
Defining Gröbner bases

in the

Concept Description Language Tecton

Christoph Schwarzweller
Wilhelm-Schickard-Institute for Computer Science

Sand 13
D-72076 Tübingen

schwarzw@informatik.uni-tuebingen.de

8th November 2001

Abstract

Tecton is a language for describing and using abstract concepts in formal
software development and hardware design. Its syntax and semantics only uses
first order and inductive proof methods rather than higher order techniques.

In this paper we describe the definition of ideals and Gröbner bases in the
concept description language Tecton, so that the specification of Buchberger’s
algorithm for constructing Gröbner bases can be given. In addition we give Tec-
ton versions of two well-known characterizations for Gröbner bases, namely the
one based on division in polynomial rings and the one based on confluent rewriting.

1

Contents

1 Introduction 3

2 Ideals 4

3 Linear Combinations 7

4 Term Orders 10

5 Multivariate Polynomials 11

6 Gröbner bases 17

7 Polynomial Division and S-Polynomials 19

8 Rewrite Relations 23

9 Polynomial Rewriting 27

10 Buchberger’s Algorithm 30

11 The Hilbert Basis Theorem 33

12 Conclusion 34

A An Example of a Monomial Order 35

B Additional Tecton Concepts 37
B.1 Basic Concepts . 37
B.2 Order Concepts . 41
B.3 Algebraic Concepts . 43
B.4 Polynomial Concepts . 46

C Indices 47
C.1 Files . 47
C.2 Macros . 48
C.3 Concept Names . 48

2

1 Introduction

Over the last several years generic programming has received more and more attention.
Many programming languages nowadays include generic concepts like polymorphism
in functional programming languages, overloading or templates in C++; or they are
even completely designed as a generic language like Such That. Also generic libraries
have been developed like the Ada Generic Library or the Stl. Common to all these
approaches is that algorithms are not longer developed for special domains but rather
for classes of domains that fulfill the requirements necessary to make the algorithm
work.

Tecton [9] is a specification language that takes this view of programming into
account: Based on order-sorted algebra it offers language constructs to describe ab-
stract concepts representing the classes of domains with common requirements just
mentioned. Algorithms formulated with respect to these concepts then work for all
special domains fulfilling the corresponding requirements. This leads to the definition
of generic progamming as ”programming with concepts” or as ”requirement oriented
programming”, first mentioned by David Musser.

In this paper we present a case study extending the concepts given in the Tec-
ton concept library [10]. The goal is to provide Tecton concepts that enable the
specification of Buchberger’s well-known algorithm for constructing Gröbner bases in
polynomials rings over (arbitrary) fields. This case study does not only give more in-
sight into the use of Tecton and its translator, but also is the first example of an
involved algebraic algorithm completely specified using the Tecton language.

The plan of the paper is as follows. After defining ideals in the first section, we intro-
duce linear combinations to formalize the usual characterization of (finitely) generated
ideals. Next, we formalize multivariate polynomials and term orders, necessary to lift
the natural ordering of univariate to multivariate polynomials.1 We connect the concept
of univariate polynomials, already included in the Tecton concept library, with our
approach by giving a realization for it in terms of multivariate polynomials. Then we
are ready to define Gröbner bases and to extend the multivariate polynomial concept
by s-polynomials and division of polynomials. This allows us to state a first character-
ization of Gröbner bases in the Tecton language, namely that all s-polynomials with
respect to the base divided by the polynomials of the base leave no remainder.

As has been pointed out in the literature, Gröbner bases can also be characterized
using the methodology of rewriting systems (see for example [3]). We introduce the basic
notion of rewriting systems in the Tecton language and formalize this characterization
as a Tecton lemma.

We close with the description of Buchberger’s algorithm in the context of the generic
programming language SuchThat [12] and a Tecton formalization of the Hilbert basis
theorem from which easily follows that every ideal in a polynomial ring over a field has
a finite base, and hence a Gröbner base.

1In the Tecton concept library (univariate) polynomials already has been defined, but we consider
our approach more suitable in order to introduce Gröbner bases (for arbitrary term orders).

3

2 Ideals

Ideals in (commutative) rings are except for polynomials themselves the basic objects in
Gröbner base theory. Here, we introduce ideals for arbitrary rings as it is no problem in
Tecton to later use already defined concepts in a more specific context2. The Tecton
concept library [10] already provides the following definition of ideals.

"Library-Version-of-Ideals.tec" 4a ≡
Definition: Right-ideal

refines Set [with ideals as sets];

uses Ring;

requires (for I: ideals; a, b: domain)

0 in I,

(a in I and b in I) implies (a + b in I),

(a in I) implies (a * b in I).

Definition: Left-ideal

refines Set [with ideals as sets];

uses Ring;

requires (for I: ideals; a, b: domain)

0 in I,

(a in I and b in I) implies (a + b in I),

(a in I) implies (b * a in I).

Definition: Ideal

refines Right-ideal, Left-ideal.

�

Here ideals are introduced by importing the concept Set with its sets being renamed
into ideals. The two sorts domain of the concepts Set and Ring respectively are
indentified, so that the elements of a sets — now called ideals — can be added and
multiplied. However, this definition does not allow to compare ideals with arbitrary
subsets of the domain just because the type ideals does not wide to the type sets
(over domain).3 Consequently we use in the following a slightly different definition of
ideals in which the concept Set is also imported, but the types lideals, rideal and
ideals are introduced as a subsort of sets (over domain). In addition this gives a
much better distinction between left ideals and right ideals on one side and (two-sided)
ideals on the other side than the definition from above.

〈Ideals 4b〉 ≡
Definition: Left-ideal

refines Set, Ring;

introduces

lideals < sets;

requires (for s: sets)

s : lideals =

0 in s,

(for a,b: domain)

((a in s and b in s) implies (a+b in s)) and

((a in s) implies (b * a in s)).

2In fact, this is one of the most important design goals of the Tecton language.
3This problem did not occur when defining the first version of the Tecton concept library as the

major goal was to provide the basic algebraic structures.

4

Definition: Right-ideal

refines Set, Ring;

introduces

rideals < sets;

requires (for s: sets)

s : rideals =

0 in s,

(for a,b: domain)

((a in s and b in s) implies (a+b in s)) and

((a in s) implies (b * a in s)).

Definition: Ideal

refines Left-ideal, Right-ideal;

introduces

ideals < lideals,

ideals < rideals,

ideals < sets,

empty-ideal: -> ideals;

requires

(for i : lideals) i : ideals = i : rideals,

(for i : rideals) i : ideals = i : lideals,

empty-ideal = empty.
�
Definition defined by parts 4b, 5, 6ab.
Definition referenced in part 47.

Note that the axioms of an ideal though of course still present in the new definition
play now a different role. Before they were used as additional requirements on the
sets — or better ideals due to the renaming, of the concept — but now they are in
fact the requirements a sets has to fulfill to be of the (sub)type lideals or rideals.4

Note also that the combination of the concepts Left-ideal and Right-ideal to get
the concept Ideal has become a bit more involved. ideals are introduced as both a
subtype of lideals and rideals, so we have to give the corresponding requirements
for both. This was not necessary before just because the types lideals and rideals
were not included.

In commutative rings left and right ideals of course coinside with (two-sided) ideals
just because we have a ∗ b = b ∗a for all elements of the domain. This fact is formalized
in Tecton as a lemma:

〈Ideals 5〉 ≡
Abbreviation: Ideal-over-commutative-ring is

Ideal [with Commutative-ring as Ring].

Lemma: Ideal-over-commutative-ring

obeys (for a: lideals) a: ideals,

(for a: rideals) a: ideals.
�
Definition defined by parts 4b, 5, 6ab.
Definition referenced in part 47.

We also need (finitely) generated ideals, because this is the kind of ideals Buchberger’s
algorithm deals with. The ideal generated by a given set is the smallest ideal containing

4This again points out that there may be further sets being not of the type lideals or rideals,
which was the reason for changing the defnition.

5

this set. This is modelled by introducing a new operator gen that transforms a set into
the ideal generated by this set. The notion of a finitely generated ideal is similar, and
we define it in the Tecton language as a refinement of the concept Generated-ideal.

〈Ideals 6a〉 ≡
Definition: Generated-ideal

uses Ideal;

introduces

gen : sets -> ideals;

requires (for s: sets; i: ideals)

(s subset gen(s)),

(s subset i) implies (gen(s) subset i).

Definition: Finitely-generated-ideal

refines Generated-ideal [with Finite-set as Set];

requires (for i: ideals)

(for some s: finite-sets) i = gen(s).
�
Definition defined by parts 4b, 5, 6ab.
Definition referenced in part 47.

Note that the concept Finitely-generated-ideal imports Generated-ideal with its
subconcept Set being replaced by the concept Finite-set5 in order to make the type
finite-sets available in the concept.

Based on the notion of generated ideals is the concept of an ideal base. A (finite)
base for an ideal is a (finite) subset of this ideal that generates it. Note that for each
ideal an infinite base indeed exists, namely the ideal itself is a base. In the Tecton
language this can be easily expressed by introducing an operator base mapping an ideal
onto its (finite) base.

〈Ideals 6b〉 ≡
Definition: Ideal-base

uses Generated-ideal;

introduces

base : ideals -> sets;

requires (for i: ideals)

(base(i) subset i) and gen(base(i)) = i.

Definition: Finite-ideal-base

refines Finitely-generated-ideal, Ideal-base;

introduces

base : ideals -> nonempty-finite-sets;

requires (for i: ideals)

(base(i) subset i) and gen(base(i)) = i.

Lemma: Finite-ideal-base obeys base(empty-ideal) = empty.
�
Definition defined by parts 4b, 5, 6ab.
Definition referenced in part 47.

Note that the concept Finite-ideal-base is not only a refinement of the concepts
Finitely-generated-ideal and Ideal-base,6 but also introduces the operator base

5The concept Finite-set is a refinement of set which means that both types sets and finite-sets

are now available.
6In this case it would only follow that for each ideal there is a finite basis, but not that the operator

base in fact gives such a finite base.

6

again now returning a finite set. As Tecton allows overloading of operators also by
different return types, it is not implicitely clear that this new operator base behaves
like the former one. Consequently we have to state its requirements again.7

This completes the basic definitions concerning ideals in (arbitrary) rings. To define
Gröbner bases we need to introduce some more properties of polynomials than already
is included in the Tecton concept library. Before this will be done in section 4 we
turn to finite sums and linear combinations which are not necessary to define Gröbner
bases, but to formalize the already mentioned characterization of Gröbner bases.

3 Linear Combinations

Our next goal is a Tecton formalization of the well-known fact, that the ideal generated
by a subset A of a given ring R equals the set of ”linear combinatons” over A (see for
example [3]):

Gen(A) =

{
n∑

i=1

ai · ri

∣∣∣∣∣ 0 < n ∈ IN, ri ∈ R and ai ∈ A for 1 ≤ i ≤ n

}
.

In the Tecton language, however, a sum of (finitely) many elements is not directly
expressible, so we will use the notion of (finite) sequences already realized in the Tec-
ton concept library by maps from the natural numbers into a domain.8 Because we
want to add and multiply the elements given by a (finite) sequence, we have to spe-
cialize their ranges: Instead of an arbitrary domain, now the domain has to provide an
addition and a multiplication, hence has to be a semiring.

According to the principle of genericity we first define the notion for arbitrary se-
quences, before we introduce finite sequences over semirings as a refinement of these
sequences and finite sequences.

〈LinComb 7〉 ≡
Definition: Sequence-over-semiring

refines Sequence [with Semiring as Range, domain as range];

uses Semiring;

introduces

+ : sequences x sequences -> sequences,

* : domain x sequences -> sequences,

* : sequences x sequences -> sequences;

requires (for s,t: sequences; d: domain; m: naturals)

n_th(s+t,m) = n_th(s,m) + n_th(t,m),

n_th(d*t,m) = d * n_th(t,m),

n_th(s*t,m) = n_th(s,m) * n_th(t,m).
�
Definition defined by parts 7, 8ab, 9abc.
Definition referenced in part 47.

When defining finite sequences over a semiring, we have the same problem as just
described for finite ideal bases: we have to introduce the operators + and * again,

7Alternatively, instead of introducing the operator base again, we could just add the requirement
base(i) : finite-sets. This also would imply that bases are finite sets in the concept, but the type
of base(i) would still be sets rather than finite-sets. We prefer the first solution as it makes things
easier when later defining Groebner bases.

8see the concepts Sequence and Finite-sequence in appendix B.1.

7

because we want to change their types into finite-sequences.9 To ensure that these
restricted addition and multiplication behave as expected we add requirements saying
that if the arguments of the operators are considered as ordinary sequences — which
they can be as finite-sequences is a subtype of sequences — the result has to be
the same as if they were considered as finite-sequences.

〈LinComb 8a〉 ≡
Definition: Finite-sequence-over-semiring

refines Sequence-over-semiring, Finite-sequence;

introduces

+ : finite-sequences x finite-sequences -> finite-sequences,

* : domain x finite-sequences -> finite-sequences,

* : sequences x finite-sequences -> finite-sequences;

requires (for s,t: sequences; u,v: finite-sequences; a: domain)

(s = u and t = v) implies (u + v = s + t and u * v = s * t),

(s = u) implies (a * u = a * s).
�
Definition defined by parts 7, 8ab, 9abc.
Definition referenced in part 47.

Next we introduce finite sums and products over Ring and Ring-with-identity re-
spectively.10 Note that to define sum and prod for the empty sequence we must use a
varible s of type finite-sequence saying that s = empty. This is because the type
of empty is only sequence11 whereas sum and prod take finite-sequences as their
arguments. In fact, avoiding this defect was the reason for repeating the definitions of
finite-base in the last section and of the operators + and * for finite-sequences
from above.12

〈LinComb 8b〉 ≡
Definition: Finite-sum-over-ring

uses Finite-sequence-over-semiring [with Ring as Semiring];

introduces

sum : finite-sequences -> domain;

requires (for s: finite-sequences; d: domain)

(s = empty) implies sum(s) = 0,

sum(d into s) = d + sum(s).

