex-
ity function of algorithm alg identified with the desired subalgorithm REP is
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dominated by a linear function. Hence we get the following algorithm header
for algorithm Euclid extending the one from section 4.3.

Algorithm: w := Euclid(u,v)

uses EuclideanRing,

Ampleset [with A as set-of-representatives,

REP as representative];

Linear-function,

Algorithm-complexity [with REP as alg,

linear as worst case];

Input: u,v ∈ domain.

Output: w ∈ A such that w = gcd(u,v).

This specification provides the user not only with information with which
domain the generic algorithm should be used but also indicates properties
of the algorithms to be instantiated in order to result in an efficient non-
generic algorithm. Note that the information is attached directly to the
algorithm and not given separately in some external description or standard.
In addition, using this approach the user can define his own algorithmic
requirements by extending the concepts given. He can introduce concepts for
further characteristics of algorithms similar to the way complexity functions
have been handled and combine these with the given concept for algorithms.
Furthermore additional complexity functions can be added easily; they can
be introduced in a concept like the one for linear functions in the example.
Due to the instantiation mechanism of the Tecton language these concepts
can then be incorporated in the algorithms’ descriptions without problem.

Including the specification of algorithmic requirements provides the user
with information beyond correctness and usability. However, the actual be-
haviour of an algorithm may still vary from what is expected. For example,
the computing time of an algorithm, though in principle acceptable due to
static analysis, may cause problems depending on the particular input. The
reason is some characteristic not of the algorithm but of the machine the
algorithm is run on. This may be, for example, memory management or the
compiler used.

Thus there is a gap between the theoretical analysis of algorithms and
their actual behaviour on a particular machine. This becomes even more
evident in the case of generic programming. Here the situation is more com-
plex because there is usually more than one algorithm realizing the desired
function, thus in principle a choice of which algorithm is to be instantiated.
The optimal choice does not only depend on the domain the actual instantia-
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tion is about, such as for example more efficient algorithms for rings without
zero divisors than for ordinary rings. The algorithmic behaviour may also
depend on the actual parameters with which an instance is called, for ex-
ample whether a matrix is sparse or dense. Another example is sorting of
sequences, where the quicksort algorithm though better on average may be
not the optimal choice for a particular sequence.

Thus integrating algorithmic requirements into the choice of algorithm in-
stantiation in generic programming requires more information than available
by classical algorithm analysis. In fact, to choose the optimal instantiation
run time information is necessary. This idea has been considered in [Kre02]
for the case of run time. Here, the run time of an algorithm for a particular
input is measured and stored in a library each time the algorithm is called.
This allows on the one hand to include characteristics of different machines
and platforms, on the other hand the parameters an algorithm is called with:
based on these measurements for particular inputs breakpoints for a set of
algorithms computing the same functions are predicted using methods from
the field of genetic programming. This information then allows to choose
an algorithm for a given input at run time by just looking up the computed
prediction. Each use of an algorithm provides more information so that the
breakpoint prediction can be improved and updated. Note, that this again
is a library approach, that is additional knowledge stored in a library is used
to support the process of generic programming.

To summarize, algorithmic requirements allow, first, to restrict the range
of legal instantiations by including properties beyond correctness of algo-
rithms such as for example efficiency. By formally specifying such require-
ments, the ability is given to both prove their correctness and to incorporate
them into checking for legal instantiations. Secondly, algorithmic require-
ments can help to chose the optimal instantiation of generic algorithms with
respect to parameters of interest. Again formally specifying possible alter-
natives allows to at least partially incorporate an automatic check, though
indeed the sole presentation of such requirements in direct conjunction to
algorithms already supports the user when working with generic algorithms.
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Chapter 5

Mechanized Reasoning Systems

Generic programming requires a precise specification of type parameters and
instantiations in order to guarantee that algorithms provided in fact work
properly, that is are not only executable but also correct. Thus generic pro-
gramming comes with new challenges for the specification and verification
of algorithms for which support by mechanized reasoning systems is wishful.
However, it is obvious that the amount of formal reasoning required can-
not be done at compile time as we have argued in the preceding sections.
Verification and at least parts of the instantiation check, for example rules
used to perform this check, have to be delegated to external reasoning sys-
tems where the knowledge used can be proven correct to increase reliability
of generic programming. Thus generic programming calls for a new kind of
mathematical management extending pure theorem proving. In this chapter,
therefore, characteristics of mechanized reasoning systems necessary to sup-
port specification and verification of generic algorithms are identified. Then
some mechanized reasoning systems — Imps, Mizar, PVS, and Theorema
— are considered under the viewpoint of how they can support the proof
problems occurring in generic programming.

5.1 Introduction

Generic programming introduces new abstractions into programming: the
parts of the algorithms not essential for the algorithm’s method are instan-
tiated later. To make this work instantiations have to fit both syntactic and
semantic requirements. These, as we have seen, can be formally specified and
attached to generic algorithms and possible instantiations. Thus correctness
of generic algorithms and instantiations in principle is provable and hence a

77
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topic for theorem provers and mechanized reasoning systems in general.
Mechanized reasoning systems and in particular automated theorem pro-

vers, have reached an impressive level of success. Various systems exist and
involved theorems have been proven with machine assistance or even au-
tomatically, as for example the Jordan curve theorem [Lün81] or Robbins’
theorem [McC97]. Recently a new direction in the field finds more and more
attention: management of mathematical knowledge, that is besides the pure
theorem proving capability of a system other topics such as, for example,
theory development, management of already proven theorems, communica-
tion between different systems and also combination with computer algebra
systems [Buc96], are taken into account.

We believe that this coincides with the support of specification and ver-
ification problems occurring in generic programming: First, most part of
theorem proving for generic programming is done off-line, thus not essential
for the standard user of a generic programming system. Furthermore, though
users are not required to actually prove theorems they should be able to use
the results, that is they should be able to understand which knowledge they
use for their algorithms is secure due to some theorem proving and which
is not. Hence, the capabilities for proving theorems is not the only charac-
teristic a mechanized reasoning system must come with in order to support
generic programming. Generic programming in fact demands a new kind of
system for mathematical reasoning—and management.

Now, what are the special features of theorem proving and mathematical
knowledge management systems with respect to generic programming? First
of course the system must enable building abstract entities in order to model
type descriptions of generic algorithms. This is present in nearly all mech-
anized reasoning systems. However the strength of generic programming
comes from combining different properties in various ways. We have already
seen that in chapter 4 where we discussed the representation of requirements.
This should also be reflected in the reasoning system used: Particular prop-
erties should be definable not only together with a particular domain but
also on their own merit and then be combinable in order to prove theorems
as general as necessary for generic algorithms and their instantiations.

This already addresses the second point, the combination of already de-
fined notions. Generic programming consists to a large extent in identifying,
extending and combining domains for which generic algorithms work. This
allows to express minimal requirements for algorithms. Thus a mechanized
reasoning system for generic programming should mirror the flexibility used
for developing generic algorithms in the sense that combining domains is
possible so that theorems already proven can be easily lifted into the com-
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bination. In addition reusing theorems is a major activity when reasoning
about generic algorithms. Domains are refined in order to match application
areas of generic algorithms and theorems already proven should be easily
reusable without affecting their correctness. In particular to prove instantia-
tions of generic algorithms correct, theorems have to be applied in different,
usually more restricted domains.

Another important issue is concerned with library facilities, in particular
with the application of the knowledge stored, for example to support instan-
tiation checks during compiling. A proven theorem describing properties of
a generic algorithm later used to ensure correctness of the algorithm or its
instances is thus to be reused heavily. A library of generic programming
system, and thus the underlying mechanized reasoning system, has to take
this into account. It has to be organized in such a way that this kind of reuse
is maximally supported by allowing to state the assumptions of theorems as
general as possible. Hence, on the one hand the organization of such a library
should not follow the usual principles of using domain as the major structur-
ing characteristic as this contradicts the principle of flexible combination of
properties. On the other hand it should be possible to build sublibraries with
respect to particular domains to inform the user what knowledge is available
for the domain of his interest.

Along with this goes the question of typing and subtyping. Subtyping
supports not only reusing theorems by giving conditions under which a gen-
eral theorem is valid in a different domain, but also the process of building
sublibraries by simply extracting theorems valid for domains given by a par-
ticular type. Hence, subtyping can also be a support for a less experienced
user, which brings us to another important feature of mechanized reasoning
systems for generic programming. Because the major concern here is not to
prove theorems, but rather to use theorems to improve application of generic
algorithms, we have the fact that people using the output of theorem prov-
ing are rather less familiar with this area. However, users should understand
why generic algorithms they wrote or used are not properly checked, that is
they have to work with the theorem proving component of the system. Thus
the results should be presented in such a way that inexperienced users can
easily understand. What is important here is that this is in fact necessary
not if everything works out fine, but in particular if an error occurs, that is
if for example an instantiation for a generic algorithm cannot be shown cor-
rect. Then the knowledge of the library must be presented, so that the user
can imagine why his algorithm is not accepted, that is what properties are
missing in order to get a well-working instance of a generic algorithm. The
Tecton concept description language and the properties-based approach of
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chapter 4 are a step in this direction in the area of specification. As already
mentioned types and in particular subtypes can help the user to identify do-
mains in which generic algorithms work properly; for example if a type ring

happens to be a subtype of a type group the user can conclude that generic
algorithms working for group can be safely applied to algorithms providing
the properties of ring.

A last topic is concerned with how proofs in a mechanized reasoning
system are done. Thereby the question is not so much whether proofs are
constructed automatically or interactively, because also automatic theorem
provers usually require some kind of tuning in the sense of setting parameters
or formulating a number of lemmas in order to prove the main theorem. The
question we consider more important is which proof style underlies a reason-
ing system because the way in which mathematics is done on the machine
influences the acceptance of users focussing on applications.

Roughly spoken there are two somewhat orthogonal approaches to include
the user interactively in the process of proving. The first one is a procedural
style where the user calls strategies to construct new subgoals in the course
of proving a theorem. The HOL system [Gor89], for example follows this
approach. The advantage is that these strategies introduce some amount of
automation into the proof process by incorporating for instance decision or
simplification procedures. On the other hand the user needs a deep under-
standing of the underlying logic, usually some kind of higher-order logic, in
order to effectively use the strategies provided. This holds in particular if
existing strategies do not seem to be convenient for an application and the
user wants to define his own strategies.

The second proof style adopts a completely different view on proving the-
orems: The user should just state what he wants to prove, and not how the
system shall try to prove it. This declarative proof style, that can be found
for instance in the Mizar system [RT01a] allows the user to work rather the
same way as he would do without formal reasoning support: He formulates
the knowledge he wants to be proven leaving the actual proving to the system.
Note that this is not automatic theorem proving as the user is involved in the
course of proving a theorem because the users’ goal will most often not be
accepted from scratch. Then the user has to break up his original proof goal
into smaller steps using some predefined proof constructs. Of course this
requires some experience with the system also in order to estimate which
kind of steps the system will accept. However, the advantage is that this
kind of proof style follows the natural mathematical style and thus frees the
user from using a second language for proving theorems. This probably leads
to a greater acceptance of such a system by users not entirely focussing on
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theorem proving itself but rather on application of it. On the other hand a
pure declarative proof style tends to require rather long technical decomposi-
tions of proofs that can be done automatically using some kind of procedure.
[Har90] gives a detailed discussion of the proof styles mentioned.

