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Abstract. We explore mathematical knowledge in the field of electri-
cal engineering and claim that electrical engineering is a suitable area
of application for mathematical knowledge management: We show that
mathematical knowledge arising in electrical engineering can be success-
fully handled by existing MKM systems, namely by the Mizar system.
To this end we consider in this paper network theory and in particu-
lar stability of networks. As an example for mathematical knowledge in
electrical engineering we present a Mizar formalization of Schur’s the-
orem. Schur’s theorem provides a recursive, easy method to check for
BIBO-stability of networks.

1 Introduction

The aim of mathematical knowledge management is to provide both tools and
infrastructure supporting the organization, development, and teaching of math-
ematics with the help of effective up-to-date computer technologies. To achieve
this ambitious goal it should be taken into account that the predominant part of
potential users will not be professional mathematicians themselves, but rather
scientists or teachers that apply mathematics in their area. This point has been
adressed lately with the consideration of physics [HKS06] or geo-sciences [Ses07].
In this paper we inspect another application area for mathematical knowledge
management: electrical engineering.

The situation of mathematics in electrical engineering is — as in other engi-
neering sciences — twofold. On the one hand there is a number of areas, such as
for example network theory, control engineering or filter design, based on clean
mathematical fundamentals and results. On the other hand, however, even in
these areas the newest developments often do not rely on these results. Electrical
engineers essentially use systems like MathLab or Maple providing a convenient
environment to accomplish their applications. These systems, however, do not
provide mathematical exactness for the verification of results nor include the
newest theoretical results from the area. Consequently, knowledge in electrical
engineering is often propagated by reusing experimental results that proved to
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be successfully. One reason is, that the use of exact mathematical results for
these applications is too expensive to be explicitely performed. Furthermore —
maybe also as a consequence of the above reason — there are theoretical results
that could be advantageously used in applications but are not sufficiently known
to electrical engineers.

In this situation mathematical knowledge management can contribute in
two ways. Firstly, the widespread use of mathematical knowledge management
systems incorporating electrical engineering could lead to a rediscovering and
broader use of theoretical results in applications by electrical engineers. Sec-
ondly, the support in using these results could help filling the gap between fun-
damentals and applications in the sense that more new applications are based
on mathematical fundamentals.

In this paper we focus on network theory [Unb93], in particular on network
stability. Network theory deals with the mathematical description, analysis, and
synthesis of electrical (continous and time-discrete) networks. For a realible ap-
plication such systems have to be stable, that is for an arbitrary (bounded) input
the output have to be bounded again. In case of highly-precise filters, however,
it turns out that checking for stability is often hard to accomplish numerically.
In this situation for example Schur’s theorem [Sch21] permits an easy method
to decide whether a network is stable by computing a chain of polynomials with
decreasing degrees. We shall discuss the mathematical fundamentals and preq-
uisites of Schur’s theorem and present a Mizar formalization of this theorem.

The plan of the paper is as follows. In the next section we give a brief in-
troduction to network theory focusing on the stability of networks and Schur’s
theorem [Sch21]. Then after a short review of the Mizar system [Miz07] we
present our formalization of Schur’s theorem in section 4. Finally, we discuss our
results, draw conclusions for mathematical knowledge management in electrical
engineering and give some hints for further work.

2 Networks and their Stability

As mentiond in the introduction the stability of networks is one of the main is-
sues when dealing with the analysis and design of electrical circuits and systems.
In the following we briefly review definitions and properties of electrical systems
necessary to understand the application of Schur’s theorem to electrical net-
works. In electrical engineering stability applies to the input/output behaviour
of networks (see figure 1). For (time-) continous systems one finds the following
definition. For discrete systems an analogous definition is used.

Definition 1. ([Unb93])
A continous system is (BIBO-)3 stable, if and only if each bounded input signal
x(t) results in a bounded output signal y(t).

3 BIBO stands for Bounded Input Bounded Output.
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Physically realizable, linear time-invariant systems (LTI systems) can be de-
scribed by a set of linear equations [Unb93]. The behaviour of a LTI system
then is completely characterized by its impulse response h(t).4 If the impulse
response of auch a system is known, the relation between the input x(t) and the
output y(t) is given by the convolution integral

y(t) =

∞∫
−∞

x(τ)h(t− τ)dτ. (1)

Furthermore, a LTI system is stable, if and only if its impulse response h(t) is
absolute integrable, that is there exists a constant K such that

∞∫
−∞

|h(τ)|dτ ≤ K < ∞. (2)

In network and filter analysis and design, however, one commonly employs the
frequency domain rather than the time domain. To this end the system is de-
scribed based on its transfer function H(s). In case the Laplace transformation
is used we have5

H(s) =

∞∫
−∞

h(t)e−stdt. (3)

--e ex(t) y(t)

H(s)

h(t)

System

Figure 1: LTI system with one input x(t) and one output y(t)

The evaluation of H(s) for s = jω — in case of convergence — enables
the qualitative understanding of how the system handles and selects various
frequencies, so for example whether the system describes a high-pass filter, low-
pass filter, etc. Now the necessary condition to demonstrate the stability of LTI
systems in the frequency domain reduces to show, that the jω-axis lies in the
Laplace transformation’s region of convergence (ROC).

4 h(t) is the output of the system, when the input is the Dirac delta function δ(t).
5 Note that this is a generalization of the continous-time Fourier transformation.
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For physically realizable LTI systems, such as the class of networks with con-
stant and concentrated parameters, H(s) is given in form of a rational function
with real coefficients, that is

H(s) =
ansn + . . . + a0

bmsm + . . . + b0
, ai, bi ∈ R. (4)

In this case the region of convergence can be described by the roots of the
denominator polynomial: If si = σi + jωi for i = 1, . . . m are the roots of bmsm +
. . . + b0, the region of convergence is given by

<{s} > max{σi, i = 1, . . . m}.