Definition: Finite-product-over-ring-with-identity

uses Finite-sequence-over-semiring [with Ring-with-identity as Semiring];

introduces

prod : finite-sequences -> domain;

requires (for s: finite-sequences; d: domain)

(s = empty) implies prod(s) = 1,

prod(d into s) = d * prod(s).
�
Definition defined by parts 7, 8ab, 9abc.
Definition referenced in part 47.

9Note that here not only the return but also the input types are changed.
10These more involved algebraic structures are necessary because 0 and 1 are not available in concept

Semiring; compare appendix B.3.
11compare appendix B.1; maybe this will be changed in the next version of the Tecton concept

library.
12see also again footnote 7.

8

If we want to use both sum and prod in one concept this is of course only possible over the
more specialized concept Ring-with-identity. The combination is done by refining
Finite-product-over-ring-with-identity and Finite-sum-over-ring where the
subconcept Ring is replaced by the concept Ring-with-identity.

〈LinComb 9a〉 ≡
Definition: Finite-sum-and-product-over-ring-with-identity

refines Finite-sum-over-ring [with Ring-with-identity as Ring],

Finite-product-over-ring-with-identity.
�
Definition defined by parts 7, 8ab, 9abc.
Definition referenced in part 47.

Now we are ready to define the concept of linear combinations using the just described
concept Finite-sum-over-ring. We introduce an operator LinComb mapping a set
onto the set of linear combinations over this set.13 This is done by taking the sums of
the finite-sequences having only elements of the form b * c in their ranges, where c
is in the given set and b is an arbirary ring element.

〈LinComb 9b〉 ≡
Definition: Linear-combination

uses Finite-sum-over-ring, Ideal;

introduces

LinComb : sets -> ideals;

requires (for a: domain; s1: sets)

(a in LinComb(s1)) =

(for some s: finite-sequences) a = sum(s) and

(for n: naturals) (for some b,c: domain)

(c in s1) and (n_th(s,n) = b * c).
�
Definition defined by parts 7, 8ab, 9abc.
Definition referenced in part 47.

Before we can state the desired property of linear combinations, namely the the set (or
better the ideal) of linear combinations over a given set s equals the ideal generated
by s, there is one more thing to do: we have to make the notion of generated ideals,
that is the operator gen, available.14 This is done by an abbreviation in which the
concept Ideal imported by the concept Linear-combination is replaced by the concept
Genrated-ideal.15

〈LinComb 9c〉 ≡
Abbreviation: Linear-combination-with-generated-ideal is

Linear-combination [with Generated-ideal as Ideal].

Lemma: Linear-combination-with-generated-ideal obeys

(for s: sets) gen(s) = LinComb(s).
�
Definition defined by parts 7, 8ab, 9abc.
Definition referenced in part 47.

13Note that the return type of LinComb is ideals implicitely saying that the set of all linear com-
binations over a set fulfills the axioms of an ideal. This also is the reason for importing the concept
Ideal; with LinComb having simply sets as its retrun type this would not be necessary.

14We also could do this in the definition of the concept Linear-combination by importing the concept
Genrated-ideal instead of Ideal, but we prefer to be in a definition as general as possible.

15Note that this implies additional semantic requirements, see [9]. Here, these requirements are
trivially fulfilled just because the concept Generated-ideal imports the concept Ideal.

9

4 Term Orders

In section we give a Tecton formalization of term orders16 necessary to lift the natural
ordering on univariate to multivariate polynomials that are defined in the next section.
We start with the definition of well orders that is not included in the Tecton concept
library so far. A well order is an order in which no infinite chains are possible. Con-
sequently the concept Well-order refines the concept Partial-order by introducing
a predicate allows_infinite_chains that checks whether a particular element of the
domain is part of an infinite chain. Well-foundness is then achieved by requiring that
no element fulfills this predicate.

〈Order 10a〉 ≡
Definition: Well-order

refines Partial-order;

introduces

allows_infinite_chains : domain -> bool;

requires (for a: domain)

allows_infinite_chains(a) =

((for some b: domain) b < a) and

((for b: domain) b < a implies (for some c: domain) c < b),

not(allows_infinite_chains(a)).
�
Definition defined by parts 10abc, 11a.
Definition referenced in part 47.

Now we can define a term order as a total well-founded order over a monoid17 fulfilling
two additional properties, namely that 1 is the smallest element and that the order is
compatible with the multiplication, which is easily translated in the Tecton language
as folllows.

〈Order 10b〉 ≡
Definition: Term-order

refines Total-order, Well-order;

uses Monoid;

requires (for a,b,c: domain)

1 <= a,

a <= b implies a * c <= b * c.
�
Definition defined by parts 10abc, 11a.
Definition referenced in part 47.

An easy consequence of the last definition is the following lemma, which in fact is not
necessary for our development of Gröbner bases, but we include it as another example
for the Tecton lemma construct.

〈Order 10c〉 ≡
Lemma: Term-order obeys

(for a,b,c,d: domain) (a <= b and c <= d) implies a * c <= b * d.
�
Definition defined by parts 10abc, 11a.
Definition referenced in part 47.

16also called monomial orders; see [6].
17Note that the set Tn := {Xi1

1 · · ·X
in
n } of monomials over the set {X1, . . . Xn} forms a monoid

with respect to concatenation; see [3].

10

Later we need to talk about the maximal monomial of a polynomial. As the Tecton
concept library only provides a maximum operator for orders on numbers18 we introduce
it here for general orders. Note, that according to the principle of genericity we introduce
the max operator not in an extenstion of the concept Term-order, but of the concept
Total-order. Nevertheless, because Term-order imports Total-order the operator
max will be available there also.

〈Order 11a〉 ≡
Extension: Total-order

uses Set;

introduces

max : domain x domain -> domain,

max : sets -> domain;

requires (for a,b: domain; s: sets)

(max(a,b) = a) = (b <= a),

(max(s) = a) = ((for b: domain) b in s implies b <= a).
�
Definition defined by parts 10abc, 11a.
Definition referenced in part 47.

5 Multivariate Polynomials

As already mentioned (univariate) polynomials are already included in the Tecton
concept library [10]. There they have been modelled as functions from the natural
numbers into a coefficient domain, namely a commutative ring with identity.19 Poly-
nomial rings with more then one variable then can be inductively defined by taking a
polynomial ring as the coefficient domain. Nevertheless we decided to use a different
approach following [11]: we first introduce bags as functions from a (possibly infinite)
set of variables into the natural numbers giving us the notion of power products.20 Con-
sequently a multivariate polynomial is a function from this set of bags into a coefficient
domain with only finitely many values of the function being not zero. This has two
advantages: first, we found out that using our apporach it is easier to formalize special
orderings for monomials (with an arbitrary number of variables); second, the approach
is more general. Not only that the case of infinitely many variables is included, we also
easily get the notion of power series (with infinitely many variables) by first dropping
the requirement that only finitely many values of the bags are not zero. Multivariate
polynomials then can be defined as a refinement of power series.

We start with introducing the concept of variables, that are in fact nothing more
than an arbitrary set with its domain being renamed in variables. Please note again
that the number of variables may be infinite in our concept.

〈Poly 11b〉 ≡
Abbreviation: Variable is Set [with variables as domain].

�
Definition defined by parts 11b, 12abc, 13ab, 14ab, 15ab, 16abc, 17a.
Definition referenced in part 47.

18compare appendix B.1 and B.2.
19compare appendix B.4.
20In fact a bag is almost the same as a yet to be introduced monomial, but we want to have a type

monomials being a subtype of the type polynomials, so we cannot use the definition of bags as the
definition for monomials.

11

Bags are modelled as functions from variables into the natural numbers using the
concept Map already included in the Tecton concept library.21 All that has to be done
is to rename Map’s parameters appropriately. Note that we also import the concept
Monoid22 in order to make available the concatenation of bags, that is the concatenation
of power products.

〈Poly 12a〉 ≡
Definition: Bag

refines Map [with bags as maps, variables as domain,

Natural as Range, naturals as range],

Monoid [with bags as domain];
�
Definition defined by parts 11b, 12abc, 13ab, 14ab, 15ab, 16abc, 17a.
Definition referenced in part 47.

Power products are finite that is there are only finitely many variables having an ex-
ponent unequal to zero. So we have to formulate further requirements for the concept
Bag. We introduce an operator support from bags into finite sets (of variables) giving
exactly the variables for which a bag has a non zero result.23 Note that by the opera-
tor’s retrun type finite-sets we implicitely require that there are only finitely many
variables with this property. In addition we have to identify the operators * and 1 given
by the monoid structure with the corresponding operations on bags.

〈Poly 12b〉 ≡
uses Finite-set [with variables as domain];

introduces

support : bags -> finite-sets;

requires (for b,b’: bags; v: variables)

v in support(b) = not(apply(b,v) = 0),

apply(b*b’,v) = apply(b,v) + apply(b’,v),

(b = 1) = (for v: variables) apply(b,v) = 0.
�
Definition defined by parts 11b, 12abc, 13ab, 14ab, 15ab, 16abc, 17a.
Definition referenced in part 47.

Now we are ready to introduce power series as functions from bags into a coefficient
domain. Again this is done by instantiating the parameters of the concept Map. In
an extension we redefine the support function giving here the bags of a series with
non zero values. This set may be infinite, hence its return type is sets rather than
finite-sets.

〈Poly 12c〉 ≡
Abbreviation: Power-series is

Map [with series as maps, bags as domain,

Coefficient-ring as Range, coefficient-domain as range].

Extension: Power-series

uses Finite-set [with bags as domain];

introduces

support : series -> sets;

21compare appendix B.1.
22compare appendix B.2.
23compare [11].

12

requires (for s: series; b: bags)

(b in support(s)) = (not(apply(s,b) = 0)).
�
Definition defined by parts 11b, 12abc, 13ab, 14ab, 15ab, 16abc, 17a.
Definition referenced in part 47.

Polynomials are the power series having only finitely many bags with a value not equal
to zero. Consequently the concept Multivariate-polynomials is a refinement of the
concept Power-series in which the retrun type of the operator support is restricted
to finite-sets.24 Again the operator’s return type finite-sets implicitely serves as
a requirement.25 We also import the concept Gcd-domain making available in partic-
ular the usual ring operators for polynomials. The concept Finite-sum-over-ring is
necessary here only to define multiplication of polynomials.

〈Poly 13a〉 ≡
Definition: Multivariate-polynomial

refines Power-series [with polynomials as series],

Gcd-domain [with polynomials as domain];

uses Bag, Finite-sum-over-ring [with coefficient-domain as domain];

introduces

support : polynomials -> finite-sets,
�
Definition defined by parts 11b, 12abc, 13ab, 14ab, 15ab, 16abc, 17a.
Definition referenced in part 47.

Now we have to connect the ring operators imported from the concept Gcd-domain with
their corresponding operations on polynomials. The most work causes of course the defi-
nition of multiplication: to get the value of a bag b under the product of two polynomials
p and q one has to collect all bags b1 and b2 with b1 * b2 = b and to multiply the
value of b1 under p with the value of b2 under q, that is one has to build apply(p,b1)
* apply(q,b2). The sum of all these products then gives the desried value for the bag
b. We model this using a helper function called product-sequence taking two polyno-
mials and a bag as its input returning a finite sequence of the just described products.26

Please note that in this definition we use the Tecton construct (for exactly 1 n:
naturals) avoiding the duplication of products in the finite sequence. The sum of the
elements occurring in this finite sequence, that is the sum of all collected products —
giving the value of the bag b under the product of the two given polynomials — is then
built with the sum operator of the concept Finite-sum-over-ring.27

〈Poly 13b〉 ≡
product-sequence :

polynomials x polynomials x bags -> finite-sequences (private);

requires (for p,q: polynomials; b: bags; f: finite-sequences)

(product-sequence(p,q,b) = f) =

((for b1,b2: bags)

(b1 * b2 = b) =

(for exactly 1 n: naturals) n_th(f,n) = apply(p,b1) * apply(q,b2)),

24compare the discussion on changing return types of and reintroducing operators in footnote 7.
25compare the definition of the concept Bag.
26The function product-sequence is declared (private) which means that it is only available in the

concept Multivariate-polynomial and not in other concepts that import Multivariate-polynomial.
This is the usual Tecton mechanism to hide internal helper functions.

27The necessity to build this sum was the only reason to (define and) import the concept Finite-

sum-over-ring into the definition of Multivariate-polynomial.

13

apply(p*q,b) = sum(product-sequence(p,q,b)),
�
Definition defined by parts 11b, 12abc, 13ab, 14ab, 15ab, 16abc, 17a.
Definition referenced in part 47.

The other algebraic operations of polynomials, namely addition, equality, the zero and
the unit polynomial, and the definition of the support of a polynomial p can be straight-
forward translated in the Tecton language as follows.

〈Poly 14a〉 ≡
apply(p+q,b) = apply(p,b) + apply(q,b),

(p = q) = (for b: bags) apply(p,b) = apply(q,b),

(p = 0) = (for b: bags) apply(p,b) = 0,

(p = 1) = (apply(p,1) = 1 and

(for b: bags) not(b = 1) implies apply(p,b) = 0),

(b in support(p)) = (not(apply(p,b) = 0)).
�
Definition defined by parts 11b, 12abc, 13ab, 14ab, 15ab, 16abc, 17a.
Definition referenced in part 47.