All the points we just addressed influence the choice of a mechanized rea-
soning system for generic programming. Thereby, the key point is the use of
theorem proving results stored in a library by a generic programming system,
that is by users and compilers who want to apply these results in order to
improve the correctness of algorithms they use, develop and instantiate. This
also emphasizes the fact that the expected user will usually not be interested
in theorem proving itself at first sight but rather in understanding and apply-
ing the results of it. There are numerous mechanized reasoning systems es-
pecially for proving theorems, Coq [HKP02], Isabelle/HOL [Gor89, NPW02],
Lego [LP92], OBJ3 [GWM+92], Otter [Wos94], to name a few of the most
prominent. In the following sections we present some mechanized reasoning
systems we believe are good candidates for supporting generic programming.
They all come with at least some of the characteristics we mentioned. How-
ever, the way in which mathematics is done in these systems strongly differs,
reflecting the fact that the choice of a mechanized reasoning system always
mirrors the preferred way of doing mathematics.

5.2 The Imps System

Imps [FGT93] is an Interactive Mathematical Proof System that aims at a
general purpose tool for doing mathematics in a traditional style. It consists
of a database of mathematics—the Initial Theory Library—and a set of tools
for applying and extending the knowledge contained in the database. The
underlying logic—called Lutins [Gut91]—is a simple type theory with partial
functions [Hin97]. Thus terms may be non-denoting, however formulas al-
ways result in a standard truth value. Mathematics in Imps is organized as a
network of axiomatic theories following the little theories approach. Theories
are translated into each other by using theory interpretations, in this way
permitting the reuse of theorems in different contexts. Theorem proving in
Imps is a combination of automatically applying simplification routines and
user-driven interactive deduction. Reasoning at the formula level is largely
done automatically, so for example algebraic simplification of polynomials
is done by a simplification routine and a decision procedure for linear in-
equalities is present. In addition, as Imps allows for partial functions, Imps



82 CHAPTER 5. MECHANIZED REASONING SYSTEMS

includes an involved algorithm for definedness reasoning in order to automate
definedness checking as much as possible. The algorithm uses (conditional)
totality theorems, (un-) conditional sort coercions and theorems about the
range of functions. Reasoning at the proof structure level is done interac-
tively, the user calls strategies operating on deduction graphs in this way
producing new subgoals. Thus Imps in essence supports a procedural proof
style. From the viewpoint of formal support for generic programming the
most interesting parts of Imps are the little theories approach and the Initial
Theory Library, which are described in more detail below.

Imps provides both the familiar version of the axiomatic method and the
little theories approach. Usually all reasoning is done based on one powerful
and highly expressive axiom system such as for example Zermelo-Fraenkel
set theory. In the little theories version [FGT92], however, a number of
theories are used to establish new results. The key point is that additional
theorems are first proven within a particular theory and then exported into
some kind of main theory. This allows to mirror the way mathematicians
work, for example group and field theory have been developed separately
from vector space theory though results from the former are heavily used in
developing the latter. Logically, in Imps a theory just consists of a language
and a set of axioms. Then a network of mathematical theories can be built.
Theorems are proven in different theories depending on the amount and kind
of mathematics necessary. If required, theorems are transported into other
theories where they are to be reused.

However, in a mechanized reasoning system using one theory in the course
of developing another one is not as obvious as in pure mathematics. On a
machine, the application, that is the fact that theorems of the first theory
indeed can be applied in the second theory, has to be made explicit. It is
not enough to say ”a theorem for groups also holds for fields”, last but not
least because a field consists of two groups. This meta information has to
be made constructive for the reasoning system. In Imps the transportation
of theorems from one theory into another is done using so-called theory in-
terpretations [Sho67]. A theory interpretation is a mapping from one theory
into another. Thereby the mapping is a purely syntactical one given by the
interpretation of sorts and constants of the source theory in the target the-
ory. Thus, formally a theory interpretation from a theory T over a language
L to a theory T ’ over a language L is a pair Φ = (µ, ν), where µ maps sorts
of L to sorts of L’ and ν maps constant symbols of L to constant symbols
of L’. Connected with such a mapping are so-called obligations saying in
particular that axioms of T are mapped to theorems of T ’. Then, if all these
obligations are theorems in the target theory, then the mapping constitutes
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a theory interpretation, that is theorems are always mapped to theorems.

The little theories approach with theory interpretations has a number of
advantages and applications. First of all, theorem reuse is supported: Using
a theory interpretation a theorem can be safely transported into another the-
ory, that is the system ensures that the translated formula really is a theorem
in the new theory. In Imps this is called installing a theorem in a different
theory. This can be particularly done for abstract and concrete theories. For
example, the binomial theorem can be proven in the abstract theory of fields.1

In the following K is the underlying sort of field element, Z the sort for the
integers; the printing and formatting is exactly as by the TeX facility of Imps.

for every a, b: K, n: Z implication

• conjunction

◦ 1 ≤ n

◦ ¬(a = oK)

◦ ¬(b = oK)

• (a + b)n =
∑n

j=0

(
n
j

)
· bj · an−j.

Now, the real numbers form a field, and thus a theory interpretation from the
theory of field to the theory of the real numbers can be easily constructed.
Consequently, the usual binomial theorem for the real numbers can be in-
stalled and used as if it would have been proven directly for the real numbers.
Note, that this in fact enables to develop parameterized theories whose pa-
rameters can be instantiated via theory interpretations.

In addition, theory interpretations allow to formalize arguments involving
symmetry and duality. This is achieved by creating a theory interpretation
from a theory to itself. As an illustration, let T be the theory of groups
with ∗ denoting group multiplication. Then the translation Φ from T to
T with Φ(x, y) := y ∗ x is a theory interpretation. The left cancellation
law (x ∗ y = x ∗ z) −→ y = z is mapped to the right cancellation law
(y ∗ x = z ∗ x) −→ y = z. Thus it is only necessary to prove the first one to
conclude that both are valid in the theory T .

In mathematics the term theory is usually understood in a much broader
sense than used here. In this sense the theory of vector spaces not only
refers to the theory of one single vector space, as given by the constituting

1In fact the theorem can be proven for an even more general domain (compare section
5.3 on the Mizar system and [Sch00a]). However, in the Imps Initial Theory Library it
occurs for fields.
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set of axioms. It also includes at the very least a theory of vector spaces
and mappings between them. A very basic example theorem, for instance
is the fact that the concatenation of vector space homomorphisms again is
a vector space homomorphism. Note that to formalize such a theorem a
family of vector spaces is necessary. Imps allows to build theory ensembles,
that is a collection of copies of a base theory, for which theory interpreta-
tions from the base theory to each copy are automatically constructed. The
above mentioned theorem about vector spaces, for example can be proven in
a theory ensemble with n = 3. Once this has been done the theorem can
be transported to other theory ensembles again using theory interpretation.
For instance, the composition theorem can be applied to a single vector space
only, by identifying all three occurring vector spaces. Again, such theorems
of abstract theories can be easily reused in more concrete ones. To install
the example theorem in the theory of the real numbers R, the user has to
do little more than specify that all vector spaces map to R and that the
corresponding distance functions in R are given by |x− y|.

Imps’ Initial Theory Library is a collection of theories, theory interpre-
tations and theory constituents, that is definitions and theorems. It is orga-
nized in sections, each of which holds a particular amount of mathematical
knowledge. These sections can then be loaded into the Imps system. The
knowledge available in the library includes real numbers, objects like sets
and sequences, abstract mathematical structures and some theories support-
ing applications of Imps in computer science.

The real numbers are formalized two times in Imps, the first theory be-
ing the one of complete ordered fields, the second the one of real arithmetic
considered as the working theory of the real numbers used for example as a
subtheory of graphs if weighted graphs are to be introduced. The theories are
equivalent in the sense that there are two theory interpretations translating
one theory into the other; furthermore composition of these interpretations
is the identity interpretation. The algebra library is not much developed yet,
it consists of monoids, groups (and group actions) and fields. In contrast
the analysis library comes with involved structures like metric or normed
spaces. In the library for computer science three significant facilities exist:
state machine theories, a domain theory for denotational semantics and a fa-
cility for defining free recursive data types via model conservative extensions.

Recently based on ideas and mechanisms of Imps a formal framework
for managing mathematics [Far01, FvM03] has been proposed. The central
notion here is the one of a biform theory which is both an axiomatic theory
and an algorithmic theory. Thus a biform theory represents knowledge about
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its models both declaratively and procedurally. Expression manipulating al-
gorithms are represented by so-called transformers in this way incorporating
algorithmic knowledge into theories. Transformers can include for example
normal form algorithms as well as proof rules of a deduction calculus. Thus
biform theories allow to argue about both theorems and algorithms thereby
using knowledge about one kind to infer new knowledge about the other
kind. This approach can be considered as a step towards the integration of
deduction and symbolic computation.

5.3 The Mizar System

Mizar stands for both a language for the formalization of mathematics [RT99]
as well as for the system for developing and storing mathematics based on the
Mizar language [RT01a]. The main goal of its original design was a formal
language close to the mathematical jargon supporting the process of writing
and reviewing mathematical papers. Therefore the logical basis of Mizar is
the system of natural deduction following [Jaś34] which is considered as an
adequate reconstruction of proof styles used in mathematical publications.

Furthermore, the Mizar system provides a proof checker for validating
scripts written in the Mizar language—so-called Mizar articles—and a large
library of mathematical knowledge—the Mizar Mathematical Library (MML)—
in which accepted articles are included. The knowledge of the library can be
imported into articles easily by a referencing mechanism and thus reused to
build new theories in the style mathematicians are used to. The design of the
Mizar language as a formal counterpart of mathematical vernacular allows
to automatically convert articles into other representations such as LaTeX or
Html files better accessible by users searching the library. In the following we
describe the most important features of the Mizar language and checker, and
the Mizar Mathematical Library in more detail as they are most interesting
from the viewpoint of formal support for generic programming.

The Mizar language provides the standard set of first order logical con-
nectives for constructing formulae and syntactic constructs for presenting
proofs based on natural deduction. These constructs are connected with
corresponding (English) natural language phrases so that definitions, the-
orems and proofs are given in textbook style. In addition Mizar provides
means for second order formulae, so-called schemes, with which for instance
various induction schemes can be expressed. The axiomatic basis used for
Mizar is Tarski-Grothendieck set theory, a variant of Zermelo-Fraenkel set
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theory using Tarski’s axiom on arbitrarily large, strongly inaccessible car-
dinals [Tar38, Tar39] instead of the axiom of choice. However, the Mizar
language in principle is independent of the underlying axioms so that other
axiom systems such as for example Peano axioms or Barnay-Goedel set the-
ory could be chosen.

The Mizar proof checker verifies the individual proof steps given in a
Mizar article. To do so, the notion of an obvious inference [Dav81] is em-
ployed. However, using only the basic inference rules of natural deduction as
obvious would result in very long proofs even for simple theorems. Therefore
the notion of obvious inference has been extended in Mizar: each proof step
can be decorated with labels referencing definitions, proof steps or completed
proofs occurring in the actual article or in other parts of the Mizar Math-
ematical Library that have been imported into the article. The definitions
and theorems referenced this way are considered as additional premises for
the proof step they are attached to. Note that this referencing mechanism
allows to incorporate every definition or theorem contained in the Mizar
Mathematical Library. The checker then tries to refute the conjunction of
these premises and the negated proof goal. The emphasis of the checker is on
processing speed rather than on proof power. As a consequence, logical valid
proof goals may be not accepted. Then the user has to add more premises or
to split up the proof goal. For this purpose Mizar provides a number of proof
constructs such as for instance, case distinction, reasoning by contradiction
and induction using schemes.

The most remarkable feature of the Mizar language, however, is its type
system and the mechanisms to enrich and automate this type system. In
Mizar types are introduced using type constructors, so-called modes; for ex-
ample set, Function or FinSequence are modes. Also structures, that is
collections of carriers and operations can be introduced using so-called struc-
ture modes. Thereby the user has to ensure that a mode defined is non
empty by giving an existence proof. Mizar types can be parameterized, thus
defining for example the mode Subset of S, where the type of S must widen
to set, or the mode VectorSpace over R, where the type of R can be re-
quired to widen to Ring or even Field. The key point is that modes can be
extended using attributes: An attribute defines a property an object of an
already defined mode may have or not. By combining such an attribute with
the mode over which it is defined a new mode is constructed, and a hierarchy
of types (with set as its root) is built which the proof checker can auto-
matically use. So for example abelian groups are constructed by introducing
an attribute Abelian and combining this with the mode Group of all groups
into the new one AbelianGroup. Then in particular Group becomes an an-
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cestor of AbelianGroup. As a consequence, all theorems (and definitions)
for groups in particular are automatically valid for abelian groups because
the mode AbelianGroup widens to the mode Group. For an illustration con-
sider again the binomial theorem. It can be proven in general for a domain
providing addition, multiplication, a zero and a unit (given by the structure
mode doubleLoopStr) fulfilling a number of attributes [Sch00a]:

theorem T1:

for n being Nat,

L being Abelian add-associative left zeroed

add-cancelable associative commutative

unital distributive (non empty doubleLoopStr),

a,b being Element of L

holds (a+b)|^n = Sum((a,b) In Power n);

To define finite sums in Mizar finite sequences are employed, whose elements
are then summed up using the functor Sum. Here (a,b) In Power n is the
finite sequence of length n+1 where the i-th element corresponds to i-th ele-
ment of the binomial sum. Note that in the theorem the property of providing
inverses with respect to addition has been replaced with the weaker require-
ment of cancelability. Hence the theorem is not only valid for the real but
also for the natural numbers. Now to apply theorem T1 in a different domain,
it is only necessary that the domain’s attributed type widens to the one used
in T1. For example, a field comes with all the properties mentioned in T1.
In Mizar the mode Field can be introduced by combining the attributes
describing the usual axioms of a field as follows.

definition

cluster Abelian add-associative right zeroed well-unital

right complementable associative commutative

distributive Field-like (non empty doubleLoopStr);

end;

definition

mode Field is

Abelian add-associative right zeroed well-unital

right complementable associative commutative

distributive Field-like (non empty doubleLoopStr);

end;

The (existential) cluster definition is necessary here because in Mizar non
empty modes are not allowed; the user has to prove that an object with all
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claimed properties indeed exists. Now, theorem T1 calls for the attribute
add-cancelable not mentioned in the definition of Field. It would not
be convenient if the user had to include this attribute (which is implied by
the ones already given) in the definition of Field. Instead Mizar offers the
possibility to teach the type checker that this implication holds by using
(conditional) cluster definitions. Note that such a cluster is not restricted
to a particular definition, but holds in general. Thus once such a cluster is
proven, Mizar’s type hierarchy is extended and automatically used by the
checker when trying to apply theorems.

definition

cluster add-associative right zeroed right complementable

-> add-right-cancelable (non empty LoopStr);

cluster Abelian add-right-cancelable

-> add-left-cancelable (non empty LoopStr);

cluster add-left-cancelable add-right-cancelable

-> add-cancelable (non empty LoopStr);

end;

Of course these clusters also require a (coherence) proof showing the stated
implication. Now, the following theorem is automatically accepted by just
referencing theorem T1 because using the above cluster definitions the type
Field widens to the one used in T1.

theorem

for n being Nat,

L being Field,

a,b being Element of L

holds (a+b)|^n = Sum((a,b) In Power n) by T1;

More concrete domains like for example the natural numbers can be han-
dled similarly. We consider the natural numbers as an example. Here first
the structure of the natural numbers—called Nat.Ring—has to be defined as
a doubleLoopStr by providing the set of natural numbers NAT and defining
natural addition and multiplication. Note the difference between the set of
natural numbers NAT2 and the algebraic structure of the natural numbers
given by Nat.Ring where the usual operations on the natural numbers are
introduced. Then attributes, that is properties, the natural numbers fulfill
are proven in functorial clusters. Again using these clusters the Mizar checker
automatically infers that the attributes mentioned hold for Nat.Ring in this
way extending Nat.Ring’s type.

2The type Nat actually is an abbreviation for the type Element of NAT.
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definition

cluster Nat.Ring ->

Abelian add-associative right zeroed well-unital

add-right-cancelable associative commutative

distributive (non empty doubleLoopStr);

end;

Then the binomial theorem for natural numbers can be inferred from the
general theorem T1 by just referencing it. Note that the clusters concerning
cancelability from above are again involved in the course of checking that
that the type of the following theorem widens to the one of T1

theorem

for n being Nat,

a,b being Element of <NAT,+,*,0,1>,

holds (a+b)|^n = Sum((a,b) In Power n) by T1;

This mechanism of type widening based on attributes allows to easily
reuse theorems in different domains because Mizar’s checker can automati-
cally apply them if the type properly widens. Note that no translation from
one theory into another is necessary as in Imps. Also attributes can be
combined in various ways, thus allowing to formulate theorems using only
properties necessary o prove them. On the other hand, however, similar
attributes have to be defined for different operations separately; so in the
example we have add-associative for + and associative for *.

The Mizar Mathematical Library (MML) is a collection of Mizar arti-
cles.3 As of this writing the library consists of more than 700 articles with
about 40,000 theorems. Currently, the development of the library is the
main activity in the Mizar project. Efforts have been concentrated on the
theory of continuous lattices [GHK+80], the proof of the Jordan curve the-
orem [Lün81], abstract reasoning about computations [NT92] and algebra
towards symbolic computation following [BW93].

The knowledge stored in the library can be used as the basis for writing
new articles. Therefore a local environment for each article is constructed.
This is realized by referencing (names of) articles contained in the library
in which definitions, theorems and schemes the user wants to rely on are in-
cluded. Different environment directives such as vocabulary, constructors,

3Before an article is included in the library it is reviewed by the Mizar Library Com-
mittee. The committee also revises and updates the library if a new version of the Mizar
software is published.



90 CHAPTER 5. MECHANIZED REASONING SYSTEMS

theorems or clusters import different kinds of knowledge into the article.
The building of a local environment allows to restrict the knowledge of the
library to those parts necessary for the actual article without forcing the user
to import every necessary notion individually. Note that the checker only ac-
cesses the local environment, it does not communicate with the library itself.
This addresses the problem of how to reuse particular knowledge of a huge
data base without bothering the user with too many details when importing
the knowledge.

In the same direction goes a recent development within the Mizar project.
There are a number of examples for reasonings, for instance calculating with
the real numbers, that based on natural deduction and obvious inferences
tend to be long and tedious. To overcome this problem a new environment
directive requirements has been added. Possible requirements are for exam-
ple BOOLE, REAL or SUBSET. If imported, these requirements enable the checker
to deduce a number of facts automatically, that is without referencing a the-
orem. For example, x + 0 = x for a real number x can be automatically
inferred, if the requirement REAL is included. This can be seen as providing
a general purpose checker that can be strengthened if necessary, that is if a
particular application area is considered.

5.4 The PVS System

PVS [ORS92] is a prototype system for writing specifications and construct-
ing proofs. Based on simply typed higher-order logic [Hin97] its type system
has been extended with subtypes and dependent types. However, type check-
ing for PVS is undecidable in general. Therefore proof obligations implying
correct typing are automatically generated which then have to be proven
with the PVS proof checker. The proof checker is a combination of decision
procedures and primitive inference steps. Decision procedures include for ex-
ample the theory of linear arithmetic, arrays and tuples. Based on primitive
inference steps high-level strategies similar to tactics in LCF [GMW79] can
be defined. The PVS system comes with an initial library containing be-
sides basic notions like sets, relations, functions and numbers, theories from
different areas, for example graphs and digraphs, basic algebraic structures,
an introduction to analysis and even formalizations of arrays, bitvectors and
fixpoint theory. In the following we consider predicate subtyping and depen-
dent typing in more detail, in particular their impact on proving theorems.
We also have a look at how the PVS system deals with theories and theory
instantiation.
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Predicate subtyping allows to naturally handle partial functions in a
framework containing total functions only. For example, the division opera-
tor / for rational numbers is introduced by first defining a predicate subtype
posrat of the natural numbers serving as the type for the second argument
of /. Then each time the operator / occurs, PVS automatically generates a
proof obligation stating that the second argument of / is not equal to 0 taking
into account the logical context in which this argument appears. Thereby,
quite a number of these proof obligations are discharged automatically by
subsumption or applying basic inference steps.

In addition, predicate subtyping is a powerful method to encode knowl-
edge in an object’s definition used later for proving. For example, injec-
tive functions can be defined as a subtype of functions from D to R using a
higher-order predicate injective?. Note that functions in fact is a theory
parameterized by the types D and R.

functions [D,R: TYPE]: THEORY

BEGIN

f: VAR [D->R]

x, y: VAR D

injective?(f): bool =

(FORALL x, y: (f(x) = f(y) => (x = y)))

injection: TYPE = (injective?)

END functions

Then, using the (predicate) subtype even of even numbers, the function
double can be declared as an injective function from the natural to the even
numbers:

even: TYPE = {i : nat | EXISTS (j : nat): i = 2 *j }

double : injection[nat, even] = (LAMBDA (i : nat): 2 * i)

Now, when double is type checked two proof obligations are generated. The
first one states that the result computed by double is even, the second one
that double fulfills the predicate injective?, e.g. is an injective function.
Both are proven automatically by the PVS proof checker, however more
complicated proof obligations may require some interaction with the user.
Conversely, this type information is used in PVS theorem proving: Con-
straints given by predicate subtypes are automatically asserted to decision
procedures, thus using the additional type information such as injective?

to support theorem proving.
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Another advantage of predicate subtypes is that they enable the definition
of dependent types, that is a type can depend on the value of a parameter.4

This allows to capture relationships existing between the input and the out-
put of a function. So for example upto(n) is a predicate subtype of the
natural numbers giving the starting segment up to n.

upto(n) : TYPE = {s: nat | s <= n}

Then binomial coefficients
(

n
k

)
can be properly defined: Possible values of

the second argument k depend on the actual value of n as we usually have
0 ≤ k ≤ n. This is expressed by using the type upto(n) for the second
argument of the function chooses:

chooses(n, (k: upto(n))) : posnat =

factorial(n)/(factorial(k) * factorial(n-k))

The type of chooses is a dependent tuple type where the type, and hence the
possible values, of the second component k depends on the first component
n. Note that this typing corresponds exactly to the informal restriction for k
given in textbook definitions. The definition of chooses, when type checked,
generates a proof obligation concerning the return type posnat. To prove
that choose indeed returns a non-negative integer requires the proof of the
well-known recurrence for binomial coefficients as a lemma.

Predicate subtypes and dependent types are especially useful in the area
of computer algebra where for example an inversion function in residue class
rings Zn exists if and only if Zn is a field if and only if n is prime. Such
constraints are naturally expressed using these mechanisms.

Theories in PVS group together type declarations, axioms, definitions,
and theorems. Theories may be parameterized in this way allowing to import
an instance of a theory, for example the integer instance of a general theory
group, into another. However, when a theory is imported actual parameters
for either all or none formal parameters have to be supplied. Assumptions
about the formal parameters can be included, then each time the theory is
imported proof obligations for the (instantiated) assumptions are generated.
This for example allows to state that the theory of residue class rings Zn

should only be imported, if n is prime, that is if Zn is a field. Consequently,
a general theory of groups can be defined in two ways. Firstly, axioms can

4And, vice versa, using predicate subtypes is the only way to define dependent types
in PVS.
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be given in the theory body. Then importing an instance of the theory adds
additional axioms, namely the group axioms, to the particular instantiation.
In particular, no proof obligations are generated, that is there is no need
to prove that the instantiated axioms are indeed valid. Secondly, the group
axioms can be introduced as assumptions on the theory’s parameters. Then,
when instantiation takes place, proof obligations are generated, that is the
user has to prove that the instance indeed constitutes a group. Note, that in
this case the group axioms do not explicitly appear in the instance.