The following definition extends the concept Multivariate-polynomial with some ad-
ditional types needed later: nonzero-polynomials, monomials which are polynomials
with only one power product, that is only one bag gives a value not equal to zero,
nonzero-monomials and monic-monomials which are monomials having 1 as their
(only) coefficient, that is the value of the bag not giving zero is 1. Note that all are
subtypes of type polynomials and that we have to state requirements characterizing
the subtypes.28

〈Poly 14b〉 ≡
Extension: Multivariate-polynomial

introduces

nonzero-polynomials < polynomials,

monomials < polynomials,

nonzero-monomials < monomials,

nonzero-monomials < nonzero-polynomials,

monic-monomials < nonzero-monomials,

monic-monomials < monomials;

requires (for p: polynomials; q: nonzero-polynomials; m: monomials)

p : nonzero-polynomials = not(support(p) = empty),

p : monomials = (for some b: bags) support(p) = singleton(b),

q : nonzero-monomials = q : monomials,

m : nonzero-monomials = m : nonzero-polynomials,

m : monic-monomials = (for some b: bags) apply(m,b) = 1.
�
Definition defined by parts 11b, 12abc, 13ab, 14ab, 15ab, 16abc, 17a.
Definition referenced in part 47.

The next natural step is to introduce the notion of headterms, headmonomials and
headcoefficients for polynomials. But this is not possible in the case of multivariate
polynomials without introducing an order on the (multivariate) monomials.29 There-
fore we employ the concept Term-order defined in section 4: we refine the concept

28The type expression monic-monomials < monomials should not be necessary as the Tecton subtype
relation is transivtive, but without the Tecton type checker does not accept monic-monomials as a
subtype of monomials.

29Remember that univariate monomials are naturally ordered by their exponents, that is we have
Xn < Xm ⇐⇒ n < m.

14

Multivariate-polynomial by importing Term-order with its domain being replaced
by monomials.

〈Poly 15a〉 ≡
Definition: Multivariate-polynomial-with-monomial-order

refines Multivariate-polynomial,

Term-order [with monomials as domain].
�
Definition defined by parts 11b, 12abc, 13ab, 14ab, 15ab, 16abc, 17a.
Definition referenced in part 47.

Note that the above definition makes available a term order on monomials without
saying anything about the realization of the order.30 But this does not matter: to
introduce headterms, headmonomials and headcoefficients for polynomials (and later
Gröbner bases) all we need to know is that there is such an order. The details can be
filled in later.31

It turned out that in order to define headterms, headmonomials and headcoefficients
for polynomials we need two additional operators: First, the set of monomials appearing
in a given polynomials and, second, another multiplication, namely the multiplication
of an element of the coefficient domain with a polynomial. Both are introduced in the
following extension of the concept Multivariate-polynomial.32

〈Poly 15b〉 ≡
Extension: Multivariate-polynomial

uses Finite-set [with monomials as domain];

introduces

monoms : polynomials -> finite-sets,

* : coefficient-domain x polynomials -> polynomials;

requires (for p: polynomials; m: monomials;

b: bags; a: coefficient-domain)

m in monoms(p) =

(for some b: bags) apply(m,b) = 1 and not(apply(p,b) = 0),

apply(a*p,b) = a * apply(p,b).
�
Definition defined by parts 11b, 12abc, 13ab, 14ab, 15ab, 16abc, 17a.
Definition referenced in part 47.

Now it is straightforward to introduce operators HT, HM and HC giving the headterm,
the headmonomial and the headcoefficient of a polynomial respectively.33 Note that
the result type of HT is monomials and that of HM is monic-monimials which means
that both can be widened to the type polynomials.34

30In fact the definition describes the concept of multivariate polynomials with an arbitrary but fixed
term order on the monomials; compare the semantics of Tecton in [9].

31In appendix A we give an example of how to do this by introducing a total order on the variables
and lifting this order to monomials.

32Note that this is not an extension of the concept Multivariate-polynomial-with-monomial-order
as the properties do not depend on a monomial order. Nevertheless, due to Tecton’s inheritance
mechanism the introduced operators monoms and * will be available there, too.

33We like to mention that the result of these three operators may vary depending on the monomial
order being used, that is instantiating different orders in our concept may result in different operators
HT, HM and HC; compare e.g. [6].

34In fact also the return type of HC could be widened to the type polynomials by identifying an
element of the coefficient domain with a constant polynomial, but this is not necessary in our context.

15

〈Poly 16a〉 ≡
Extension: Multivariate-polynomial-with-monomial-order

introduces

HT : polynomials -> monomials,

HM : polynomials -> monic-monomials,

HC : polynomials -> coefficient-domain;

requires (for p: polynomials; b: bags; a: coefficient-domain)

HT(p) = HC(p) * HM(p),

HM(p) = max(monoms(p)),

(HC(p) = a) =

(for some b: bags) apply(HM(p),b) = 1 and apply(p,b) = a.
�
Definition defined by parts 11b, 12abc, 13ab, 14ab, 15ab, 16abc, 17a.
Definition referenced in part 47.

The just defined order on monomials can be lifted to a partial order on polynomials by
recursively comparing the monomials occuring in a polynomial. To do so we define the
reductum Red of a polynomial p which is nothing more than p without its headterm.
For completion35 we introduce in addition the type monic-polynomials.36

〈Poly 16b〉 ≡
Extension: Multivariate-polynomial-with-monomial-order

uses Partial-order [with polynomials as domain];

introduces

monic-polynomials < nonzero-polynomials,

Red : nonzero-polynomials -> polynomials;

requires (for p: polynomials; q,q’: nonzero-polynomials)

q : monic-polynomials = (HT(q) = 1),

Red(q) = q - HT(q),

0 < q,

(q < q’) = (HT(q) < HT(q’) or (HT(q) = HT(q’) and Red(q) < Red(q’))).
�
Definition defined by parts 11b, 12abc, 13ab, 14ab, 15ab, 16abc, 17a.
Definition referenced in part 47.

We close this section with another look at univariate polynomials. As already men-
tioned the concept Polynomial of univariate polynomials is already included in the
Tecton concept library.37 In the following we give a realization of univariate poly-
nomials using our approach of multivariate polynomials. We start with renaming the
concept of univariate polynomials. This is necessary because both concepts Polynomial
and Multivariate-polynomial use the type polynomials.

〈Poly 16c〉 ≡
Abbreviation: Univariate-polynomial is

Polynomial [with u-polynomials as polynomials].
�
Definition defined by parts 11b, 12abc, 13ab, 14ab, 15ab, 16abc, 17a.
Definition referenced in part 47.

A Tecton realization connects two already defined concepts. It introduces a repre-
sentation function rep mapping more general objects onto the objects being realized.

35This type is not necessary for our development
36Note that this could not have been done before as we need the notion of headterm to do so.
37see appendix B.4.

16

Requirements have to be given so that the resulting concept is indeed part of the seman-
tics of the realized concept (see [9]). In our case multivariate polynomials are mapped
onto univariate u-polynomials. The first additional requirement is of course that there
is only one variable v.38 The second clause desribes when a multivariate polynomial
p is a prepresentation of a univariate polynomial up; to be more precise, this holds if
and only if all coefficients of p giving by a bag b that evaluates to the natural number
n coincide with the coefficients of up at the natural number n.39

〈Poly 17a〉 ≡
Realization: Univariate-polynomial by Multivariate-polynomial

introduces

rep : polynomials -> u-polynomials (private);

requires (for p: polynomials; up: u-polynomials)

(for some v: variables) (for v’: variables) v’ = v,

(rep(p) = up) =

((for b: bags; a: coefficient-domain; v: variables; n: naturals)

(apply(p,b) = a and apply(b,v) = n) = (c(up,n) = a)).
�
Definition defined by parts 11b, 12abc, 13ab, 14ab, 15ab, 16abc, 17a.
Definition referenced in part 47.

6 Gröbner bases

Gröbner bases are finite ideal bases with the additional porperty that polynomial di-
vision describes the ideal membership, that is if G = {g1, . . . gn} is a Gröbner base for
the ideal I 40 we have for all polynomials f

f ∈ I ⇐⇒ rem(f ; g1, . . . gn) = 0

where rem(f ; g1, . . . gn) stands for the remainder of the division of the polynomials f by
the polynomials g1, . . . gn. The definition of Gröbner bases, however, is usually stated
somewhat different using headterms giving the above equivalence as a theorem: G is a
Gröbner base for the ideal I if and only if (see [6])

< HT (g1), . . . HT (gn) > = < HT (I) >,

that is the headterms of the base {g1, . . . gn} for the ideal I generate the same ideal
as all headterms occuring in I. We follow this approach, so we first have to in-
troduce the headterm set of a given set of polynomials. This is done in an exten-
sion of the concept Multivariate-polynomial-with-monomial-order as the concept
Multivariate-polynomial does not provide the notion of headterms.41

〈Groebner 17b〉 ≡
Extension: Multivariate-polynomial-with-monomial-order

uses Set [with polynomials as domain];

38Note that this implies that the realization is in some sense a refinement of the concept
Multivariate-polynomial.

39Remember that univariate polynomials are modelled as functions from the natural numbers into
a coefficient domain.

40Usually I is taken as < g1, . . . gn >.
41compare the last section.

17

introduces HTs : sets -> sets;

requires (for p: monomials; s: sets)

(p in HTs(s)) =

((for some r: nonzero-polynomials) (r in s and p = HT(r))).
�
Definition defined by parts 17b, 18, 19ab, 20abc, 21ab, 22abc, 23a.
Definition referenced in part 47.

Before we can define Göbner bases we first have to specialize our concept of polynomials
a bit: Gröbnerbases are defined for polynomial rings with finitely many variables over
fields42, but our concepts so far provide infinitely many variables and use commutative
rings with identity as coefficient domain43 So we define two new concepts — one for
finitely many variables44 and one for fields as coefficient domains — and glue them in a
third concept together with our multivariate polynomial concept.45 Of course we then
have to replace the subconcept Coefficient-ring by concept Field in the two other
concepts, too.

〈Groebner 18〉 ≡
Definition: Multivariate-polynomial-with-finitely-many-variables

refines Multivariate-polynomial;

requires (for s: sets)

(for some t: finite-sets) (for v: variables) v in t.

Abbreviation: Multivariate-polynomial-over-field is

Multivariate-polynomial [with Field as Coefficient-ring].

Definition: Multivariate-polynomial-with-finitely-many-variables-over-field

refines Multivariate-polynomial-with-finitely-many-variables

[with Field as Coefficient-ring],

Multivariate-polynomial-over-field,

Multivariate-polynomial-with-monomial-order

[with Field as Coefficient-ring].
�
Definition defined by parts 17b, 18, 19ab, 20abc, 21ab, 22abc, 23a.
Definition referenced in part 47.

Now we are ready to formalize the concept of Gröbner bases in the Tecton lan-
guage. It refines the concept Finite-ideal-base by replacing the subconcept Ring
with the appropriate just defined ring structure Multivariate-polynomial-with-
finitely-many-variables-over-field. In addition it is required that the bases given
by the operator base fulfill the property of Gröbner bases from the beginning of this
section, that is the headterms of the base for the ideal i generate the same ideal as all
headterms occuring in i. A predicate Groebnerbase indicating whether a finite set of
polynomials is a Gröbner base is also defined.

42It may be interesting to investigate whether Gröbner bases always exist with weaker restrictions.
43In fact this can also be weakened, but we decided to use the concept Coefficient-domain included

in the Tecton concept library.
44Please note the dummy (for s: sets) here, without which the Tecton type checker does not

accept the definition of Multivariate-polynomial-with-finitely-many-variables.
45Note that we use the concept Multivariate-polynomial-with-monomial-order in the last defini-

tion. We could also first use Multivariate-polynomial only introducing the necessary monomial order
in a second step, but compared with the above two first definitions — which for sure exist on their
own merit — this seems a bit overgeneralizing to us.

18

〈Groebner 19a〉 ≡
Definition: Groebner-base

refines Finite-ideal-base

[with Multivariate-polynomial-with-finitely-many-variables-over-field

as Ring,

polynomials as domain];

introduces

Groebnerbase : sets x ideals -> bool;

requires (for i: ideals; s: finite-sets)

gen(HTs(base(i))) = gen(HTs(i)),

Groebnerbase(s,i) = (gen(s) = i and gen(HTs(s)) = gen(HTs(i))).
�
Definition defined by parts 17b, 18, 19ab, 20abc, 21ab, 22abc, 23a.
Definition referenced in part 47.

We end this section with a well-known lemma, extending most definitions of Gröbner
bases in which the empty set is excluded (see e.g. [6]).

〈Groebner 19b〉 ≡
Lemma: Groebner-base obeys Groebnerbase(empty,empty-ideal).

�
Definition defined by parts 17b, 18, 19ab, 20abc, 21ab, 22abc, 23a.
Definition referenced in part 47.

7 Polynomial Division and S-Polynomials

Now that we have defined Gröbner bases in Tecton, we want to formalize the already
mentioned characteriztion, namely that a polynomial p is in the ideal generated by a
Gröbner base G = {g1, . . . gn} if and only if the division of p by g1, . . . gn leaves no re-
mainder. In fact, we go even further: we introduce s-polynomials (see [5]) and formalize
the famous Gröbner base characterization based on them: a set G = {g1, . . . gn} is a
Gröbner base for < g1, . . . gn > if and only if all s-polynomials that can be built with
polynomials out of G leave no remainder if divided by g1, . . . gn.

This required some prelimanary work, namely to define the division with rest for
polynomials. The goal is to divide a (multivariate) polynomial f by polynomials
g1, . . . gn resulting in n quotients qn and a remainder r such that

f = q1 · g1 + · · ·+ qn · gn + r.

Note that r = 0 obviouly implies f ∈< g1, . . . gn >. The problem is that in general
division of polynomials is not unique: it depends on the order of the gi. In particular,
the remainder r may be zero or not according to gi chosen first to divide f .46 In addition
we have to provide the polynomials {g1, . . . gn} with an order to keep track of which qj

belongs to which gi. This will be done using the concept of finite sequences. So we start
with extending the concept Finite-sequence with operators len giving the length of
a finite sequence and rng giving the (finite) set of the domain elements occuring in a
finite sequence later needed.47

46Exactly these defects are repaired when taking a Gröbner base as the set {g1, . . . gn}; see [6].
47Note again that we cannot write len(empty) = 0 nor rng(empty) = empty as a requirement because

empty is not of type finite-sequences, but only of sequences.