Using a mechanism called theory declaration, PVS enables to define the-
ories with theories as parameters. This allows to develop theories in which
different copies of the same theory are used. Thus, for example a theory of
group homomorphisms can be introduced with G1 and G2 as parameters of
”type” group. Note that group actually is a theory name as indicated by
the keyword THEORY, and not a type.

group homomorphism[G1, G2 THEORY group]: THEORY

BEGIN

x, y: VAR G1.G

f: VAR [G1.G -> G2.G]

homomorphism?(f): bool = FORALL x,y: f(x+y) = f(x) + f(y)

END group homomorphism

Then G1 and G2 are parameters that may be instantiated with two different
groups, for instance G1 with the integers and G2 with the set of nonzero real
numbers, that is with two distinct versions of the theory group. Note that
without theory declarations it would have been necessary to duplicate the
group specification, because just importing a theory twice is the same as
importing it once, thus the above definition would change into an automor-
phism.

Theory interpretations which have already been described in section 5.2
are also available in PVS [OS01]. They are realized as mappings for unin-
terpreted types and constants of the source theory into the current theory.
To actually constitute a theory interpretation such a mapping must fulfill
two further requirements. First, the mapping must be consistent, that is if a
type T is mapped to a type expression E, then a constant t of type T must be
mapped to an expression e of type E. Second, the translation of the source
theory’s axioms must result in theorems of the target theory. For these, the
PVS checker generates proof obligations when processing the target theory.

Note that theory interpretations can be used to improve instantiation of
theories. Here, the actual parameters are given by means of the interpreta-
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tion. However, using mappings not all entities must be interpreted in contrast
to parameterized theories where either all or none of the parameters must
be instantiated. Thus a theory interpretation allows to instantiate part of a
theory leaving some types or constants uninterpreted. Consider for example,
a theory containing a maximal max element for a subset S of elements of a
type T. It may be desirable to instantiate this theory with the real numbers
for T without being forced to say what the maximal element (or the subset
of the reals) is in detail, thus leaving max and S as parameters. This can be
done by using a theory interpretation mapping only T to the real numbers
while leaving max and S uninterpreted.

5.5 The Theorema System

Theorema [BJK+97, Buc01b] is a system that aims at supporting proving,
solving and simplification of theorems, or more generally formulas. Proving,
solving and simplification are identified as the three basic activities of formal
mathematics and, hence, symbolic computation in [Buc96]. Solvers try to
find substitutions that make a formula true, whereas simplifiers transform
a formula into an equivalent simpler one. Thus the Theorema system is an
environment in which computing and reasoning is combined, that is in par-
ticular algorithmic mathematics is taken into account. This is also reflected
in the Theorema language, a version of higher-order predicate logic with a
syntax resembling common mathematical style. As a consequence, Theorema
formulas can be likewise processed by provers, solvers or simplifiers.

The current version of Theorema is implemented in the Mathematica pro-
gramming language, which means that Theorema is available if Mathematica
[Wol96] is installed. Therefore the Theorema system can be considered as an
extension of a current mathematical software system by facilities for logical
and mathematical reasoning and for mathematical knowledge management
in general.

The Theorema system comes with a collection of provers and proof strate-
gies. In addition to a general higher-order theorem prover Theorema provides
a number of special provers, solvers, and simplifiers that can be explicitly
called by the user during a proof attempt. For instance, the so-called PCS
proof method [Buc01a] can be applied. PCS actually is a proof heuristic
that, roughly spoken, iterates through a proving, a computing (simplifying),
and a solving phase. There is evidence that the PCS proof method is partic-
ularly helpful for formulas with alternating quantifiers, such as for instance
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the notion of limits in analysis. The following theorem about addition of
limits for example is proven automatically by Theorema if PCS is chosen as
the proof method (and if the basic definitions and some lemmas concerning
limits are included by referring to the appropriate theory).

Proposition[”limit of sum”, any[f,a,g,b],
(limit[f,a] ∧ limit[g,b]) ⇒ limit[f+g,a+b]]

Thereby a proof is constructed and returned consisting of the formulas gener-
ated during the proofs enhanced by descriptive English text. Thus Theorema
proofs, though tending to be quite long, are easily human readable. Other
special internal provers of Theorema include a set theory prover, a Gröbner
bases prover, and induction provers for equalities. In addition other provers
such as for instance Otter [Wos94] can be incorporated in Theorema; if such
an external prover is recorded in Theorema’s library of provers, a call to it
is nothing else then selecting it as a proof method. Thus strong special pur-
pose provers can be embedded into the Theorema system. However, proofs
originating from external provers are not as human readable as the ones from
Theorema’s internal provers which emphasize besides proof power also read-
ability and naturalness.

Theories can be built in Theorema easily by grouping together defini-
tions, lemmas and propositions using the construct Theory. Each theory is
given a name so that it can be included as a backbone when calling a proof
method. For example, a basic theory for limits is given by

Theory[”limit”,
Definition[”limit”]
Definition[”+”]
Lemma[”|+ |”]
Lemma[”max”] ]

Note, that the definition of a theory may again include theories. Thus hier-
archical theories can be developed, in this way building up a knowledge base
for mathematics. Theories can be included into proof attempts in this way
extending the chosen proof strategy. So, for example using theory ”limit”
together with the PCS proof method as follows

Prove[Proposition[”limit of sum”], using → Theory[”limit”], by → PCS]

results in a completely automatic proof of the example proposition ”limit of
sum” from above with a detailed proof description in common mathematical
textbook style. Note again that external provers contained in Theorema’s
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prover library can be called the same way as PCS in our example. Also com-
putational knowledge, that is algorithms, from the underlying Mathematica
system can be incorporated using the Built-in construct.

From our point of view the most interesting part of the theorema sys-
tem is the use of functors. Functors are essentially descriptions of how to
uniformly construct new domains out of given ones. Theorema functors are
based on the functor construct of ML [Pau96] and concern not only carriers
and operations but also predicates. So, for instance, the well-known con-
struction of the field of fractions can be formulated as a Theorema functor
as follows.

Definition[”fractionfield”, any[C],
fractionfield[C] = Functor[D, any[r,i,xr,xi,yr,yi],

εD[〈r, i〉] ⇔ εC[r] ∧ εC[i]
0D = 〈 0C, 0C 〉
〈 xr,xi 〉 +D 〈 yr,yi 〉 = 〈 xr+Cyr, xi+Cyi 〉;
...

] ];

Definition[”Q”,
Q = fractionfield[Z] ]

Given a domain C the functor ”fractionfield” constructs the field of frac-
tions D of C, provided that C comes with the necessary operations. Once the
functor ”fractionfield” is installed, it can be applied to particular domains
to generate fields of fractions in tuple representation. In the example this
application is shown for the domain of integers Z; which of course requires
that Z is already defined. Note, how the operations (and the ε predicate)
of the domain D are reduced to the corresponding operations of C. Because
Theorema also supports algorithms, mainly by importing them from Math-
ematica, ”fractionfield” can be instantiated with a domain C for which algo-
rithms are provided. Then the domain D constructed by ”fractionfield” also
comes with algorithms for its operations by just invoking the corresponding
algorithms of C. As already mentioned importing from Mathematica is done
using the Built-in construct. Thus, because algorithms for Z are provided,
the following imports a computable version of the rational numbers Q.

Use[〈Built-in[”Numbers”], Built-in[”Tuples”], . . ., Definition[”Q”]〉]

Note, that among others also algorithms for basic operations of tuples have
to be imported. After this declaration, for example
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Compute[〈1,2〉 +Q 〈4,3〉]

is evaluated to 〈5,2〉 by invoking the functor’s definitions followed by appli-
cations of the imported algorithms for tuples and the integers.

What makes Theorema’s functor concept attractive is the possibility to
prove theorems about functors. To be more precise, properties of the domains
constructed can be shown assuming properties of the instantiated domain.
Note that in the definition of ”fractionfield” no algebraic properties of C are
assumed. Thus the functor works for arbitrary domains coming with the
operations required; nevertheless the resulting domain D is a field only if C is
an integral domain. This can be stated in Theorema as a theorem about the
functor: Theorema allows to define predicates over domains; these predicates
in particular may use operations defined for the domain involved. Then, for
example, such a predicate can describe the axioms of an integral domain or
a field, or even individual algebraic properties. Using such predicates theo-
rems can be stated and proven. For example, the just mentioned relationship
between D an C reads as follows.

Proposition[”ff”, any[C],
isIntegralDomain(C) → isField(fractionfield[C])]

Thus Theorema functors support proving based on properties of the un-
derlying domain: For a given construction or algorithm theorems can be
shown using as less assumptions of the domains involved as possible. Check-
ing whether such a theorem holds for a particular domain then consists of
checking whether these assumptions are fulfilled. For example because Z is
an integral domain Q, the field of fractions for Z, is indeed a field, in which
hence inverses can be computed. Again this can be done algorithmically
based on algorithms for the integers Z.
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Chapter 6

Applications

In chapter 4 when discussing the representation of semantic requirements we
presented an approach focussing on the individual properties of operations
involved and argued that this approach can be used to reduce the check for
legal instantiations of generic algorithms to a comparison of such properties
with respect to inclusion. In this chapter we will both further elaborate the
approach’s use in generic type checking and illustrate further applications
such as the verification of generic algorithms and the design of libraries in
general.

6.1 Overview

Focussing on individual properties of operations allows to state minimal re-
quirements necessary for generic algorithms in a very flexible way. However,
checking for legal instantiations of generic algorithms based on inclusion of
properties only turns out to be too restrictive. Thus we first present a gener-
alization of this idea incorporating symbolic deduction so that logical conse-
quences of sets of properties can be computed (see [Sch02]). As we will see,
this can be used not only for legal instantiation checking in generic program-
ming but also in general for developing libraries to give them a more active
role in managing the knowledge included.

Then we present generic type checking based on sets of properties in more
detail. We provide a small programming language relying on the discussion
in section 4.4 (compare [GS03]). Generic type checking for this language
is based on the calculus just mentioned and is realized using the system
for generating type checkers presented in [Gas03]. We give some running
examples illustrating the ideas.

99
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Verification of generic algorithms is also addressed. Using properties as
assumptions about possible instantiations generic algorithms can be verified
on a very abstract level (compare [Sch00b, Sch03]). This allows to prove
correctness of an algorithm with respect to its minimal requirements, thus
for a whole class of possible instantiations. Adding more assumptions, also
more special versions of the algorithm incorporating particular knowledge
about the now restricted class of instantiations can be shown correct.

Finally we briefly explain how the properties-based approach supports
the design of libraries in general, that is not only libraries of algorithms but
also for instance mathematical libraries, by adding a component based on
the calculus presented (compare [Sch01b, Sch02]). This allows to state facts
in a general manner and the library to conclude that these facts hold in par-
ticular cases the user wants to consider. Thus the library itself is given a
more active role than only holding static knowledge.

6.2 A Calculus for Deducing Properties

Let PI and PA be two sets of properties, that is sets of predicates describing
semantic properties of operations. In section 4.4 such sets were used to check
whether particular instances are legal for a generic algorithm by comparing
sets of properties, that is if PI are the properties of the instantiation I and
PA the properties attached to the generic algorithm A describing the generic
type parameter T of A we have

Leg(I, A) :⇐⇒ Sig(A) ⊆ Sig(I) ∧ PA ⊆ PI.