19

〈Groebner 20a〉 ≡
Extension: Finite-sequence

uses Finite-set;

introduces

len : finite-sequences -> naturals,

rng : finite-sequences -> finite-sets;

requires (for d: domain; s: finite-sequences)

(s = empty) = (len(s) = 0),

len(d into s) = len(s) + 1,

(s = empty) = (rng(s) = empty),

rng(d into s) = d into rng(s).
�
Definition defined by parts 17b, 18, 19ab, 20abc, 21ab, 22abc, 23a.
Definition referenced in part 47.

Now we can introduce operators div and mod giving the quotients and the remainder of a
division, respectively. Note that the return type of div is finite-sequences. These are
indeed finite sequences over polynomials because the concept Finite-sum- over-ring
— necessary to make the sum operator available — is imported with its domain being
replaced by polynomials. This implies that in concept Finite-sequence imported by
Finite-sum-over-ring48 the domain also is replaced by polynomials. The concept
Regular is imported because it provides the notion of divisibility we need to state the
requirements for polynomial division.49

〈Groebner 20b〉 ≡
Precedence: {div, mod} < {+}.

Extension: Multivariate-polynomial-with-monomial-order

uses Finite-sum-over-ring [with polynomials as domain],

Regular [with monomials as domain];

introduces

div : polynomials x finite-sequences -> finite-sequences,

mod : polynomials x finite-sequences -> polynomials;
�
Definition defined by parts 17b, 18, 19ab, 20abc, 21ab, 22abc, 23a.
Definition referenced in part 47.

Here are the already mentioned requirements: the first one states that the number of
quotients equals the number of divisors, the second describes the equation of polynomial
division from above, namely that the sum of the products qi ·gi — here realized by using
the operators * and sum for finite sequences imported by Finite-sum-over-ring —
plus the remainder of the division equals the original polynomial p. The last requirement
states that the division is indeed ”completed”, that is the remainder is not divisible by
any of the polynomials gi occuring in the finite sequence s. This is established by
checking whether no monomial in the remainder may be divided by a headmonomial of
a polynomial q occurring in s.

〈Groebner 20c〉 ≡
requires (for p: polynomials; m: monomials; s: finite-sequences)

48This also is the reason that we need not import the concept Finite-sequence explicitely in order
to make len and rng available.

49Precedences as here given for the operators div and mod are not part of the entire Tecton language
(see [9]). They are additional information for the Tecton type checker allowing to save brackets when
formulating the requirements.

20

len(p div s) = len(s),

sum((p div s) * s) + (p mod s) = p,

m in monoms(p mod s) implies

(not (for some q: polynomials) (q in rng(s) and (HM(q)|m))).
�
Definition defined by parts 17b, 18, 19ab, 20abc, 21ab, 22abc, 23a.
Definition referenced in part 47.

The last problem yet to solve in order to formalize the characteriztion of Gröbner bases
using polynomial division is concerned with types: a Gröbner base is a finite subset
of a polynomial ring whereas the polynomials used for division are stored in a finite
sequence. Hence, if we want to divide a polynomial using the polynomials of a (Gröbner)
base as divisors, we have to transform them into a finite sequence first. This is done by
introducing two operators set_to_seq — one for empty and the other for non empty
fiinite sets. In addition we have to extend the concept Groebner-base by the concept
Finite-sequence to make the just defined opertor set_to_seq available.50

〈Groebner 21a〉 ≡
Extension: Finite-sequence

introduces

set_to_seq : finite-sets -> finite-sequences,

set_to_seq : nonempty-finite-sets -> nonempty-finite-sequences;

requires (for d: domain; t: finite-sets; t’: nonempty-finite-sets)

(t = empty) = (set_to_seq(t) = empty),

set_to_seq(d into t) = d into set_to_seq(t),

t = t’ implies set_to_seq(t’) = set_to_seq(t).

Extension: Groebner-base

uses Finite-sequence [with polynomials as domain].
�
Definition defined by parts 17b, 18, 19ab, 20abc, 21ab, 22abc, 23a.
Definition referenced in part 47.

Finally, we can state the desired property of Gröbner bases, namely that a polynomial
p is in the ideal generated by a Gröbner base G = {g1, . . . gn} if and only if the division
of p by g1, . . . gn leaves no remainder, as a Tecton lemma.

〈Groebner 21b〉 ≡
Lemma: Groebner-base obeys

(for p: polynomials; i: ideals)

(p in i) = ((p mod set_to_seq(base(i))) = 0).
�
Definition defined by parts 17b, 18, 19ab, 20abc, 21ab, 22abc, 23a.
Definition referenced in part 47.

Our next goal is to introduce s-polynomials (see [3]) and to formalize the Gröbner
base characterization based on them in the Tecton language. To do so, we need
the notion of the least common multiple (of two monomials). We introduce this in a
broader context, that is we extend the concept Gcd-domain51 by an operator lcm giving
the least common multiple of two arbitray elements x and y.52

50Note that the division of polynomials is automatically available in concept Groebner-base as it
was introduced as an extension of concept Multivariate-polynomial-with-monomial-order which is a
part of concept Multivariate-polynomial-with-finitely-many-variables-over-field imported by
Groebner-base.

51This concept is already included in the Tecton concept library; see appendix B.3.
52The notion set-of-representatives is used to get a uniquely result from the operator lcm; com-

pare appendix B.2 and [12].

21

〈Groebner 22a〉 ≡
Extension: Gcd-domain

introduces lcm : domain x domain -> set-of-representatives;

requires (for x, y: domain)

x | lcm(x,y) and y | lcm(x,y) and

((for z: domain) (x | z and y | z) implies lcm(x,y) | z).
�
Definition defined by parts 17b, 18, 19ab, 20abc, 21ab, 22abc, 23a.
Definition referenced in part 47.

As the concept Multivariate-polynomial-with-monomial-order is a refinement of
the concept Multivariate-polynomial which imports the concept Gcd-domain with
the domain being replaced by polynomials the operator lcm just defined is available
there for arbitrary polynomials, and hence for monomials, too. In addition we need the
division of two monomials without remainder. Again we introduce the operator / for
arbitrary polynomials and not for its subtype monomials. Note that there is a result
of p/q only if p|q, that is if polynomial p divides polynomial q.53

〈Groebner 22b〉 ≡
Extension: Multivariate-polynomial-with-monomial-order

introduces

/ : polynomials x polynomials -> polynomials;

requires (for p,q,r: polynomials; u,v,w: monomials)

p | q implies q/p = r where p * r = q.
�
Definition defined by parts 17b, 18, 19ab, 20abc, 21ab, 22abc, 23a.
Definition referenced in part 47.

Now everything is prepared to introduce s-polynomials as a Tecton operator called
s-polynomial taking polynomials p and q as input. The returned polynomial, that
is the s-polynomial of p and q, can be given as a straightforward translation of the
definition of s-polynomials found in textbooks (see for example [3]). Note that we use the
operator / only with HM(p) respectively HM(q) and lcm(HM(p),HM(q)) as arguments,
that is the condition p|q from the specification above is always fulfilled here.54

〈Groebner 22c〉 ≡
Extension: Multivariate-polynomial-with-monomial-order

introduces monic-monomials < polynomials,

s-polynomial : polynomials x polynomials -> polynomials;

requires (for p,q: polynomials)

s-polynomial(p,q) =

HC(q) * (HM(p)/lcm(HM(p),HM(q))) * p -

HC(p) * (HM(q)/lcm(HM(p),HM(q))) * q,

p : monic-monomials = (p : monomials and HC(p) = 1).
�
Definition defined by parts 17b, 18, 19ab, 20abc, 21ab, 22abc, 23a.
Definition referenced in part 47.

53To be more precise, we only specify the value in this case. However, in the Tecton language only
total function are allowed, which means that / always have a value. If p/q does not hold, we now
nothing about the resulting polynomial; and as we will see in the follwing we are not interested in.

54The type expression monic-monomials < polynomials in this concept definition should not be
necessary as the Tecton subtype relation is transitive, but without the Tecton type checker does not
accept monic-monomials as the type of the arguments of operator lcm; compare footnote 28.

22

The characterization of Gröbner bases using s-polynomials is similar to the one from
above using division of polynomials: for each pair of polynomials p and q being part of
a Gröbner base we have that the s-polynomial of p and q divided by the polynomials
of the base leaves no remainder. We also use this characteriztion to give an equivalent
definition of the predicate Groebnerbase testing whether a set s is a Gröbner base for
a given ideal i.

〈Groebner 23a〉 ≡
Lemma: Groebner-base obeys

(for p,q: polynomials; i: ideals; s: finite-sets)

(p in base(i) and q in base(i)) implies

(s-polynomial(p,q) mod set_to_seq(base(i))) = 0,

Groebnerbase(s,i) =

((p in s and q in s) implies (s-polynomial(p,q) mod set_to_seq(s)) = 0).
�
Definition defined by parts 17b, 18, 19ab, 20abc, 21ab, 22abc, 23a.
Definition referenced in part 47.

8 Rewrite Relations

In this section we introduce the basic notions of rewriting systems (see for example
[1]) necessary to charactarize Gröbner bases in this context. A rewrite relation −→ is
a binary relation over an arbitrary domain. We start with the introduction of some
standard notations such as ←→,

∗−→,
∗←→ and others.55

〈Rewrite 23b〉 ≡
Precedence: {-->, <--, <-->, -*->, <-*->, -+->, <-+->}

< nonassociative{=}.

Precedence: {or, and} < {-->, <--, <-->, -*->, <-*->, -+->, <-+->}.

Abbreviation: Rewrite-relation is Binary-relation [with --> as R].

Extension: Rewrite-relation

uses Natural;

introduces

<-- : domain x domain -> bool,

f : naturals x domain x domain -> bool,

<--> : domain x domain -> bool,

-*-> : domain x domain -> bool,

g : naturals x domain x domain -> bool,

<-*-> : domain x domain -> bool,

-+-> : domain x domain -> bool,

<-+-> : domain x domain -> bool;
�
Definition defined by parts 23b, 24abc, 25abc, 26abc.
Definition referenced in part 47.

The following requirements for these operators are straightforward translations from
[1]. We also included the well-known fact that ∗←→ is an equivalence relation on its
domain as a Tecton lemma.

55We use f and g as a notation for
n−→ and

n←→ respectively. We would prefer to use -n-> and
<-n->, but it seems that the Tecton language (or the Tecton type checker) does not allow to use
operators in this way; note that n actually is an argument of the operator.

23

〈Rewrite 24a〉 ≡
requires (for a,b: domain; n: naturals)

(a <-- b) = (b --> a),

(a <--> b) = (a --> b or b --> a),

f(0,a,b) = (a = b),

f(n+1,a,b) = (for some c: domain) a --> c and f(n,c,b),

(a -*-> b) = (for some n: naturals) f(n,a,b),

g(0,a,b) = (a = b),

g(n+1,a,b) = (for some c: domain) a <--> c and g(n,c,b),

(a <-*-> b) = (for some n: naturals) g(n,a,b),

(a -+-> b) = (a -*-> b and not(f(0,a,b))),

(a <-+-> b) = (a <-*-> b and not(g(0,a,b))).

Lemma: Rewrite-relation implies Equivalence-relation [with <-*-> as R].
�
Definition defined by parts 23b, 24abc, 25abc, 26abc.
Definition referenced in part 47.

Two main properties of rewrite relations are termination and confluence. Termina-
tion deals with the problem, that there may be infinite chains in the rewrite relation;
terminating rewrite relations do not allow this, hence can be seen as comuputation se-
quenes. Here we start with cycle-free rewrite relations as having no cycles is obviously
a necessary condition for termination.

〈Rewrite 24b〉 ≡
Definition: Cycle-free-rewrite-relation

refines Rewrite-relation;

requires (for a: domain) not(a -+-> a).
�
Definition defined by parts 23b, 24abc, 25abc, 26abc.
Definition referenced in part 47.

An element a is in normalform if it not further reducible, that is there exists no ele-
ment c with a −→ c. A rewrite relation in which each element a has a normalform
is called a weakly-terminating rewrite relation. We model this by introducing a pred-
icate in_normalform testing whether an element a is in normalform and an operator
normalform mapping elements a onto a normalform of them.56

〈Rewrite 24c〉 ≡
Definition: Weakly-terminating-rewrite-relation

refines Rewrite-relation;

introduces

in_normalform : domain -> bool,

normalform : domain -> domain;

requires (for a: domain)

in_normalform(a) = not((for some c: domain) a --> c),

normalform(a) <-*-> a and in_normalform(normalform(a)).
�
Definition defined by parts 23b, 24abc, 25abc, 26abc.
Definition referenced in part 47.

56Note, that this indeed implies the existence of a normalform for every element a because normalform
is as a Tecton function total.

24

It may be worth mentioning that the existence of a normalform for every element a does
not imply that no infinite chains are possible: for example the rewrite system consisting
of the rules {a −→ b, a −→ c, b −→ a, b −→ c} is (finite and) weakly terminating,
because c is a normalform for all elements, but allows infinite chains as it is not cycle
free. To prohibit infinite chains in rewrite relations we use the concept Well-order
introduced in section 4: We define terminating rewrite relations as a refinement of
concept Weakly-terminating-rewrite-relation — making the operator normalform
available — and concept Well-order with the relation > being replaced by -+->, thus
requiring that the order -+-> induced by the rewrite relation --> is well-founded, hence
that --> does not allow infinite chains.

〈Rewrite 25a〉 ≡
Definition: Terminating-rewrite-relation

refines Weakly-terminating-rewrite-relation,

Well-order [with -+-> as >].
�
Definition defined by parts 23b, 24abc, 25abc, 26abc.
Definition referenced in part 47.