Thus, the distinction between the set of operations a type parameter re-
quires and properties of these operations necessary to make the algorithm
work as expected allows for checking legality of instantiations. Sets of prop-
erties must only be compared with respect to inclusion, namely the set of
properties describing the semantic requirements of A with the set of prop-
erties I comes with. However, this setting is too restricted. For example,
if a generic algorithm A requires the property left-distributive, and an
instantiation I obeys the property distributive, it is not desirable that
left-distributive has to be added to the instantiation’s properties. It
should rather be possible to conclude that I is legal for A, although the sets
of properties involved are not related by inclusion.
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Following [Sch02] we now replace the subset relation between two sets P1

and P2 of properties used in section 4.4 by a relation P1 =⇒ P2 with the
meaning that every domain D that fulfills the properties of P1 also fulfills
the ones in P2, or more formally

|= P1 =⇒ P2 :⇐⇒ ∀D : D |= P1 implies D |= P2

where |= on the right-hand side is the model operator well-known from first-
order logic. Consequently an instantiation I = (Sig(I), P rops(I)) is legal for
a given generic algorithm A = (Sig(A), P rop(A)) if both Sig(A) ⊆ Sig(I) and
|= Props(I) =⇒ Props(A) are valid. Note that |= P1 =⇒ P2 corresponds to
the usual semantic implication. However, in this special case the formulas
occurring in P1 and P2 are given by a set of predicates only, whose arguments
are either variables or constants.

Obviously, an implication P1 =⇒ P2 cannot be checked in this generality,
because this would require arbitrary difficult theorem proving. Therefore
we incorporate a set of rules L describing basic relations between sets of
properties. For example, the following rule

{distributive(R, +, ∗)} −→
{left-distributive(R, +, ∗), right-distributive(R, +, ∗)} (A)

states that structures (R, +, ∗) that are distributive are also both left-
and right-distributive. Thereby the arguments of the predicates are in-
terpreted as variable symbols. This allows to include properties of particular
domains, for example

distributive(Z, +Z, ∗Z)

where the arguments are now interpreted as constant symbols. Note how-
ever, that the formal definition of the predicates is not incorporated in the
rules; thus correctness of rules and particular properties of special domains is
delegated to some external reasoning system. In this way additional knowl-
edge about the problem domain is provided. The deduction of |= P1 =⇒ P2

is then performed relative to such a set of rules.

The calculus has two axioms. The first mirrors the fact that an impli-
cation P1 =⇒ P2 trivially holds, if P2 ⊆ P1. The second axiom allows to
incorporate the external rules: if l −→ r ∈ L, then σ(l) implies σ(r) where σ
is an arbitrary substitution compatible with the signature. Further on, there
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is a rule allowing to combine different implications P2 and P3 both made
from P1 and a rule for concatenating implications P1 =⇒ P2 and P2 =⇒ P3.

P2 ⊆ P1

` P1 =⇒ P2
(AX1)

l −→ r ∈ L
` σ(l) =⇒ σ(r)

(AX2)

` P1 =⇒ P2, ` P1 =⇒ P3

` P1 =⇒ P2 ∪ P3
(R1)

` P1 =⇒ P2, ` P2 =⇒ P3

` P1 =⇒ P3
(R2)

Provided that the rules in L are correct, that is if from l −→ r ∈ L indeed
follows |= σ(l) =⇒ σ(r) for the substitutions σ used in a deduction, it is
straightforward to see that the calculus is correct. In other words, we have
that (relative to L) ` P1 =⇒ P2 implies |= P1 =⇒ P2. However, if no
deduction sequence is found this does not necessarily mean that |= P1 =⇒ P2

is not valid. The reason is that the calculus checks for implications with
respect to the rule set L only. In other words, if L does not contain enough
knowledge about the problem domain, the deduction of an implication may
fail, although this implication is true.

The calculus can be extended with some straightforward derived rules,
among them

` P1 =⇒ P2 ∪ P3

` P1 =⇒ P2
(L1)

` P1 =⇒ P2, P1 ⊆ P3

` P3 =⇒ P2
(L2)

These rules can be easily proven correct in the sense that their consequences
can be deduced from their premises in the original calculus. To see how the
calculus works let us deduce the following implication.

` {associative(Z, +Z), distributive(Z, +Z, ∗Z)} =⇒
{associative(Z, +Z),
left-distributive(Z, +Z, ∗Z), right-distributive(Z, +Z, ∗Z)}

To do so, we assume that the distributivity rule A from above is present in
the set of rules L. Then, using Lemma L2, we get the following deduction
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sequence. Note that the actual definition of the properties involved has no
influence on the deduction, that is the deduction is purely symbolic.

(1) ` {associative(Z, +Z), distributive(Z, +Z, ∗Z)} =⇒
{associative(Z, +Z)}

by AX1

(2) ` {distributive(Z, +Z, ∗Z)} =⇒
{left-distributive(Z, +Z, ∗Z), right-distributive(Z, +Z, ∗Z)}

by AX2 with A and σ(R) = Z, σ(+) = +Z, σ(∗) = ∗Z

(3) ` {associative(Z, +Z), distributive(Z, +Z, ∗Z)} =⇒
{left-distributive(Z, +Z, ∗Z), right-distributive(Z, +Z, ∗Z)}

by L2(2)

(4) ` {associative(Z, +Z, distributive(Z, +Z, ∗Z)} =⇒
{associative(Z, +Z),
left-distributive(Z, +Z, ∗Z), right-distributive(Z, +Z, ∗Z)}

by R1(1,3)

Thus a generic algorithm requiring the properties associative(R, +) and
right-distributive(R, +, ∗) can in particular be instantiated with the in-
tegers Z. Though for Z only the property distributive(Z, +Z, ∗Z) has been
stated, this can be validated by a type checker using the calculus. Note that,
by just taking the identity substitution for σ, the above sequence can be
easily transformed in a deduction sequence using R, + and ∗ instead of Z, +Z
and ∗Z, that is general lemmas can be shown.

Finding a deduction sequence for an implication P1 =⇒ P2 requires some
amount of guessing in which way the set on the left-hand side of an im-
plication has to be extended, that is which property should be additionally
considered in order to combine already deduced implications. This can be
seen, for example, in step (3) of the deduction above where using Lemma L2
the set on the left-hand side is extended from {distributive(Z, +Z, ∗Z)}
to {associative(Z, +Z), distributive(Z, +Z, ∗Z)}; any other extension
would have been a correct application of L2, too. Fortunately, this problem
can be avoided using backward propagation similar to Prolog [CM87, Col85].
The idea is, given an implication P1 =⇒ P2, to successively remove properties
from P2 that are implied by the ones from P1 until P2 has been transformed
into the empty set. We use the following three rules.

(B1) Replace ` P1 =⇒ P2 by ` P1 =⇒ P2\(P1 ∩ P2).
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(B2) Replace ` P1 =⇒ P2 by ` P1 =⇒ (P2\(σ(r) ∩ P2)) ∪ σ(l) if there are
a rule l −→ r ∈ L and a substitution σ with σ(r) ∩ P2 6= ∅.

(B3) Accept ` P1 =⇒ ∅.

Thus an implication P1 =⇒ P2 is accepted, if it can be transformed into
an implication of the form P1 =⇒ ∅. The rules presented are correct with
respect to the above calculus in the sense that every deduction starting with
P1 =⇒ P2 and ending with P1 =⇒ ∅ using B1 - B3 can be translated into
a correct sequence of the original calculus. For the example deduction from
above we get

` {associative(Z, +Z), distributive(Z, +Z, ∗Z)} =⇒
{associative(Z, +Z),
left-distributive(Z, +Z, ∗Z), right-distributive(Z, +Z, ∗Z)}

` {associative(Z, +Z), distributive(Z, +Z, ∗Z)} =⇒
{left-distributive(Z, +Z, ∗Z), right-distributive(Z, +Z, ∗Z)}
by B1

` {associative(Z, +Z), distributive(Z, +Z, ∗Z)} =⇒
{distributive(Z, +Z, ∗Z)}
by B2 with A and σ(R) = Z, σ(+) = +Z, σ(∗) = ∗Z

` {associative(Z, +Z), distributive(Z, +Z, ∗Z)} =⇒ ∅
by B1

which is accepted by B3. Note, that the only choice throughout the de-
duction consists of determining which rule of L should be applied. Also the
left-hand side P1 of the goal does not change throughout the whole deduc-
tion, so that keeping track of the changes occurring in P2 is sufficient. Finally
it may be worth mentioning that for rules l −→ r with a right-hand side r
consisting of one property predicate only, the rule B2 from above can be
simplified to

(B2’) Replace ` P1 =⇒ P2 by ` P1 =⇒ (P2\σ(r)) ∪ σ(l) if there are a rule
l −→ r ∈ L and a substitution σ with σ(r) ∈ P2.

Thus no intersection has to be computed in this case. Note, that this kind
of rule can be easily obtained by splitting up given rules as for example the
distributivity rule from above into the following two ones.

{distributive(R, +, ∗)} −→ {left-distributive(R, +, ∗)}
{distributive(R, +, ∗)} −→ {right-distributive(R, +, ∗)}
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However, transforming all the rules of L this way would heavily increase
the number of steps in a deduction and only detailed experiments will show
which method is to prefer.

6.3 Generic Type Checking

As we have seen generic programming introduces new abstractions into pro-
gramming: Type parameters describe a class of possible instantiations. Thus
a type parameter implicitly determines syntactic and (most often implicitly)
semantic requirements an instantiation has to meet in order to make the
generic algorithm run correctly. In addition, the use of subalgorithms comes
with the same problem: in order to work correctly, the (semantic) require-
ments of the subalgorithm must be implied by the ones of the calling algo-
rithm. However, especially semantic requirements are usually not taken into
consideration during instantiation, they can be found in language descrip-
tions only and are not included in the language itself. Thus they are not
checked during the compilation process leading to errors hard to find or re-
move; also because error messages given are not able to give hints referring to
semantic requirements. In the following we present a small programming lan-
guage Saga — S ignatures and Adjectives for Generic Algorithms — which
using the properties-based approach of section 6.2 allows for checking symbol-
ically both whether a proposed instantiation indeed fulfills the requirements
given by the generic instantiation and whether an algorithm is legal as a sub-
algorithm of another. Furthermore, the properties-based approach supports
the generation of meaningful error messages in case this check fails simply
by using the properties’ definitions. A prototype checker and compiler that
translates into C++ is implemented allowing to experiment with legality
checks. Here we focus on a conceptional presentation of the language, details
and formal definitions can be found in [GS03].

Saga essentially is an imperative language similar to C/C++ extended
with the notion of signatures and adjectives in order to exactly describe the
input/output parameters of generic algorithms. Using this description and
the calculus of the last section it is then possible to check for correctness
of subalgorithms and legal instantiation of algorithms during compile time.
The calculus has been implemented in the system presented in [Gas03] that
allows to generate type checkers based on on a given set of typing rules and
type implications. The language provides the usual statements while, do
and for loops; if conditionals and compound statements are built using curly
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brackets. The basic type system of the language includes Int, Char, String
and Bool type constructors Pair, Cell, a reference type &, as well as a
function type constructor.

At the core of Saga is the possibility to define adjectives over signatures
describing particular properties of various operators. A signature is a se-
quence of type names and operators with their arities, whereby naming in
a signature must be unique. An adjective basically introduces a name for a
property. The meaning of the property being introduced can be described
informally or by a formula. In particular the precise shape of the formula
given depends on the logic being used for verification. Thus checking done
during compiling is purely symbolical. However, using the formulae given
in the definition of adjectives a mechanized reasoning system can be con-
nected in order to formally prove the correctness of the implications used
and properties stated for particular domains.

So for example an adjective strict weak order is given by the signa-
ture consisting of a carrier T and two binary operations < and ∼ together
with a description of the intended meaning of the property defined following
the keyword means. Here, we use standard first-order logic to formulate the
properties of a weak strict order. A more STL-like adjective assignable for
a type T is similarly given by the signature consisting of T and an assignment
operator =. Note the use of the reference operator & for describing the arity
of =. The description of the adjective’s meaning in this case uses the infor-
mal option which is indicated by the keyword informal. In both cases the
description of the property can be used to generate expanded error messages
in order to support the user in case type legality checks during compilation
have failed.

Adjective strict weak order

for (T, < : (T,T)->Bool, ∼ : (T,T)->Bool)

means all(x:T) not(x < x) ∧
all(x,y:T) x < y ==> not(y < x) ∧
all(x,y,z:T) (x < y ∧ y < z) ==> x < z ∧
all(x,y:T) (x ∼ y) = (not(x < y) ∧ not(y < x)) ∧
all(x,y,z:T) (x ∼ y ∧ y ∼ z) ==> x ∼ z

Adjective assignable

for (T, = : (&T,T)->&T )

informal "Operator" = " is an assignment on " T;

Note that instead of defining the adjective strict weak order as a whole,
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it is also possible to define adjectives for the constituting properties such
as irreflexive or antisymmetric separately and combine these to get the
requirements for strict weak order. Thus the user has the possibility to
describe requirements for Saga algorithms as fine-grained as he considers
necessary for his generic algorithms.

The same way adjectives describing properties of algebraic domains such
as Group or Euclidean as well as more involved properties used for the
description of containers in the STL such as bidirectional iterator or
random access iterator can be defined. Then adjectives are used to spec-
ify requirements of generic algorithms: Together with a signature they are
included in algorithm headers and are thus part of the programming lan-
guage. The signature indicates which operations are to be instantiated and
can thus be used in the algorithm body. Based on the calculus of section 6.2
the signature and adjective declarations connected with algorithms, subal-
gorithms, and instantiations are used to check whether an instantiation or a
subalgorithm is legal for a generic algorithm.

As an example for a Saga algorithm we consider the sorting algorithm
qsort realizing quicksort. Sorting a sequence of elements can be made generic
in two ways: First, the type of the elements to be sorted is irrelevant as long
as they can be compared. Second, the way in which such a sequence is stored
is irrelevant also, as long as some particular operation on sequences can be
done. Both abstractions have been elaborated in the STL where iterators
are used to implement this abstraction; we adopt these notions here. Quick-
sort splits up the sequence to be sorted using a partition subalgorithm for
which a pivot element is chosen using another subalgorithm select pivot.
However, in the following we only consider the subalgortihm partition. A
partition of a sequence T into two subsequences can be built using a bidirec-
tional iterator where the elements stored in the container must be assignable
[Aus99]. The elements are partitioned with respect to some boolean predi-
cate on the element set VT. The algorithm then returns an iterator indicating
the border between the two subsequences. Thus the algorithm header in our
language looks as follows.

Algorithm partition

[ (T,VT,...) with bidirectional iterator(T,VT,...);

(VT,...) with assignable(VT,...) ]

( fst : T;

lst : T;

pred : (VT)->Bool )

return T
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We feel that the use of ... in the signature and adjective declarations needs
some explanation. It would be tedious to always repeat the whole signature
in all declarations. Therefore operators and their arity can be left out using
... to indicate that something has to be restored; however, domain names
have to be given in order to identify domains of different adjectives. The
operators of an algorithm’s signature are just the union of the ones used in
the adjectives, and can be thus constructed from the adjectives’ definitions
by unification.

Now following [MDS01, Aus99] a generic version qsort of quicksort can be
formulated in our language: To realize sequences random access iterators
are employed because the subalgorithm select pivot uses the median to
select an element of the container. This can be done efficiently only with
a random access iterator. However, other pivot selection strategies may
work well for weaker iterators. In addition, the elements being stored need
to assignable and equality comparable and must be equipped with a
strict weak order. Thus we get the following algorithm. Note that op-
erations on iterators, such as for example ==, occur in the definition of the
adjective random access iterator and are not stated again in the algorithm
declaration. We also included the algorithm body here to show that Saga
indeed can be considered as a usual declarative programming language ex-
tended with possibilities to specify type parameters.

Algorithm qsort

[ (RAI,VT,...)

with random access iterator(RAI,VT,...);

(VT,...)

with equality comparable(VT,...),

strict weak order(VT,...),

assignable(VT,...) ]

( first : RAI;

last : RAI )

begin

if (first == last) return;

var pivot : VT;

pivot = select pivot(first,last);

var split : RAI;

split = partition(first, last, (lambda x . x < !pivot));

qsort(first,!split);

qsort(!split,last)

end
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Now, how is it checked whether partition is a legal subalgorithm for
qsort? First, the actual arguments and the return type of partition are
matched with partition’s formal parameters. Note that this may include
overload resolution in case there is more than one partition algorithm.
Then, as already mentioned, the adjectives attached to partition are in-
stantiated with the types given by qsort. Now it has to be checked whether
the adjectives of qsort imply the ones of partition. Following the calcu-
lus from section 6.2 this is obvious for assignable(VT,=). The adjective
bidirectional iterator is not included in qsort’s adjectives. However,
this is easily deduced using the following rule; note again the use of .. as an
abbreviation for the adjectives’ operators.

Rules:

for (T,VT,...)

random access iterator(T,VT,...)

==> bidirectional iterator(T,VT,...);

Thus partition is a legal subalgorithm for qsort. In particular, this means
that if qsort is instantiated adjectives of the subalgorithms need not be
considered again; it suffices to check for the adjectives directly attached to
qsort. Note that the recursive call of qsort is also checked like other subal-
gorithms. In case of errors, for example if the above rule is not present,
error messages like ”cannot deduce bidirectional iterator(T,VT,...)

from the given set of adjectives” can be easily generated. So for example if a
user has written an algorithm based on bidirectional iterator and it ap-
pears that random access iterator should be deduced, this gives evidence
that the user’s algorithm is not well-designed, that is other subalgorithms
must be provided or even the algorithm probably cannot be formulated us-
ing bidirectional iterator only due to the algorithm’s requirements.

Checking for the correctness of particular instances is basically the same
as checking for the correctness of subalgorithms: The instantiation’s prop-
erties must imply the generic algorithm’s ones. This requires providing the
necessary knowledge about the instantiation in order to make it available for
the checker. This is done using rules with an empty premise set. For exam-
ple, the following rules state basic properties of the integers used to deduce
them as a correct instance of qsort.

Rules: for () { } ==> assignable(Int,=);

Rules: for () { } ==> equality comparable(Int,==,!=);

Rules: for () { } ==> strict weak order(Int,<,==);
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Thus, we check whether instantiations are legal for a generic algorithm with
respect to a knowledge base, here about the integers. Note, that if an in-
stantiation is not accepted, the reason might be that the knowledge stored
is not sufficient although this particular instance is correct.

Now, the generic algorithm qsort can be used to sort for example integer
arrays. Array(T) is a built-in type providing the usual set of operators. It
is parameterized by a type T giving the type VT of the elements being stored
in the array. Using this we can provide the following algorithm.

Algorithm main

return Int

begin

var a : Array(Int);

a = new array(random(30),0);

// ... initialize the array ...
qsort(ibegin(!a), iend(!a));

print array(!a)

end

Note that qsort does not need a third argument to specify the order. The
adjective strict weak order requires the existence of a binary operator <

and thus it is checked whether the instantiation tt Int provides an operator
with the properties necessary. In case there is more than one algorithm for
a binary operator fulfilling all requirements Saga will not instantiate but
collect all possible legal instantiations. It is planned to include a with clause
with which the user can resolve such ambiguities. This allows for instance
the user to call qsort with both < and > for the integers by just stating which
instance he desires.

The requirements of qsort for VT are deduced using the three rules for
the integers Int from above. ibegin(!a) and iend(!a) return iterators
of type ArrayIterator(T) where T in our example is instantiated with
Int. Thus it has to be checked whether ArrayIterator(Int) indeed is
a random access iterator. This is deduced with the help of the following
rule. Note, that in this case the complete signature has to be provided be-
cause the operators denote algorithms connected to ArrayIterator(T).

Rules: for (T)

{} ==> random_access_iterator(ArrayIterator(T),T,=,==,

!=,++_,_++,--_,_--,*_^^v,*_^^r,+,-);

In this way the instantiation of qsort with the integers is accepted. How-
ever, as already mentioned, the resulting instance is correct only relatively
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to the correctness of the rules used. For example, the last rule postulates
that the implementation of ArrayIterator fulfills the requirements of a
random access iterator. This may be proven externally with a mecha-
nized reasoning system, but is not considered during type checking. Note
again, that requirements of the subalgorithms used need not be taken into
account during instantiation.

6.4 Verification of Generic Algorithms

A generic algorithm can be considered as an algorithmic scheme: Parts of the
algorithm are left abstract using some kind of type parameter. These abstract
parts may be concerned with data handling [MDS01] or even with domains
the algorithm is dealing with [SL00a]. To get a running algorithm the ab-
stract parts have to be instantiated with concrete pieces of code. However,
as argued in chapter 2, it is usually not guaranteed that after instantiation
the resulting non-generic algorithm works correctly: the instantiation may
lack necessary operations or the operations do not fulfill all requirements im-
plicitly given by the generic algorithm. Consider for example again a sorting
algorithm; a generic version can easily be formulated for an arbitrary domain
with a binary relation. However, to actually sort sequences over a particular
domain in the usual sense this is not enough: it is necessary that the binary
relation is a total order. In other words, if the instantiation for the generic
sorting algorithm does not fulfill the requirement that its associated binary
relation is a total order, the instance of the generic sorting algorithm will not
work correctly.

The other way round these requirements for instantiations in fact de-
scribe conditions under which the generic algorithm works as expected, that
is assuming these conditions the generic algorithm is correct with respect
to its input/output specification independent from the particular instance
[Sch00b]. Thus the correctness of a generic algorithm does not depend on
the underlying domain, but in some sense more on whether the operations
used come with particular properties. Consequently, the correctness of a
generic algorithm can be formulated with respect to a set of properties of
the algorithm’s operations, to say it in other words with respect to a set of
minimal requirements: Provided that a particular instantiation fulfills these
properties, the resulting (non-generic) algorithm will work correctly. Thus
the problem of correct instantiation is nothing else than checking whether
a properties based theorem about an abstract algorithm of method is valid
in a particular domain implicitly given by the instantiation. In our exam-
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ple, properties necessary for the correctness of the generic sorting algorithm
are reflexivity, antisymmetry, transitivity and totality of the binary relation.
The integers enriched with their usual order provide these properties, hence
the integers constitute a legal instantiation for a generic sorting algorithm.

Following [Sch03] we now present a case study on properties based veri-
fication of generic algorithms: we use the Mizar system [RT01a] to formalize
and prove the correctness of Euclid’s algorithm for computing greatest com-
mon divisors. It is well-known that Euclid’s method works for arbitrary
Euclidean domains [BW93]. However, our proofs will show that Euclidean
domains provide more properties than necessary to make the method work.