As should be clear from the above mentioned the following lemma trivially holds.

〈Rewrite 25b〉 ≡
Lemma: Terminating-rewrite-relation implies Cycle-free-rewrite-relation.

�
Definition defined by parts 23b, 24abc, 25abc, 26abc.
Definition referenced in part 47.

We have seen that in terminating rewrite realtions every element a has (at least) one
normalform, but there may be more than one.57 The corresponding property stating
that every element a has at most one normalform is called confluence. It requires that
if an element c can be reduced to two different elements a and b, then there is another
element d to which both a and b can be reduced. We also introduce the weaker property
of local concluence in which this test is restricted to c being reducible to a and b in one
step.

〈Rewrite 25c〉 ≡
Definition: Local-confluent-rewrite-relation

refines Rewrite-relation;

requires (for a,b,c: domain)

(c --> a and c --> b) implies

(for some d: domain) a -*-> d and b -*-> d.

Definition: Confluent-rewrite-relation

refines Local-confluent-rewrite-relation;

requires (for a,b,c: domain)

(c -*-> a and c -*-> b) implies

(for some d: domain) a -*-> d and b -*-> d.
�
Definition defined by parts 23b, 24abc, 25abc, 26abc.
Definition referenced in part 47.

57Note that this implies that there are usually several possibilities for a realization of the operator
normalform.

25

There is a third property in this context: the Church-Russer property. It deals with
elements a and b for which a

∗←→ b holds58 and requires that in this case there is
another element d to which both a and b can be reduced. Newman’s lemma (see [1])
shows that this is in fact equivalent to the property of being confluent. We stated this
as a Tecton lemma.

〈Rewrite 26a〉 ≡
Definition: Church-Rosser-rewrite-relation

refines Rewrite-relation;

requires (for a,b: domain)

(a <-*-> b) implies (for some d: domain) a -*-> d and b -*-> d.

Lemma: Church-Rosser-rewrite-relation is Confluent-rewrite-relation.
�
Definition defined by parts 23b, 24abc, 25abc, 26abc.
Definition referenced in part 47.

The important role of local confluent rewrite sytems is further outlined by the follow-
ing lemma stating that for terminating rewrite systems the properties of being local
confluent and confluent coincide. We will use this lemma in the next section where we
deal with rewriting in the special case of polynomials.

〈Rewrite 26b〉 ≡
Lemma: Terminating-rewrite-relation [with Local-confluent-rewrite-relation

as Rewrite-relation]

implies Confluent-rewrite-relation.
�
Definition defined by parts 23b, 24abc, 25abc, 26abc.
Definition referenced in part 47.

For completion we also introduce the combination of terminating and confluent rewrite
relations, called complete rewrite system. It easily follows that in complete rewrite
relations every element a has exactly one normalform; hence complete rewriting systems
are an appropriate modell for (total) computations.59 As should be clear from the last
lemma, a terminating and local confluent rewrite system is in fact a complete rewrite
system as the closing lemma states.

〈Rewrite 26c〉 ≡
Definition: Complete-rewrite-relation

refines Confluent-rewrite-relation, Terminating-rewrite-relation.

Lemma: Terminating-rewrite-relation [with Local-confluent-rewrite-relation

as Rewrite-relation]

is Complete-rewrite-relation.
�
Definition defined by parts 23b, 24abc, 25abc, 26abc.
Definition referenced in part 47.

58For the reader familiar with the topic, this means that a and b lie in the same equivalence class

with respect to the equivalence realtion
∗←→.

59Note that these computations are indeterministic in nature and that the strategy of selecting the
next reduction step may be of great importance for efficiency.

26

9 Polynomial Rewriting

In the following we give a Tecton definition of polynomial rewriting with the goal of
formalizing the well-known fact (see for example [3]), that G = {g1, . . . gn} is a Gröbner
base for <g1, . . . gn > if and only if the polynomial rewrite system induced by G is com-
plete. To define rewriting with polynomials we need to introduce the notion of a coef-
ficient. So we extend the concept Multivariate-polynomial-with-monomial-order
with an operator coeff that takes a monomial m and a polynomial p as input and
returns the coefficient of m in p.

〈Poly-Rewrite 27a〉 ≡
Extension: Multivariate-polynomial-with-monomial-order

introduces

coeff : monomials x polynomials -> coefficient-domain;

requires (for p: nonzero-polynomials; m: monomials)

coeff(m,0) = 0,

coeff(m,p) = if HM(p) = m then HC(p) else coeff(m,Red(p)).
�
Definition defined by parts 27ab, 28abc, 29abc, 30a, 32ab.
Definition referenced in part 47.

For polynomial rewriting one selects a (finite) set of polynomials with which reductions
can be done. Consequently we define polynomial rewriting as a refinement of the con-
cept Multivariate-polynomial-with-finitely-many-variables-over-field mak-
ing the notion of polynomials availble and introduce an operator rewrite-polynomials
giving the finite set of polynomials for rewriting.60 In addition our concept Polynomial-
rewriting refines Terminating-rewrite-relation with the domain being replaced
by polynomials, hence making the operator normalform available for polynomials.61

The import of the concept Generated-ideal is not necessary for the definition of po-
lynomial rewriting, but we import it, because we need it for the next lemma.62

〈Poly-Rewrite 27b〉 ≡
Definition: Polynomial-rewriting

refines Terminating-rewrite-relation [with polynomials as domain],

Multivariate-polynomial-with-finitely-many-variables-over-field;

uses Generated-ideal;

introduces

nonzero-monomials < polynomials,

rewrite-polynomials : -> finite-sets;
�
Definition defined by parts 27ab, 28abc, 29abc, 30a, 32ab.
Definition referenced in part 47.

Via the concept Terminating-rewrite-relation we imported a rewrite relation -->.
Now, in the requirements we have to say, how this relation looks like in the special case
of polynomials: a polynomial p is reducible with respect to a set F of polynomials if
there is a polynomial r ∈ F such that the headmonomial of r divides a monimal in p.

60In fact the definition describes the concept of polynomial rewriting with an arbitrary but fixed set
of polynomials used for reduction; compare the semantics of Tecton in [9].

61Note that polynomial rewriting over polynomial rings with finitely many variables and with fields
as coefficient domain is indeed terminating (see for example [3]).

62Again the type expression nonzero-monomials < polynomials in this concept definition should not
be necessary as the Tecton subtype relation is transitive, but without the Tecton type checker does
not accept nonzero-monomials as the type of m in m in monoms(p); compare footnote 28.

27

The result of this reduction is the polynomial q = p − a ∗ (m/HT(r)) ∗ coeff(m, p).63

In addition we require that the zero polynomial is not included in the set F rewriting
polynomials.

〈Poly-Rewrite 28a〉 ≡
requires (for p,q: polynomials; a: coefficient-domain)

(p in rewrite-polynomials) implies (p: nonzero-polynomials),

(p --> q) =

(for some r: nonzero-polynomials; m: nonzero-monomials)

r in rewrite-polynomials and

m in monoms(p) and HM(r) | m and

q = p - coeff(m,p) * (m/HT(r)) * r ,

p : nonzero-monomials = (p : monomials and p : nonzero-polynomials).
�
Definition defined by parts 27ab, 28abc, 29abc, 30a, 32ab.
Definition referenced in part 47.

One major property of the just defined rewrite relation --> making polynomial reduc-
tion adequate for dealing with questions about polynomial ideals, is the following: the
reflexive, symmetric and transitive closure <-*-> of --> exactly describes the ideal con-
gruence induced by the ideal that is generated by the set F of rewriting polynomials,
that is

〈Poly-Rewrite 28b〉 ≡
Lemma: Polynomial-rewriting obeys

(for p,q: polynomials)

(p <-*-> q) = (p - q in gen(rewrite-polynomials)).
�
Definition defined by parts 27ab, 28abc, 29abc, 30a, 32ab.
Definition referenced in part 47.

Now we introduce rewriting for sets F of polynomials that in fact are Gröbner bases.
This is easily done as a refinement of the concept Polynomial-rewriting, in which we
have the additional requirement that our rewriting polynomials contained in rewrite-
polynomials are a Gröbner base. We formalize this using the predicate Groebnerbase
imported from the concept Groebner-base — which of course has to be imported to
do so.

〈Poly-Rewrite 28c〉 ≡
Definition: Polynomial-rewriting-with-Groebner-base

refines Polynomial-rewriting,

Groebner-base;

requires Groebnerbase(rewrite-polynomials,gen(rewrite-polynomials)).
�
Definition defined by parts 27ab, 28abc, 29abc, 30a, 32ab.
Definition referenced in part 47.

Now we are ready to state the first implication of the equivalence mentioned at the
beginning of this section as a Tecton lemma: if we use a Gröbner base for polynomial
reduction, then the resulting rewrite relation is (terminating and) confluent, hence a
complete rewrite relation.

63It might be worth mentioning that a reduction step corresponds to making one step in the division
of the polynomial p by the polynomial q; see [6].

28

〈Poly-Rewrite 29a〉 ≡
Lemma: Polynomial-rewriting-with-Groebner-base implies

Complete-rewrite-relation.
�
Definition defined by parts 27ab, 28abc, 29abc, 30a, 32ab.
Definition referenced in part 47.

Based on the notion of polynomial rewriting we can also give a new solution of the ideal
membership problem and a new formulation of our predicate Groebnerbase testing
whether a set is a Gröbner base: a polynomial p is a member of the ideal generated
by the rewriting polynomials if and only if the normalform of p with respect to the
rewriting polynomials is the zero polynomial; a set s is a Gröbner base for the ideal
generated by the rewriting polynomials if and only if all s-polynomials that can be built
out of polynomials in s reduce to the zero polynomial.

〈Poly-Rewrite 29b〉 ≡
Lemma: Polynomial-rewriting-with-Groebner-base obeys

(for p: polynomials; s: finite-sets)

(p in gen(rewrite-polynomials)) = (normalform(p) = 0),

Groebnerbase(s,gen(rewrite-polynomials)) =

(for p,q: polynomials)

(p in s and q in s) implies s-polynomial(p,q) -*-> 0.
�
Definition defined by parts 27ab, 28abc, 29abc, 30a, 32ab.
Definition referenced in part 47.

Now we turn to the other implication mentioned above, namely that if the (finite) set
F of polynomials used for reduction induces a complete rewriting system, then F in
fact is a Gröbner base for the ideal generated by F . To do so, we introduce a new con-
cept Polynomial-complete-rewriting that refines the concept Complete-rewrite-
relation with its subconcept Rewrite-relation being replaced by the above concept
Polynomial- rewriting (without Gröbner bases), hence picking out polynomial rewrit-
ing for sets F of polynomials — that is possible realizations of rewrite-polynomials
— that induces a complete rewrite relation.

〈Poly-Rewrite 29c〉 ≡
Definition: Polynomial-complete-rewriting

refines Complete-rewrite-relation [with Polynomial-rewriting

as Rewrite-relation];

uses Groebner-base.
�
Definition defined by parts 27ab, 28abc, 29abc, 30a, 32ab.
Definition referenced in part 47.

Note that we also imported the concept Groebner-base. This import is necessary for
the follwing lemma, because the condition for a concept C1 to imply another concept
C2 is that sem(C1) ⊆ sem(C2) holds. And for that it is necessary that all sorts and
operators available in C2 also have to be available in C1; compare the semantic of the
Tecton language in [9]. So before we can state the desired lemma, we first have to
make available in particular the operator gen and the predicate Groebnerbase, which
is done by importing the concept Groebner-base. Now it is easy to state in Tecton
that a complete (finite) set of polynomial rewrite rules F is in fact a Gröbner base for
the ideal generated by F :

29

〈Poly-Rewrite 30a〉 ≡
Lemma: Polynomial-complete-rewriting implies

Polynomial-rewriting-with-Groebner-base.
�
Definition defined by parts 27ab, 28abc, 29abc, 30a, 32ab.
Definition referenced in part 47.

10 Buchberger’s Algorithm

The main goal of the case study presented in this paper was to provide Tecton con-
cepts necessary to specify Buchberger’s algorithm for constructing Gröbner bases. This
have been finished with the last section. Now we want to give such a specification
explicitely using the programming language SuchThat [12]. SuchThat is equipped
with a declaration mechanism to describe the concepts over which its generic algorithms
are formulated. The declarations for Buchberger’s algorithm for example could be

"Buchberger.st" 30b ≡
let K be Field;

let P[X1, . . . Xn] be Polynomialring over K;

let R be Term Order over {X1, . . . Xn}.
�
File defined by parts 30bcd.

SuchThat algorithms consist of two parts: the so-called prototype, in which the al-
gorithm’s name is given and both its input and its output are specified. It may be
worth mentioning that the specification of the input and the output is no comment,
but indeed part of the programming language here. In our case we get the following
prototype.64

"Buchberger.st" 30c ≡
Algorithm: G := GB(F)
Input: F ⊆ P[X1, . . . Xn] such that F is finite;

Output: G ⊆ P[X1, . . . Xn] such that G is a Groebner base for <F >
�
File defined by parts 30bcd.

The second part of a SuchThat algorithm contains the body, that is the program
code written in Aldes [8]. Buchberger’s algorithm based on polynomial reduction is
well-known65, so we present it here without any further comments.

"Buchberger.st" 30d ≡
(1) [Initialization]

G := F ;
B := {(g1, g2) | g1, g2 ∈ G, g1 6= g2}.

(2) [Loop]

while B 6= Ø do

{ select (g1, g2) from B /* with a fair strategy */;

B := B\{(g1, g2)};
h := s-polynomial(g1, g2);

64Note that the field K and the term order R do not explicitely occur in the algorithm’s prototype;
nevertheless they are implicit parameters of the algorithm as they heavily influence the resulting
Gröbner base G.

65see for example [3].

30

h0 := normalform(h, G);

if h0 6= 0 then

{ B := B ∪ {(g, h0) | g ∈ G};
G := G ∪ {h0} };

}. 2

�
File defined by parts 30bcd.