We model the Euclidean algorithm by the sequence e-seq of remainders
computed.1 However, at this point it is irrelevant how—or even whether—
remainders are computed. Thus we can define e-seq as a function that, based
on two initial values a and b, computes the next value by just applying a
given function g to the two preceding values. The computation proceeds as
long as the second argument of g does not equal 0.R.

definition

let R be non empty ZeroStr,

g be Function of [:R,R:],R,

a,b be Element of R such that a <> 0.R;

func e-seq(a,b,g) -> Function of NAT,R means

it.0 = a &

it.1 = b &

for i being Nat holds

it.(i+1) = 0.R or it.(i+2) = g.(it.(i),it.(i+1));

end;

Next we define two requirements describing the correctness of the Euclidean
method. First, the computation should terminate, in other words e-seq

should eventually yield the value 0. Second, the greatest common divisor
of the initial values a = e-seq.0 and b = e-seq.1 should be invariant
throughout the computation, that is two consecutive pairs of values in e-seq

should possess the same greatest common divisor. Note however, that the
attributes are defined for arbitrary functions f and not for e-seq only.

definition

let R be non empty ZeroStr,

f be Function of NAT,R;

1see [Sch00b] for another approach based on Hoare’s calculus.
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attr f is terminating means

ex t being Nat st t > 0 & f.t = 0.R;

end;

definition

let R be non empty doubleLoopStr,

f be Function of NAT,R;

attr f is gcd_computing means

for c being Element of R, i being Nat holds

f.(i+1) = 0.R or

(c is_gcd_of f.i,f.(i+1) implies

c is_gcd_of f.(i+1),f.(i+2));

end;

Thus proving that e-seq(a,b,g) is terminating and gcd_computing for
all initial values a and b shows the correctness of Euclid’s method for ar-
bitrary domains R with arbitrary degree function d and arbitrary function g.
However, to do so further properties of the domain R (and of the function g)
are necessary. Essential for termination is the existence of a degree function
well-known from Euclidean rings. Here we define degree functions isolated
from other ring properties by first introducing a corresponding attribute.
We use a somewhat unusual form of the Euclidean property which we called
Left-Euclidean: a is decomposed into r + q * b, which differs from q *

b + r if addition is not commutative. This allows to prove the requirements
from above without assuming commutativity of addition.2 Note however,
that in case addition is commutative our definition coincides with the usual
one for Euclidean domains.

definition

let R be non empty doubleLoopStr;

attr R is Left-Euclidean means

ex f being Function of the carrier of R,NAT st

for a,b being Element of R st b <> 0.R holds

ex q,r being Element of R st

a = r + q * b & (r = 0.R or f.r < f.b);

end;

2We generalized the well-known correctness proof found in text books (see for example
[BW93]). This proof requires commutative addition if a=q*b+r instead of a=r+q*b is used.
However, there may exist a different proof showing the correctness of Euclid’s method
without assuming commutativity of addition in this case.
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definition

let R be Left-Euclidean (non empty doubleLoopStr);

mode DegreeFunction of R

-> Function of the carrier of R,NAT means

for a,b being Element of R st b <> 0.R holds

ex q,r being Element of R st

a = r + q * b & (r = 0.R or it.r < it.b);

end;

Finally, we need to formalize that the function g used by e-seq computes
remainders. This can be easily done for arbitrary degree functions of R, hence
for arbitrary structures that are Left-Euclidean as the following definition
shows. Note however, that it is possible to require other properties for g.
Crucial is that the properties required allow to show that the resulting e-seq

is gcd_computing.

definition

let R be Left-Euclidean (non empty doubleLoopStr),

d be DegreeFunction of R,

g be Function of [:R,R:],R;

pred g computes_mod_wrt d means

for a,b being Element of R st b <> 0.R holds

ex q being Element of R st

a = g.(a,b) + q * b &

(g.(a,b) = 0.R or d.(g.(a,b)) < d.b);

end;

After these preparations we can prove the following theorems describing the
correctness of Euclid’s method for computing greatest common divisors. Not
surprisingly the property Left-Euclidean is sufficient to prove termination
of e-seq (provided of course that the function used to compute the sequence
fulfills the property computes_mod_wrt). Theorem T2 is more interesting:
the properties used to prove the theorem show that greatest common divisors
can be calculated3 in domains R where neither addition nor multiplication is
commutative. Furthermore R need not be an integral domain, that is R may
contain zero divisors. Note also, that the (proofs of the) theorems hold for
arbitrary degree functions d of R.

3To actually compute greatest common divisors it is also necessary that a is a greatest
common divisor of a and 0.R. To prove this, addition of R must be cancelable and 1.R
must be a left unity with respect to multiplication.
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theorem T1:

for R being Left-Euclidean (non empty doubleLoopStr),

d being DegreeFunction of R,

g being Function of [:R,R:],R st g computes_mod_wrt d

for a,b being Element of R

holds e-seq(a,b,g) is terminating;

theorem T2:

for R being add-associative associative right-zeroed

right_complementable left-distributive

Left-Euclidean (non empty doubleLoopStr),

d being DegreeFunction of R,

g being Function of [:R,R:],R st g computes_mod_wrt d

for a,b being Element of R

holds e-seq(a,b,g) is gcd_computing;

The theorems show in particular that Euclid’s method can compute great-
est common divisors in rings where neither addition nor multiplication is
commutative. However, as the greatest common divisor is not unique algo-
rithms usually return one particular characterized with respect to an ample
set. This is done by employing an ample function to transform the computed
greatest common divisor into an element of the given ample set.

Therefore, another function res-gcd is introduced which takes the last
element of an e-seq, that is the one right before the first zero occurs, and
returns its corresponding element in the ample set using the function NF

which coincides with an ample function for A. Note that the ample set A is
an explicit parameter of the function res-gcd, and thus multiplication of R
has to be associative and well-unital just because these properties are
necessary to show the existence of ample sets.

definition

let R be associative well-unital (non empty doubleLoopStr),

A be AmpleSet of R,

f be Function of [:R,R:],R,

a,b be Element of R;

func res-gcd(a,b,f,A) -> Element of A means

ex i being Nat st

e-seq(a,b,f).(i+1) = 0.R &

it = NF(e-seq(a,b,f).i,A) &

for k being Nat st k <= i holds e-seq(a,b,f).k <> 0.R;

end;
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Then it can be easily shown that the result of res-gcd is both an el-
ement of the given ample set A, which holds basically by definition, and a
greatest common divisor of the start values a and b of e-seq, which holds
because greatest common divisors are invariant with respect to the associ-
ated relation. Thus res-gcd computes the greatest common divisor of a and
b following Euclid’s method:

theorem T3:

for R being add-associative right_zeroed right_complementable

associative well-unital distributive domRing-like

Left-Euclidean (non empty doubleLoopStr),

A being AmpleSet of R,

d being DegreeFunction of R,

g being Function of [:R,R:],R st g computes_mod_wrt d

for a,b being Element of R st a <> 0.R

holds res-gcd(a,b,g,A) is_gcd_of a,b &

res-gcd(a,b,g,A) in A;

Note again the reduced requirements on the underlying domain R. Now,
similar to section 4.4 and 6.2 we can use theorem T1, T2, and T3 to in-
fer (generic and non-generic) domains with which the instantiation of the
generic Euclidean algorithm is legal. Assuming, for example, that the type
EuclideanRing is available in Mizar as a doubleLoopStr and that the ap-
propriate attributes have been clustered, we get the following theorems.

theorem

for R being EuclideanRing,

d being DegreeFunction of R,

g being Function of [:R,R:],R st g computes_mod_wrt d

for a,b being Element of R

holds e-seq(a,b,g) is gcd_computing &

e-seq(a,b,g) is terminating by T1,T2;

theorem

for R being EuclideanRing (non empty doubleLoopStr),

A being AmpleSet of R,

d being DegreeFunction of R,

g being Function of [:R,R:],R st g computes_mod_wrt d

for a,b being Element of R st a <> 0.R

holds res-gcd(a,b,g,A) is_gcd_of a,b &

res-gcd(a,b,g,A) in A by T3;
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Please note again that these theorems are accepted by just referencing theo-
rems T1 and T2 resp. T3, because the attributes of an EuclideanRing are a
superset of the ones used in the theorems.

Consider the integers as a second example. The ring of integers in partic-
ular establishes a Euclidean domain. This is again formalized in a conditional
cluster definition where it is shown that INT.Ring fulfills the attributes not
proven so far.4 After the cluster is registered the theorem that Euclid’s
algorithm instantiated with the integers is correct can be proven by just
referencing T1 and T2.

definition

cluster INT.Ring -> Euclidean;

end;

theorem

for A being AmpleSet of INT.Ring,

d being DegreeFunction of INT.Ring,

g being Function of [:INT.Ring,INT.Ring:],INT.Ring

st g computes_mod_wrt d

for a,b being Element of INT.Ring st a <> 0.(INT.Ring)

holds res-gcd(a,b,g,A) is_gcd_of a,b &

res-gcd(a,b,g,A) in A by T3;

The same way further parameters occurring in the theorem can be spe-
cialized easily. For instance, the usual absolute value function absint is
a degree function of the ring of integers. Now, if absint is defined as a
DegreeFunction of INT.Ring—which in Mizar of course includes proving
that absint indeed is a degree function—the following is accepted by the
Mizar checker.

theorem

for A being AmpleSet of INT.Ring,

g being Function of [:INT.Ring,INT.Ring:],INT.Ring

st g computes_mod_wrt absint

for a,b being Element of INT.Ring st a <> 0.(INT.Ring)

holds res-gcd(a,b,g,A) is_gcd_of a,b &

res-gcd(a,b,g,A) in A by T3;

4Note that in the cluster the usual property Euclidean and not Left-Euclidean is
proven. This is sufficient due to a conditional cluster definition stating that for commu-
tative addition Euclidean implies Left-Euclidean. The same holds for the attributes
distributive and left-distributive.
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The Euclidean algorithm also works for polynomials over one variable if
the coefficients form a field, which is our final example. In Mizar polynomial
rings have been introduced for an arbitrary number of variables [RT01b,
MS02a], that is we have a type Polynomial-Ring(n,R) where n is an ordinal
giving the number of variables and R is the coefficient domain. Now if we
prove in a cluster definition the necessary attributes5 for Polynom-Ring(1,K)
where K is a field, we can infer the correctness of the generic Euclidean
algorithm for polynomial rings with one variable over fields without revising
or giving a new proof.

definition

let K be non trivial Field;

cluster Polynom-Ring(1,K) -> Euclidean;

end;

theorem

for K being non trivial Field,

A being AmpleSet of Polynom-Ring(1,K),

d being DegreeFunction of Polynom-Ring(1,K),

g being Function of

[:Polynom-Ring(1,K),Polynom-Ring(1,K):],

Polynom-Ring(1,K)

st g computes_mod_wrt d

for a,b being Element of Polynom-Ring(1,K)

st b <> 0.(Polynom-Ring(1,K))

holds res-gcd(a,b,g,A) is_gcd_of a,b &

res-gcd(a,b,g,A) in A by T3;

To summarize, a properties based approach allows to state the correctness
of generic algorithms at a very abstract level, namely by formalizing require-
ments so that the algorithm works. Once the correctness or other properties
of a generic algorithm have been shown with respect to these requirements, it
is then possible to identify correct instantiations by just comparing properties
of theorems and domains.

In addition using properties based theorems can result not only in gen-
eralization of domains but also of methods. For instance, the properties of
the domain R used to show the correctness of Euclid’s algorithm in the cases
study were in fact necessary only to prove that gcd(a, b) = gcd(b,g(a, b))

5A number of clusters for polynomial rings with weaker domains than fields as coeffi-
cients has already been defined in [RT01b]. These clusters are of course also applicable in
the case of fields.
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where g is the function yielding the remainder of a and b. The rest of the
proofs constructed is not affected by properties of R—exept for the Euclidean
property of course. Consequently, greatest common divisors can be com-
puted in a (left-Euclidean) domain R, if there is a function g with gcd(a, b) =
gcd(b, g(a, b)) and a well-founded relation < with g(a, b) < b for all a, b ∈
R. Properties of R allowing to prove this property of g are then sufficient
to compute greatest common divisors in R— independent of the function g

realizes.