Note that so far SuchThat declarations are only symbolic. They get their mean-
ing by connecting them to Tecton concepts. In particular, all subalgorithms ap-
pearing in an algorithm — in our case these are algorithms for s-polynomial and
normalform66 — must have a Tecton operator as a formal counterpart.67 To realize
this connection an intermediate language called elementary SuchThat has been in-
troduced (see [12]) in which Tecton concepts can explicitely occur in the algorithm’s
prototype. In the case of Buchberger’s algorithm we need to import the concepts
Groebner-base and Polynomial-rewriting. Note that we need not state that the
coefficients of the polynomial ring form a field K, because the concept imported here is
Multivariate-polynomial-with-finitely-many-variables-over-field.68

"Buchberger.est" 31 ≡
Algorithm: G := GB(F)

uses Groebner-base, Polynomial-rewriting;

Input: F ∈ finite-sets;

Output: G ∈ finite-sets such that Groebnerbase(G,gen(F))
�
File defined by parts 31, 32c.

Using this declaration for Buchberger’s algorithm the subalgorithm s-polynomial is
identified with the operator s-polynomial imported by concept Groebner-base.69

However, a problem occured with the subalgorithm normalform: In Buchberger’s al-
gorithm it has two arguments, a polynomial h and a set of polynomials G for reduc-
tion.70 But we defined in section 9 the Tecton operator normalform for one argu-
ment only, namely for a polynomial p the set of polynomials being fixed through the
set rewrite-polynomials.71 Fortunately this defect can be easily repaired by extend-
ing the concept Polynomial-rewriting with a second Tecton operator normalform
taking two arguments as desired. The definition is almost analogous: a polynomial q is
the normalform of another polynomial p with respect to a set s of polynomials if the
difference p - q lies in the ideal generated by s and q in addition is not reducible by
any polynomial contained in s. The predicate is-reducible-wrt which also has to
be defined again for arbitrary sets of polynomials s checks whether a monomial m of a
given polynomial p is divided by the headmonomial of a polynomial r being included
in a given set of polynomials s.72

66We do not consider set operations or the realization of a fair strategy in this paper.
67Of course also algorithms for these have to provide in order to make the whole algorithm running,

but this is beyond the scope of this paper.
68In fact, we even cannot state this, because the subconcept Coefficient-ring is not available as it

was already replaced in both Groebner-base and Polynomial-rewriting by the concept Field.
69Note that Groebner-base itself imports this operator from Multivariate-polynomial-with-

finitely-many-variables-over-field.
70Please note that G is no Gröbner base yet.
71There the decision of fixing a set of polynomials for reduction made the definition of rewriting with

Gröbner bases easier as we only needed to add requirements on rewrite-polynomials.
72compare the definition of reduction with respect to the fixed set of polynomials given by

rewrite-polynomials in section 9.

31

〈Poly-Rewrite 32a〉 ≡
Precedence: {is-reducible-wrt} < nonassociative{=}.

Extension: Polynomial-rewriting

introduces

is-reducible-wrt : polynomials x finite-sets -> bool,

normalform : polynomials x finite-sets -> polynomials;

requires (for p,q: polynomials; s: finite-sets)

(p is-reducible-wrt s) =

((for some r: nonzero-polynomials; m: nonzero-monomials)

r in s and

m in monoms(p) and HM(r) | m),

normalform(p,s) = q where (p - q in gen(s) and

not(q is-reducible-wrt s)).
�
Definition defined by parts 27ab, 28abc, 29abc, 30a, 32ab.
Definition referenced in part 47.

To connect this new operator normalform with the one already defined in section 9, we
state the following lemma. It says that if the set s of polynomials is chosen to be the
set given by rewrite-polynomials then both normalform-operators coincide.

〈Poly-Rewrite 32b〉 ≡
Lemma: Polynomial-rewriting obeys

(for p: polynomials) normalform(p,rewrite-polynomials) = normalform(p).
�
Definition defined by parts 27ab, 28abc, 29abc, 30a, 32ab.
Definition referenced in part 47.

With this extension all subconcepts of Buchberger’s algorithm have a correspond-
ing Tecton operator (that is included in one of the concepts Groebner-base and
Polynomial- rewriting), hence the elementary SuchThat specification of the pro-
totype is complete. The body of the algorithm that is the Aldes code is of course the
same as above for the SuchThat algorithm. The reason for repeating it here is that
we wanted the file Buchberger.est generated by NuWeb to be a complete runable
file.73

"Buchberger.est" 32c ≡
(1) [Initialization]

G := F ;
B := {(g1, g2) | g1, g2 ∈ G, g1 6= g2}.

(2) [Loop]

while B 6= Ø do

{ select (g1, g2) from B /* with a fair strategy */;

B := B\{(g1, g2)};
h := s-polynomial(g1, g2);
h0 := normalform(h, G);

if h0 6= 0 then

{ B := B ∪ {(g, h0) | g ∈ G};
G := G ∪ {h0} };

}. 2

�
File defined by parts 31, 32c.

73Throughout this paper we presented Tecton and SuchThat code using NuWeb [4], a tool sup-
porting the literate programming style of D. Knuth, which allows to extract the code files directly from
a papers’ source and to construct extensive indexes automatically.

32

11 The Hilbert Basis Theorem

This last section is devoted to Hilbert’s basis theorem. It states that under certain
requirements on the coefficient domain, namely that it constitute a so-called Noetherian
ring, every ideal in a polynomial ring has a finite basis, hence is finitely generated.
From this one can conclude using for example Buchberger’s algorithm that every ideal
in such a polynomial ring has a Gröbner base.74 We introduce the necessary notation
of a Noetherian ring and state this theorem as a Tecton lemma. A Noetherian ring
is an integral domain in which each ideal is finitely generated; this is easily modelled
using the operator gen from the concept Finitely-generated-ideal.

〈Hilbert 33a〉 ≡
Definition: Noetherian-ring

refines Integral-domain;

uses Finitely-generated-ideal;

requires (for i: ideals)

(for some s: finite-sets) i = gen(s).
�
Definition defined by parts 33abc, 34.
Definition referenced in part 47.

An easy concequence of this definition is the following: in a field F the only ideals are
the zero ideal {0} and F itself. Because both ideals are finitely generated, every field
is a Noethrian ring.

〈Hilbert 33b〉 ≡
Lemma: Field implies Noetherian-ring.

�
Definition defined by parts 33abc, 34.
Definition referenced in part 47.

Now we turn over to Hilbert’s basis theorem. The above mentioned condition on the
coefficient domain of a polynomial ring is that this domain itself is Noetherian (see for
example [3]). In order to formalize this in the Tecton language we first introduce the
notion of a Notherian-coefficient-ring by refining the concept Coefficient-ring
with its subconcept Commutative-ring-with-identity being replaced by the just de-
fined concept Notherian-ring

〈Hilbert 33c〉 ≡
Abbreviation: Notherian-coefficient-ring is

Coefficient-ring [with Noetherian-ring

as Commutative-ring-with-identity].
�
Definition defined by parts 33abc, 34.
Definition referenced in part 47.

Using the concept Notherian-coefficient-ring it is easy to state Hilbert’s basis
theorem as a Tecton lemma. The only thing we have to take into account is that
the polynomial ring must have a finite number of variables75, that is we must use the
concept Multivariate-polynomial-with-finitely-many-variables instead of the
more general Multivariate-polynomial.

74Note that polynomial rings with finitely many variables over fields are Noetherian, as we will see
in the following.

75Note that polynomial rings with infinitely many variables are no longer Noetherian; see [2].

33

〈Hilbert 34〉 ≡
Lemma: Multivariate-polynomial-with-finitely-many-variables [with

Notherian-coefficient-ring as Coefficient-ring]

implies Noetherian-ring.
�
Definition defined by parts 33abc, 34.
Definition referenced in part 47.

12 Conclusion

We have presented a case study on the use of the concept description language Tecton,
in which we provided Tecton concepts necessary for the specification of Buchberger’s
algorithm to compute Gröbner bases for polynomial ideals over fields in the program-
ming language SuchThat. SuchThat is a generic language providing a declaration
mechanism to describe abstract domains over which algorithms can be formulated.
These declarations are connected with Tecton concepts, so that all subalgorithms ap-
pearing in an algorithm msut have a corresponding Tecton operator. Consequently,
a Tecton specification of a generic algorithm consists of defining concepts providing
all the Tecton operators necessary for the algorithm.

To specify Buchberger’s algorithm the definition of 29 concepts was necessary. We
defined some more concepts (44 alltogether) in order to formalize well-known theo-
rems as Tecton lemmas, for example the formalization of Hilbert’s basis theorem. In
addition we tried to be as general as possible this leading to more concepts than in
fact are necessary, for example we defined multivariate polynomials as a special case
of power series, not to mention that we introduced these concepts for infinitely many
variables first, then restricting the number of variables in a second definition. It should
be clear, that being more general in the beginning may increase the total number of
concepts for a particular specification due to necessary specializations later. From the
Tecton concept library we used 56 concepts, 44 of them being necessary for the en-
tire specification of Buchberger’s algoritms. These concepts can be found in appendix B.

During our work we also found some shortcomings of the Tecton type checker. The
Tecton type relation is based on the inclusion of sets and hence transitive. However,
to get our concept definitions accepted by the checker it was sometimes necessary to
explicitely state a subtype relation although it follows from transitivity. For example
though we included the subtype relations monic-monomials < nonzero-monomials and
nonzero-monomials < monomials the type checker did not accept an argument of type
monic-monomials where one of type monomials is required. By introducing the extra
subtype relation monic-monomials < monomials one could overcome this problem. In
addition the type checker does not accept requirements starting with an existencial
quantifier, that is for example (for some t: sets), although the Tecton semantics
allow for this. We hope that in the next version of the Tecton type checker these
things will be fixed.

The reader familiar with Tecton’s semantics will have observed that our specifi-
cation in some sense is not complete yet. First, the lemmas have not been proven so
far. Second, more important, also a number of Tecton definitions come with further
proof obligations. For example, if a concept is imported by another concept using the
keyword uses one has to show that the appearing other requirements do not change
the semantics of the imported concept. So far Tecton does not provide any support

34

to prove these obligations. Our aim is to look for theorem provers or proof check-
ers in which such obligations can be formalized and shown. The concepts of our case
study should give a good starting point to investigate how non-trivial proof obligations
appearing in Tecton specifications can be formally proven with machine assistance.

References

[1] J. Avenhaus, Reduktionssysteme; Springer Verlag, 1995.

[2] J. Backer, P. Rudnicki, Hilbert’s Basis Theorem; to appear in Formalized Math-
ematics, 2000.

[3] T. Becker and V. Weispfenning, Gröbner bases; Springer Verlag, 1993.

[4] P. Briggs, NuWeb — A Simple Literate Programming Tool; available by anony-
mous ftp from http://softlib.rice.edu/MSCP/nuweb.html, 1989.

[5] B. Buchberger, Gröbner bases: An Algorithmic Method in Polynomial Ideal The-
ory; in: N. Bose (ed.), Multidimensional Systems Theory, Reidel Publishing
Company, 1985.

[6] D. Cox, J. Little, D. O’Shea, Ideals Varieties and Algorithms; Springer Verlag,
1992.

[7] J. von zur Gathen, J. Gerhard, Modern Computer Algebra; Camebridge Univer-
sity Press, 1999.

[8] R. Loos, G. Collins, Revised Report on the Algorithm Description Language
ALDES; Technical Report WSI-92-14, Wilhelm-Schickard-Institute for Com-
puter Science, 1992.

[9] D. Musser, The Tecton Concept Description Language; available by anonymous
ftp from http://www.cs.rpi.edu/~musser/gp/tecton, 1998.

[10] D. Musser, S. Schupp, C. Schwarzweller, R. Loos The Tecton Concept Li-
brary; Technical Report WSI-99-02, Wilhelm-Schickard-Institut für Informatik,
Univertät Tübingen, 1999.

[11] P. Rudnicki, A. Trybulec, Multivariate Polynomials with Arbitrary Number of
Variables; Formalized Mathematics(8), 317-332, 1999.

[12] S. Schupp, R. Loos, SuchThat — Generic Programming Works; in: M. Jazay-
eri, R. Loos, D. Musser (eds.), Generic Programming, International Seminar on
Generic Programming, Dagstuhl Castle, Germany, LNCS 1766, 1998.

A An Example of a Monomial Order

Monomial orders for multivariate polynomials have been introduced in section 5. There
we only required the existence of such orders by importing the concept Term-order of
section 4. In the following we give a Tecton formalization of a concrete monomial
order76 that may be used to specialize the Tecton concepts given so far.

76For the reader familiar with this topic, we introduce the lexicographic order on monomials.

35

We start with introducing a total order on the variables, which then will be lifted
(to bags and) to monomials. This is done by a refinement of the concepts Variable
and Total-order.

〈Extension 36a〉 ≡
Definition: Ordered-variable

refines Variable [with ordered-variables as variables],

Total-order [with ordered-variables as domain].
�
Definition defined by parts 36abc, 37a.
Definition referenced in part 47.

Monomials are in fact pairs consisting of a bag b and an element a of the coefficient
domain. A monimial is connected with the variables via its bag b, which is a function
from the variables into the natural numbers. Therefore, to compare monomials we first
have to consider the order on bags induced by the order on the variables.77 We combine
the concept Bag with the concept Total-order using a refinement, in which both bags
and domain are replaced by ordered-bags. It remains to give the description of the
relation < imported from the concept Total-order:78 A bag b is smaller than a bag b’
if there is a variable v for which b gives a smaller natural number than b’ and for all
variables that are smaller than v both bags b and b’ give the same value.

〈Extension 36b〉 ≡
Definition: Ordered-bag

refines Bag [with ordered-bags as bags, ordered-variables as variables],

Total-order [with ordered-bags as domain];

uses Ordered-variable;

requires (for b,b’: ordered-bags)

(b < b’) =

((for some v: ordered-variables) apply(b,v) < apply(b’,v) and

(for v’: ordered-variables)

v’ < v implies apply(b,v’) = apply(b’,v’)).
�
Definition defined by parts 36abc, 37a.
Definition referenced in part 47.

Now using the order on bags we can easily compare monomials:79 a monomial m has
exactly one bag b and is smaller than another monomial m’ if b is smaller than the bag
b’ of m’. Note that we define this order for polynomials with finitely many variables
only.80

〈Extension 36c〉 ≡
Definition: Multivariate-polynomial-with-finitely-many-ordered-variables

refines Multivariate-polynomial-with-finitely-many-variables

[with Ordered-bag as Bag, ordered-bags as bags];

uses Term-order [with monomials as domain];

requires (for m,m’: monomials)

77The reason for this additional step is that we wanted the type monomials to be a subtype of the type
polynomials. Consequentley a monomial must be a function from bags into the coefficient domain,
and cannot be a function from the variables into the natural numbers; compare section 5.

78Without this description we would specify bags with an arbitratry but fixed order.
79From the above it should be clear that every order on bags gives an order on monomials.
80It would be interesting to investigate, whether this order is also a monomial order for infinitely

many variables.

36

(m < m’) = (for some b,b’: ordered-bags; v,v’: variables)

not(apply(m,b) = 0) and not(apply(m’,b’) = 0) and b < b’.
�
Definition defined by parts 36abc, 37a.
Definition referenced in part 47.

We end this appendix with the following lemma stating that the just defined con-
cept Multivariate-polynomial-with-finitely-many-ordered-variables having a
very special order on the monomials indeed is a specializtion of the general concept
Multivariate-polynomial-with-monomial-order from section 5.

〈Extension 37a〉 ≡
Lemma: Multivariate-polynomial-with-finitely-many-ordered-variables implies

Multivariate-polynomial-with-monomial-order.
�
Definition defined by parts 36abc, 37a.
Definition referenced in part 47.

B Additional Tecton Concepts

For completion we present in the follwing all Tecton concepts our definition of Gröbner
bases uses. In this appendix one finds 56 concepts, so that it took alltogether 100 con-
cepts to formulate Buchberger’s algorithm.81 We devided the concepts in this appendix
in several subclasses: 10 basic concepts such as sets and natural numbers, 11 order
concepts, 33 algebraic concepts and 2 concepts about polynomials. This roughly cor-
recponds to the classification of concepts introduced in the Tecton concept library
[10]. Extensions of and lemmas about already existing concepts have not been counted
again.

B.1 Basic Concepts

"Groeb.tec" 37b ≡
Definition: Boolean

introduces bool,

true -> bool,

false -> bool;

generates bool freely using true, false.

Precedence: nonassociative{=, !=}.

Precedence: {implies} < {or, xor} < {and}

< prefix{not} < nonassociative{=} < {:}.

Precedence: confix{(, ,,)}.

Extension: Boolean

introduces

not : bool -> bool,

and : bool x bool -> bool,

or : bool x bool -> bool,

xor : bool x bool -> bool,

implies : bool x bool -> bool;

81To be more precise, 100 concepts were used in this paper. Not all of them (in fact only 83) are
necessary for the sole specification of Buchberger’s algorithm; compare section 12.

37

requires (for x, y: bool)

(not true) = false,

(not false) = true,

(true and x) = x,

(false and x) = false,

(x or y) = (not (not x and not y)),

(x xor y) = (not x = y),

(x implies y) = (not x or y).
�
File defined by parts 37b, 38ab, 39ab, 40ab, 41ab, 42, 43abcd, 44ab, 45abc, 46ab, 47.

"Groeb.tec" 38a ≡
Definition: Domain

uses Boolean;

introduces domain.
�
File defined by parts 37b, 38ab, 39ab, 40ab, 41ab, 42, 43abcd, 44ab, 45abc, 46ab, 47.

"Groeb.tec" 38b ≡
Precedence: nonassociative{=} < nonassociative{in}.

Definition: Set

uses Domain;

introduces sets,

empty: -> sets,

in: domain x sets -> bool;

requires

(for a:domain) a in empty = false.

Precedence: nonassociative{in, into}.

Precedence: nonassociative{=} = {union} < {intersection} < {subset}.

Extension: Set

introduces

nonempty-sets < sets,

subset : sets x sets -> bool,

is_empty : sets -> bool,

complement : sets -> sets,

singleton : domain -> sets,

into : domain x sets -> sets,

union : sets x sets -> sets,

intersection : sets xsets -> sets;

requires (for d, e: domain; s, s1, s2: sets)

(s1 subset s2) = (d in s1 implies d in s2),

is_empty(s) = (s = empty),

(d in (e into s1)) = ((d = e) or d in s1),

(d in complement(s)) = (not d in s),

singleton(d) = (d into empty),

(s1 union empty) = s1,

(s1 union (d into s2)) =

if d in s1 then s1 union s2

else d into (s1 union s2),

(s1 intersection empty) = empty,

(s1 intersection (d into s2)) =

if d in s1 then d into (s1 intersection s2)

38

else s1 intersection s2,

s : nonempty-sets = (s != empty).

Definition: Finite-set

uses Set;

introduces finite-sets < sets,

nonempty-finite-sets < nonempty-sets,

nonempty-finite-sets < finite-sets,

into: domain x finite-sets -> finite-sets;

generates finite-sets freely using empty, into;

requires (for s: sets; s1: nonempty-sets; s2: finite-sets)

s : finite-sets =

(s = empty or

s != empty and

(for some d: domain; s’: finite-sets) s = d into s’),

s1 : nonempty-finite-sets = (s1 : finite-sets),

s2 : nonempty-finite-sets = (s1 != empty).
�
File defined by parts 37b, 38ab, 39ab, 40ab, 41ab, 42, 43abcd, 44ab, 45abc, 46ab, 47.

"Groeb.tec" 39a ≡
Definition: Pair

refines Domain [with domain1 as domain],

Domain [with domain2 as domain];

introduces pairs,

make-pair: domain1 x domain2 -> pairs,

first: pairs -> domain1,

second: pairs -> domain2;

generates pairs freely using make-pair;

requires (for d1: domain1; d2: domain2; p: pairs)

first(make-pair(d1,d2)) = d1,

second(make-pair(d1,d2)) = d2,

make-pair(first(p),second(p)) = p.
�
File defined by parts 37b, 38ab, 39ab, 40ab, 41ab, 42, 43abcd, 44ab, 45abc, 46ab, 47.

"Groeb.tec" 39b ≡
Precedence:

nonassociative{<, <=, >=, >, =} < {+, -} < {*}.

Definition: Natural

refines Domain [with naturals as domain];

introduces

0 -> naturals,

1 -> naturals,

succ : naturals -> naturals,

+ : naturals x naturals -> naturals,

- : naturals x naturals -> naturals,

* : naturals x naturals -> naturals;

generates naturals freely using 0, succ;

requires (for n, m: naturals)

n + 0 = n,

n + succ(m) = succ(n + m),

n - 0 = n,

0 - n = 0,

39

succ(n) - succ(m) = n - m,

1 = succ(0),

n * 0 = 0,

n * succ(m) = (n * m) + n.

Extension: Natural

introduces

nonzero-naturals < naturals,

2 : -> naturals,

<= : naturals x naturals -> bool,

< : naturals x naturals -> bool,

>= : naturals x naturals -> bool,

> : naturals x naturals -> bool;

requires (for n, m: naturals)

2 = 1 + 1,

0 <= n,

not(succ(n) <= 0),

(succ(m) <= succ(n)) = (m <= n),

(n < m) = (n <= m and n != m),

(n >= m) = not(n < m),

(n > m) = not(n <= m),

n : nonzero-naturals = (n != 0).
�
File defined by parts 37b, 38ab, 39ab, 40ab, 41ab, 42, 43abcd, 44ab, 45abc, 46ab, 47.

"Groeb.tec" 40a ≡
Definition: Range

uses Domain[with range as domain].

Definition: Map

refines Set[with maps as sets, nonempty-maps as nonempty-sets];

uses Range;

introduces

apply : maps x domain -> range.

Definition: Finite-map

refines Map;

introduces finite-maps < maps,

nonempty-finite-maps < nonempty-maps,

into: domain x finite-maps -> finite-maps;

generates finite-maps freely using empty, into;

requires (for s: maps; s1: nonempty-maps)

s : finite-maps =

(s = empty or

s != empty and

(for some d: domain; s’: finite-maps) s = d into s’),

s1 : nonempty-finite-maps = (s1 != empty).
�
File defined by parts 37b, 38ab, 39ab, 40ab, 41ab, 42, 43abcd, 44ab, 45abc, 46ab, 47.

"Groeb.tec" 40b ≡
Definition: Sequence

refines

Map [with Natural as Domain, naturals as domain, n_th as apply,

sequences as maps, nonempty-sequences as nonempty-maps].

40

Definition: Finite-sequence

uses Sequence [with Domain as Range, domain as range];

introduces finite-sequences < sequences,

nonempty-finite-sequences < finite-sequences,

nonempty-finite-sequences < nonempty-sequences,

into: domain x finite-sequences -> finite-sequences;

generates finite-sequences using empty, into;

requires (for s: sequences; s1: finite-sequences; s2: nonempty-sequences)

s : finite-sequences =

(s = empty or

s != empty and

(for some d: domain; s’: finite-sequences) s = d into s’),

s1 : nonempty-finite-sequences = (s1 != empty),

s2 : nonempty-finite-sequences = (s2 : finite-sequences).
�
File defined by parts 37b, 38ab, 39ab, 40ab, 41ab, 42, 43abcd, 44ab, 45abc, 46ab, 47.

B.2 Order Concepts

"Groeb.tec" 41a ≡
Definition: Binary-relation

refines Domain;

introduces R : domain x domain -> bool.

Precedence: nonassociative{R, <=}.

Definition: Transitive

refines Binary-relation;

requires

(for x, y, z: domain) x R y and y R z implies x R z.

Definition: Symmetric

refines Binary-relation;

requires

(for x, y: domain) x R y implies y R x.

Definition: Reflexive

refines Binary-relation;

requires

(for x: domain) x R x.

Definition: Irreflexive

refines Binary-relation;

requires

(for x: domain) not x R x.

Definition: Antisymmetric

refines Binary-relation;

requires

(for x, y: domain) x R y and y R x implies x = y.
�
File defined by parts 37b, 38ab, 39ab, 40ab, 41ab, 42, 43abcd, 44ab, 45abc, 46ab, 47.

41

"Groeb.tec" 41b ≡
Definition: Partial-order

refines Reflexive [with <= as R],

Antisymmetric [with <= as R],

Transitive [with <= as R].

Precedence: nonassociative{<, <=, >=, >, =}.

Extension: Partial-order

introduces

< : domain x domain -> bool,

> : domain x domain -> bool,

>= : domain x domain -> bool;

requires (for x, y: domain)

(x < y) = (x <= y and x != y),

(x > y) = (not x <= y),

(x >= y) = (x > y or x = y).

Definition: Total-order

refines Partial-order;

requires (for x, y: domain)

x <= y or y <= x.
�
File defined by parts 37b, 38ab, 39ab, 40ab, 41ab, 42, 43abcd, 44ab, 45abc, 46ab, 47.

"Groeb.tec" 42 ≡
Definition: Equivalence-relation

refines Reflexive, Symmetric, Transitive.

Precedence: nonassociative{=, equiv}.

Definition: Equivalence-class

uses Domain, Equivalence-relation [with equiv as R];

introduces equivalence-classes,

in : domain x equivalence-classes -> bool,

equivalence-class : domain -> equivalence-classes;

requires (for x, y: domain; e: equivalence-classes)

(equivalence-class(x) = equivalence-class(y)) = (x equiv y),

x in e = (equivalence-class(x) = e).

Definition: Set-of-representatives

uses Equivalence-class;

introduces

set-of-representatives < domain,

representative : equivalence-classes -> domain,

representative : domain -> domain;

requires (for x: domain; e: equivalence-classes)

x: set-of-representatives = (representative(x) = x),

equivalence-class(representative(e)) = e,

representative(x) = representative(equivalence-class(x)).
�
File defined by parts 37b, 38ab, 39ab, 40ab, 41ab, 42, 43abcd, 44ab, 45abc, 46ab, 47.

42

B.3 Algebraic Concepts

"Groeb.tec" 43a ≡
Precedence: nonassociative{=} < {*}.

Definition: Binary-op

uses Domain;

introduces *: domain x domain -> domain.
�
File defined by parts 37b, 38ab, 39ab, 40ab, 41ab, 42, 43abcd, 44ab, 45abc, 46ab, 47.

"Groeb.tec" 43b ≡
Precedence: nonassociative{=} < {|} < {+, -}.

Precedence: nonassociative{=} < {*}.

Definition: Right-regular

refines Binary-op;

introduces | : domain x domain -> bool;

requires (for x, y: domain)

x | y = (for some d: domain) (x * d = y).

Definition: Left-regular

refines Binary-op;

introduces | : domain x domain -> bool;

requires (for x, y: domain)

x | y = (for some d: domain) d * x = y.

Definition: Regular

refines Left-regular, Right-regular.
�
File defined by parts 37b, 38ab, 39ab, 40ab, 41ab, 42, 43abcd, 44ab, 45abc, 46ab, 47.

"Groeb.tec" 43c ≡
Definition: Right-identity

refines Binary-op;

introduces 1 -> domain;

requires (for x: domain)

x * 1 = x.

Definition: Left-identity

refines Binary-op;

introduces 1 -> domain;

requires (for x: domain)

1 * x = x.

Precedence: prefix{-} < {*} < postfix{^(-1)}.