6.5 Design of Libraries

The properties-based approach used in the previous sections to check for le-
gal instantiation in generic algorithms can also be used for the development
of libraries. Here we focus on libraries of mathematical theorems, though
in principle other libraries can be similarly designed. By using properties
to describe requirements under which a theorem holds, the knowledge is
presented in a more general way leading to improved support for reusing
theorems. Furthermore, because not only theorems but also individual do-
mains can be represented this way, the calculus of section 6.2 can be used to
deduce whether a theorem holds in a given domain. Thus a properties-based
library gets a more active role by processing the knowledge and, furthermore,
supports the user by extracting theorems of a particular theory.

The key idea to design mathematical libraries this way is to separate
the content of a theorem from the properties necessary to prove a theorem
correct [Sch01b]. The main observation is that the correctness of theorems
essentially does not depend on domains but rather on sets of properties. This
can be seen in corresponding proofs where not all properties of a domain
are actually used. Consequently a theorem falls into several constituents:
The content Cont(T ) of a theorem T states the proposition the theorem is
about. The way propositions are represented is of minor concern here, one
may think of some kind of logical formulae allowing to delegate proofs to
some external mechanized reasoning system. However, the domain and the
operations necessary to express Cont(T ) are given separately in a signature
Sig(T ). This allows to distinguish between the proposition of the theorem
and conditions under which it holds. This is further elaborated in the third
component of a theorem T . Here, a set of properties Props(T ) is given.
The intended meaning is that using these properties Cont(T ) can be proven
correct. Properties again are represented by predicate symbols. Thereby, the
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arity of these symbols corresponds to the carriers and operations necessary
to formulate the property. Summarized we consider a theorem T as a triple

T = (Sig(T ), Cont(T ), P rops(T ))

where the statements of Cont(T ) and Props(T ) fit to the given signature
Sig(T ), that is use only symbols introduced there. The other way round
Sig(T ) should not include more than necessary for the statements given in
Cont(T ) and Props(T ). Note, that we do not use a formal definition of
properties in the sense of first-order logic here. We assume that the mean-
ing of a property is indicated by its name, that is by the chosen predicate
symbol, the formal definition given elsewhere and not directly processed by
the library. Consider, for example, the following well-known theorem T from
ideal theory.

Let R be a (commutative) ring. Then {0} is an ideal in R.

We now transform the theorem into our representation thereby generalizing
it to due to the properties necessary to prove it. We start by just mentioning
that we get for the content of T

Cont(T ) = {0} is an ideal in R

and that it is a straightforward task to expand the description of the content
into, for instance, a first-order formula. More importantly, the signature
necessary to formulate this proposition is

Sig(T ) = (R, +, ∗, 0),

that is the symbol 1 usually part of the ring signature is not included. Fur-
thermore, in order to prove that {0} is an ideal in R it is only necessary that
+ is associative, provides a right zero as well as right inverses and that +
and ∗ fulfill the distributivity law [BRS01]. So we get

Props(T ) = {associative(R, +), right-zero(R, +, 0),
right-inverse(R, +, 0), distributive(R, +, ∗)},

that is the properties connected with T are much weaker than the proper-
ties of a ring required in the original version of the theorem. Note that the
arguments R, +, ∗ and 0 can be interpreted as variable symbols since they
represent arbitrary carriers and operations respectively.
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Domains D can be represented in a similar way. They also consist of
a signature Sig(D) giving carriers and operations of the domain and a set
Prop(D) containing properties the domain fulfills, thus

D = (Sig(D), P rop(D)).

This of course works for both abstract domains such as rings or fields and
individual domains. For example, the description of the ring of integers Z
would include the following.

Sig(Z) ⊇ (Z, +Z, ∗Z, 0Z, 1Z)
Props(Z) ⊇ {associative(Z, +Z), distributive(Z, +Z, ∗Z),

commutative(Z, +Z), commutative(Z, ∗Z),
Euclidean(Z, +Z, ∗Z, 0Z)}

where, in contrast to the description of theorems and abstract domains,
Z, +Z, ∗Z, 0Z and 1Z are now constant symbols. Thus the approach allows for
the description of both domains and theorems with regard to properties of
domains and the properties making theorems correct. Similar to the correct-
ness of instantiations of generic algorithms, this gives rise to a straightforward
criterion whether a theorem T holds in a domain D where D may be both an
abstract or a concrete domain. It has only to be checked whether the domain
D provides both the necessary signature and the properties connected with
the theorem T , thus

Cont(T ) is valid in D :⇐⇒
SigD(T ) ⊆ Sig(D) ∧ PropsD(T ) ⊆ Prop(D)

The notations SigD(T ) and PropsD(T ) resp. mean that the variable sym-
bols occurring in the theorem T , actually in Sig(T ), are replaced by the
corresponding symbols of the domain D. This in fact is a match of the sym-
bols given in the domain’s definition with those of the theorem. Thus, for
example, it can be easily checked that the theorem from above is valid for
both abstract rings and the ring of integers, just because the signature and
the properties attached to the content of the theorem are included in the
properties of an abstract ring and the ring of integers, respectively. This
nicely corresponds to checking of legal instantiation for generic algorithms
presented in section 6.3.

Note however, that the failure of this check does not necessarily imply that
a theorem does not hold in a domain; the check is relative to the properties
stated about the theorem and the domain. Theorem proving in its original
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sense is not necessary here, just checking whether certain properties, that
is predicates connected with domains and theorems, are present. Thus, the
validity of a theorem in a particular domain is reduced to just comparing the
theorem’s and the domain’s properties. Nevertheless the deduced results are
correct provided that the meaning of the properties and rules was defined
properly, which actually can be ensured by proving the rules externally with
some mechanized reasoning system. Note, that this method also allows for
straightforward error messages by collecting the properties of the theorem T
not included in the ones of the domain D.

Again, the properties-based approach can be generalized to implications
of sets of properties based on the calculus of section 6.2. This results in an
active library that uses deduction to check validity of stored general theo-
rems in both abstract and individual domains. Thus theorems can be kept
in the library in a more general fashion . Nevertheless their usual connection
to well-known domains found in textbooks is still maintained by means of
deduction.

In fact well-known domains such as groups, fields or vector spaces, can
be easily incorporated into the library’s predicates to shorten the description
of theorems, in this way serving as abbreviations for sets of predicates. On
the one hand, they are of course domains having a representation by their
signatures and sets of predicates. Thus we have for example

Sig(Group) ⊇ (R, +, 0)
Props(Group) ⊇ {associative(R, +), right-zero(R, +, 0),

right-inverse(R, +, 0)}

There may be more signature symbols or predicates for Group, for example
−1 : R −→ R which together with a predicate inverse(R, +, 0, −1) gives the
inverse function. Thus this representation of domains can be easily extended
by just adding more knowledge to the signature and predicate set. Note that
general theorems stored in the library holding for the original group specifica-
tion, that is theorems requiring at most the predicates associative(R, +),
right-zero(R, +, 0) and right-inverse(R, +, 0), still hold after the exten-
sion of Group just because the calculus is monotone with respect to sets
of predicates. Thus a properties-based library supports an incremental ap-
proach to specifying domains.

On the other hand, though the basis for the flexibility of the approach, it
seems somewhat tedious to have to repeat each individual property for each
theorem, that is all the three properties of the Group example have to be
stated although it is clear that together these properties constitute a group.
Thus abbreviation rules, that is in fact the definition of a new predicate as an
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abbreviation for a set of predicates, can be given by the user. For example,
the following rule

{Group(R, +, 0)} −→
{associative(R, +), right-zero(R, +, 0), right-inverse(R, +, 0)}

allows to state theorems about groups without giving the three constituting
properties. However such theorems may hold in more general domains also
which is then not taken into consideration. Thus the user can select the
level of abstraction he considers best for his problem. To this end he can also
filter out theorems holding in special theories easily by just collecting general
theorems the properties of which are implied by the one of the considered
theory. It is also possible to consider different views of a particular theory.
So, for instance, the following rule

{Group(R, +, 0, −1)} −→
{associative(R, +), right-zero(R, +, 0),
right-inverse(R, +, 0), inverse(R, +, 0, −1)}

introduces the theory of groups where the inverse function is explicitly de-
noted in the signature. Though this is in principle the same theory as the
original group theory, it allows the user to present statements about this
function explicitly which is not possible with the original group specification.

Summarized the properties-based approach allows to design flexible more
active libraries in two ways. First, theorems can be formulated in a very
general setting by just stating properties necessary to prove them. Never-
theless, deduction on sets of properties gives the possibility to validate such
general theorems for domains in the usual sense. Second, the user is enabled
to develop and work in his own individual theory by introducing new do-
mains or rules. General theorems included in the library that hold in his
special theory are available automatically due to the deduction mechanisms
incorporated in the library.
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Chapter 7

Conclusion

In this thesis we have made a tour through the field of generic programming
and formal methods and tools supporting it. After a general introduction to
generic programming we have presented a number of existing libraries rely-
ing on principles and method of generic programming either way. The main
outcome of such libraries is that users have great flexibility in applying algo-
rithms contained. They can plug in data structures, domains or even method
and policies in this way adapting software to their personal needs. We be-
lieve that this way of reusing and adapting software will become even more
important in the future. In particular well-designed interfaces and methods
supporting users in doing so are of great interest.

Then we focused on semantic requirements for generic algorithms. Se-
mantic requirements appear as a consequence of the additional abstraction
generic algorithms introduce: Instances of generic algorithms behave as ex-
pected only if instantiations come with a number of (semantic) properties.
In addition algorithmic requirements such as the complexity of algorithms
are of interest. The specification of such requirements is thus of major con-
cern in order to provide reliable generic algorithms. We argued that it is of
particular interest to provide mechanisms allowing to represent requirements
in a flexible combinable way. This enables both developers and users to
specify generic algorithms and their requirements as general as possible. On
the other hand users can strengthen requirements to work in domains they
are familiar with. These considerations have resulted in a properties-based
approach for describing requirements.

Closely connected with specification is the formal verification of generic
algorithms. We argued that both the verification of generic algorithms in
its original sense as well as that particular instantiations will result in cor-
rect instances of generic algorithms should be supported mechanically. We
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presented some mechanized reasoning systems we consider suited for the
particular needs of proving generic algorithms correct. We believe that ex-
isting mechanized reasoning systems are capable of formalizing mathemat-
ical knowledge and proving theorems occurring when specifying and veri-
fying generic algorithms. Nevertheless further improvement, especially of
mathematical databases holding and accessing knowledge for this purpose,
seems preferable. Imps and Theorema are steps into this direction, espe-
cially because they aim at combining reasoning and computing, that is non-
algorithmic and algorithmic mathematical knowledge.

Both specification and verification of generic algorithms has been ad-
dressed in the applications: A properties-based approach has been presented
that allows to describe semantic requirements of generic algorithms ade-
quately. A small programming language—Saga—has been described that
based on this approach allows checking for legal instantiations of generic al-
gorithms and subalgorithms. The appropriateness of the properties-based
approach for the verification of generic algorithms has been demonstrated
by a case study on Euclid’s algorithm. In addition, the design of libraries
dealing with requirements and in this way supporting storing and reusing
more general knowledge has been outlined.

Generic programming offers methodologies and techniques that allow to
develop highly adaptable, reusable software and software libraries. On the
other hand generic software and algorithms demand a much more abstract
view on programming in order to achieve its goals. As a consequence generic
software also comes with new demands for both developers and users. These
can and should be supported by a rigorous use of formal methods for speci-
fication and verification of generic algorithms.
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