Definition: Identity

refines Left-identity, Right-identity.
�
File defined by parts 37b, 38ab, 39ab, 40ab, 41ab, 42, 43abcd, 44ab, 45abc, 46ab, 47.

"Groeb.tec" 43d ≡
Definition: Right-inverses

refines Right-identity, Right-regular;

43

introduces ^(-1) : domain -> domain;

requires (for x: domain)

x * x^(-1) = 1.

Lemma: Right-inverses implies Right-regular.

Precedence: prefix{-} < {*} < postfix{^(-1)}.

Definition: Left-inverses

refines Left-identity, Left-regular;

introduces ^(-1) : domain -> domain;

requires (for x: domain)

x^(-1) * x = 1.

Lemma: Left-inverses implies Left-regular.

Definition: Inverses

refines Left-inverses, Right-inverses.

Lemma: Inverses implies Regular.

Precedence: {/, *}.

Extension: Inverses

introduces / : domain x domain -> domain;

requires (for x, y:domain)

x/y = x * y^(-1).
�
File defined by parts 37b, 38ab, 39ab, 40ab, 41ab, 42, 43abcd, 44ab, 45abc, 46ab, 47.

"Groeb.tec" 44a ≡
Definition: Commutative

refines Binary-op;

requires (for x, y: domain)

x * y = y * x.

Definition: Associative

refines Binary-op;

requires (for x, y, z: domain)

x * (y * z) = (x * y) * z.
�
File defined by parts 37b, 38ab, 39ab, 40ab, 41ab, 42, 43abcd, 44ab, 45abc, 46ab, 47.

"Groeb.tec" 44b ≡
Abbreviation: Semigroup is Associative.

Definition: Regular-semigroup

refines Regular, Semigroup.

Definition: Monoid

refines Semigroup, Identity.

Precedence: nonassociative{=} < {+, -}.

Definition: Commutative-semigroup

44

refines Regular-semigroup[with + as *],

Commutative[with + as *].
�
File defined by parts 37b, 38ab, 39ab, 40ab, 41ab, 42, 43abcd, 44ab, 45abc, 46ab, 47.

"Groeb.tec" 45a ≡
Definition: Group

refines Monoid, Inverses.

Definition: Abelian-monoid

refines Monoid, Commutative.

Definition: Commutative-group

refines Commutative, Group.

Precedence: nonassociative{in} < {+, -} < prefix{-, +}

< {*} < postfix{^(-1)}.

Definition: Abelian-group

refines Commutative-group[with + as *, - as ^(-1), 0 as 1, - as /];

introduces nonzeros < domain,

- : domain x domain -> domain,

+ : domain -> domain;

requires (for x, y: domain)

x : nonzeros = (x != 0),

x - y = x + (-y),

+ x = x.
�
File defined by parts 37b, 38ab, 39ab, 40ab, 41ab, 42, 43abcd, 44ab, 45abc, 46ab, 47.

"Groeb.tec" 45b ≡
Definition: Right-distributive

refines Binary-op, Binary-op [with + as *];

requires (for x, y, z: domain)

(x + y) * z = x * z + y * z.

Definition: Left-distributive

refines Binary-op, Binary-op [with + as *];

requires (for x, y, z: domain)

x * (y + z) = x * y + x * z.

Definition: Distributive

refines Left-distributive, Right-distributive.

Definition: Semiring

refines Commutative-semigroup, Semigroup, Distributive.
�
File defined by parts 37b, 38ab, 39ab, 40ab, 41ab, 42, 43abcd, 44ab, 45abc, 46ab, 47.

"Groeb.tec" 45c ≡
Definition: Ring

refines Abelian-group, Semigroup, Distributive.

Definition: Commutative-ring

refines Ring, Commutative.

45

Definition: No-zero-divisors

refines Ring;

introduces

* : nonzeros x nonzeros -> nonzeros,

1 : -> nonzeros;

requires (for x, y: domain)

x * y = 0 implies x = 0 or y = 0.

Definition: Ring-with-identity

refines Ring, Identity.
�
File defined by parts 37b, 38ab, 39ab, 40ab, 41ab, 42, 43abcd, 44ab, 45abc, 46ab, 47.

"Groeb.tec" 46a ≡
Definition: Commutative-ring-with-identity

refines Commutative-ring, Identity.

Definition: Integral-domain

refines Commutative-ring-with-identity, No-zero-divisors.

Definition: Gcd-domain

refines Integral-domain;

uses Set-of-representatives;

introduces gcd : domain x domain -> set-of-representatives;

requires (for x, y: domain)

gcd(x, y) | x and gcd(x, y) | y and

((for z: domain) (z | x and z | y) implies z | gcd(x, y)),

(for some z: domain) gcd(x, y) = z.

Definition: Division-ring

refines Ring, Inverses;

introduces ^(-1) : nonzeros -> nonzeros;

requires

0 != 1,

(for y: nonzeros) y * y^(-1) = 1.

Definition: Field

refines Commutative, Division-ring.
�
File defined by parts 37b, 38ab, 39ab, 40ab, 41ab, 42, 43abcd, 44ab, 45abc, 46ab, 47.

B.4 Polynomial Concepts

"Groeb.tec" 46b ≡
Abbreviation: Coefficient-ring is

Commutative-ring-with-identity [with coefficient-domain as domain].

Definition: Polynomial

refines Map [with polynomials as maps,

naturals as domain,

Coefficient-ring as Range,

coefficient-domain as range,

c as apply],

46

Gcd-domain [with polynomials as domain];

uses Natural;

introduces nonzero-polynomials < polynomials,

nonzero : polynomials -> bool,

ldcf : nonzero-polynomials -> coefficient-domain,

degree : nonzero-polynomials -> naturals,

convolution : polynomials x polynomials x naturals x naturals

-> coefficient-domain;

requires

(for p, q: polynomials; r: nonzero-polynomials; m, n: naturals)

p: nonzero-polynomials = nonzero(p),

nonzero(p) = ((for some n: naturals) c(p, n) != 0),

(for some n: naturals) (for m: naturals)

m > n implies c(p, m) = 0,

degree(r) = n where (c(r, n) != 0 and

((for all m: naturals) m > n implies c(p, m) = 0)),

ldcf(r) = c(r, degree(r)),

convolution(p, q, m, 0) = c(p, m) * c(q, 0),

convolution(p, q, m, n + 1) =

c(p, m) * c(q, n + 1) + convolution(p, q, m + 1, n),

c(-(p), n) = -(c(p, n)),

c(p + q, n) = c(p, n) + c(q, n),

c(p * q, n) = convolution(p, q, 0, n),

(p = q) = ((for n: naturals) c(p, n) = c(q, n)).

Extension: Polynomial

introduces

monic-monomial : naturals -> polynomials,

red : nonzero-polynomials -> polynomials;

requires (for r: nonzero-polynomials; m, n: naturals)

c(monic-monomial(m), n) = if m = n then 1 else 0,

c(red(r), n) = if n = degree(r) then 0 else c(r, n).
�
File defined by parts 37b, 38ab, 39ab, 40ab, 41ab, 42, 43abcd, 44ab, 45abc, 46ab, 47.

"Groeb.tec" 47 ≡
〈Ideals 4b, . . . 〉
〈LinComb 7, . . . 〉
〈Order 10a, . . . 〉
〈Poly 11b, . . . 〉
〈Groebner 17b, . . . 〉
〈Rewrite 23b, . . . 〉
〈Poly-Rewrite 27a, . . . 〉
〈Hilbert 33a, . . . 〉
〈Extension 36a, . . . 〉

�
File defined by parts 37b, 38ab, 39ab, 40ab, 41ab, 42, 43abcd, 44ab, 45abc, 46ab, 47.

C Indices

C.1 Files

"Buchberger.est" Defined by parts 31, 32c.

"Buchberger.st" Defined by parts 30bcd.

47

"Groeb.tec" Defined by parts 37b, 38ab, 39ab, 40ab, 41ab, 42, 43abcd, 44ab, 45abc, 46ab, 47.

"Library-Version-of-Ideals.tec" Defined by part 4a.

C.2 Macros

〈Extension 36abc, 37a〉 Referenced in part 47.

〈Groebner 17b, 18, 19ab, 20abc, 21ab, 22abc, 23a〉 Referenced in part 47.

〈Hilbert 33abc, 34〉 Referenced in part 47.

〈Ideals 4b, 5, 6ab〉 Referenced in part 47.

〈LinComb 7, 8ab, 9abc〉 Referenced in part 47.

〈Order 10abc, 11a〉 Referenced in part 47.

〈Poly-Rewrite 27ab, 28abc, 29abc, 30a, 32ab〉 Referenced in part 47.

〈Poly 11b, 12abc, 13ab, 14ab, 15ab, 16abc, 17a〉 Referenced in part 47.

〈Rewrite 23b, 24abc, 25abc, 26abc〉 Referenced in part 47.

C.3 Concept Names

Abelian-group: 45a, 45c.
Abelian-monoid: 45a.
Antisymmetric: 41a, 41b.
Associative: 44a, 44b.
Bag: 12a, 13a, 36bc.
Binary-op: 43a, 43bc, 44a, 45b.
Binary-relation: 23b, 41a.
Boolean: 37b, 38a.
Church-Rosser-rewrite-relation: 26a.
Coefficient-ring: 12c, 18, 33c, 34, 46b.
Commutative: 5, 33c, 44a, 44b, 45abc, 46ab.
Commutative-group: 45a.
Commutative-ring: 5, 33c, 45c, 46ab.
Commutative-ring-with-identity: 33c, 46a, 46b.
Commutative-semigroup: 44b, 45b.
Complete-rewrite-relation: 26c, 29ac.
Confluent-rewrite-relation: 25c, 26abc.
Cycle-free-rewrite-relation: 24b, 25b.
Distributive: 45b, 45c.
Division-ring: 46a.
Domain: 38a, 38b, 39ab, 40ab, 41a, 42, 43a.
Equivalence-class: 42.
Equivalence-relation: 24a, 42.
Field: 18, 30b, 33b, 46a.
Finite-ideal-base: 6b, 19a.
Finite-product-over-ring-with-identity: 8b, 9a.
Finite-sequence: 8ab, 20a, 21a, 40b.
Finite-sequence-over-semiring: 8a, 8b.
Finite-set: 6a, 12bc, 15b, 20a, 38b.
Finite-sum-and-product-over-ring-with-identity: 9a.
Finite-sum-over-ring: 8b, 9ab, 13a, 20b.
Finitely-generated-ideal: 6a, 6b, 33a.
Gcd-domain: 13a, 22a, 46a, 46b.
Generated-ideal: 6a, 6b, 9c, 27b.
Groebner-base: 19a, 19b, 21ab, 23a, 28c, 29abc, 30a, 31.
Group: 45a.
Ideal: 4a, 4b, 5, 6ab, 9bc.

48

Ideal-base: 6b.
Ideal-over-commutative-ring: 5.
Identity: 43c, 44b, 45c, 46a.
Integral-domain: 33a, 46a.
Inverses: 43d, 45a, 46a.
Irreflexive: 41a.
Left-distributive: 45b.
Left-ideal: 4a, 4b.
Left-identity: 43c, 43d.
Left-regular: 43b, 43d.
Linear-combination: 9b, 9c.
Linear-combination-with-generated-ideal: 9c.
Local-confluent-rewrite-relation: 25c, 26bc.
Map: 12ac, 40a, 40b, 46b.
Monoid: 10b, 12a, 44b, 45a.
Multivariate-polynomial: 13a, 14b, 15ab, 16ab, 17ab, 18, 19a, 20b, 22bc, 27ab, 34, 36c, 37a.
Multivariate-polynomial-over-field: 18.
Multivariate-polynomial-with-finitely-many-ordered-variables: 36c, 37a.
Multivariate-polynomial-with-finitely-many-variables: 18, 19a, 27b, 34, 36c.
Multivariate-polynomial-with-finitely-many-variables-over-field: 18, 19a, 27b.
Multivariate-polynomial-with-monomial-order: 15a, 16ab, 17b, 18, 20b, 22bc, 27a, 37a.
Natural: 12a, 23b, 39b, 40b, 46b.
No-zero-divisors: 45c, 46a.
Noetherian-ring: 33a, 33bc, 34.
Notherian-coefficient-ring: 33c, 34.
Ordered-bag: 36b, 36c.
Ordered-variable: 36a, 36b.
Pair: 39a.
Polynomial: 16c, 27b, 28bc, 29abc, 30a, 31, 32ab, 46b.
Polynomial-complete-rewriting: 29c, 30a.
Polynomial-rewriting: 27b, 28bc, 29abc, 30a, 31, 32ab.
Polynomial-rewriting-with-Groebner-base: 28c, 29ab, 30a.
Power-series: 12c, 13a.
Range: 7, 12ac, 40a, 40b, 46b.
Reflexive: 41a, 41b, 42.
Regular: 20b, 43b, 43d, 44b.
Regular-semigroup: 44b.
Rewrite-relation: 23b, 24bc, 25c, 26abc, 29c.
Right-distributive: 45b.
Right-ideal: 4a, 4b.
Right-identity: 43c, 43d.
Right-regular: 43b, 43d.
Ring: 4ab, 5, 8b, 9a, 19a, 45c, 46a.
Ring-with-identity: 8b, 9a, 45c.
Semigroup: 44b, 45bc.
Semiring: 7, 8b, 45b.
Sequence: 7, 8a, 40b.
Sequence-over-semiring: 7, 8a.
Set: 4ab, 6a, 11ab, 17b, 38b, 40a, 42, 46a.
Set-of-representatives: 42, 46a.
Symmetric: 41a, 42.
Term-order: 10b, 10c, 15a, 36c.
Terminating-rewrite-relation: 25a, 25b, 26bc, 27b.
Transitive: 41a, 41b, 42.

49

Univariate-polynomial: 16c, 17a.
Variable: 11b, 36a.
Weakly-terminating-rewrite-relation: 24c, 25a.
Well-order: 10a, 10b, 25a.

50