To check stability it is therefore sufficient, to show that the real part <{s} of
all poles of H(s) is smaller then 0. The denominator of H(s) is thus a so-called
Hurwitz polynomial.

The stability problem for discrete-time signals and systems can be analized
with the same approach. For a given discrete-time transfer function H(z) in
the Z- domain, it has to be checked whether the unit circle is contained in the
region of convergence. Hence for all poles zi of H(z) we must have |zi| < 1. Using
bilinear transformations [OS98]

z :=
1 + s

1− s
. (5)

it is thus sufficient to check whether the denominator of

H(z)|z:= 1+s
1−s

(6)

is a Hurwitz polynomial.
The practical examination of stability of highly-precise filters, however, turns

out to be very hard. In practical applications the poles of concern are usually
close to the axis s = jω or the unit circle |z| = ejω respectively. Thus numerical
determination of the poles is highly error-proning due to its rounding effects. In
digital signal processing in addition degrees of transfer functions tend to be very
high, for example 128 and higher in communication networks.

It is here that the theorem of Schur [Sch21] comes into play. Using the con-
jugate polynomial

f∗(x) := a∗0 − a∗1 x + a∗2 x2 − . . . + (−1)na∗n xn (7)

of a complex polynomial f(x) = a0 +a1x+a2x
2 + . . . anxn a polynomial g(x) of

smaller degree is constructed, so that g(x) is a Hurwitz polynomial if and only
if f(x) is. The construction itself is fairly easy: it is essentially a division by a
linear polynomial.

Theorem 1. ([Sch21])
Let <{ξ} < 0. Then f(x) is a Hurwitz polynomial if and only if |f(ξ)| < |f∗(ξ)|
and

g(x) :=
f∗(ξ)f(x)− f(ξ)f∗(x)

x− ξ

is a Hurwitz polynomial.
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The fact that the degree of g(x) is strictly smaller than the one of f(x) then
allows to check stability of networks without explicitely computing roots of poly-
nomials. Note that in addition ξ can always be chosen as −1, so that division can
actually be performed by shifting. This however is not widely known in the area
of network theory and we are not aware of any system using Schur’s theorem for
performing stability checks.

3 The Mizar System

The logical basis of Mizar [RT01,Miz07] is classical first order logic extended,
however, with so-called schemes. Schemes introduce free second order variables,
in this way enabling amongothers the definition of induction schemes. In addition
Mizar objects are typed, the types forming a hierarchy with the fundamental type
set. The user can introduce new (sub)types describing mathematical objects
such as groups, fields, vector spaces or polynomials over rings or fields. To this
end the Mizar language provides a powerful typing mechanism based on adjective
subtypes [Ban03].

The current development of the Mizar Mathematical Library (MML) relies
on Tarski-Grothendieck set theory — a variant of Zermelo Fraenkel set theory
using Tarski’s axiom on arbitrarily large, strongly inaccessible cardinals [Tar39]
which can be used to prove the axiom of choice —, though in principle the Mizar
language can be used with other axiom systems also. Mizar proofs are written in
natural deduction style as presented in the calculus of [Jaś34]. The rules of the
calculus are connected with corresponding (English) natural language phrases so
that the Mizar language is close to the one used in mathematical textbooks. The
Mizar proof checker verifies the individual proof steps using the notion of obvious
inferences [Dav81] to shorten the rather long proofs of pure natural deduction.

The basic theories necessary for Schur’s theorem are already contained in
MML: Polynomials (over arbitrary rings) have been defined in [Mil01b]. The
original goal here was to prove the fundamental theorem of algebra. The com-
plex numbers have been introduced in [Byl90] as objects in their on right. To
use the theory of polynomials we need, however, the ring structure of complex
numbers. Fortunately, this has been established in [Mil01a]. Consequently, us-
ing Mizar we were able to apply — besides the theory of polynomials — both
general ring (or field) theorems for complex numbers and special theorems valid
for complex numbers only.

4 Mizar Formalization of Schur’s theorem

4.1 Some Preliminaries About Polynomials

Although the theory of polynomials in Mizar is rather well developed, division
of polynomials had not been introduced, yet. This, however, can be done (for
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arbitray fields) in a straightforward way following the well-known literature.6

We defined two functors div and mod for the quotient and the remainder, re-
spectively. The keyword it denotes the object being defined. Note that Mizar
requires an existence and a uniqueness proof for functors. Here, however, these
have to be performed for the first definition only, because the definition of mod
employs solely arithmetics of polynomials — including the just defined functor
div. Therefore existence and uniqueness in this case is automatically derived by
the Mizar checker.

definition

let L be Field;

let p,q be Polynomial of L such that q <> 0_.(L);

func p div q -> Polynomial of L means

ex r being Polynomial of L st p = it *’ q + r & deg r < deg q;

end;

definition

let L be Field;

let p,q be Polynomial of L such that s <> 0_.(L);

func p mod q -> Polynomial of L equals

p - (p div q) *’ q;

end;

Divisibility of polynomials can then be introduced by the condition p mod q
= 0._(L), where 0._(L) is the zero polynomial, or by the equivalent condition
that there exists a polynomial h such that p = h * q. For our purposes it is
essential that a polynomial p(x) is divisible without remainder by the linear
polynomial x− z, if z is a root of p(x).7 It was therefore necessary to show that
for every root z of a polynomial p(x) the polynomial x−z is a divisor of p(x). To
do so, we introduced the polynomials rpoly(k,z) = xk − zk and qpoly(k,z)
= xk−1 +xk−2 ∗ z +xk−3 ∗ z2 + ...+x ∗ zk−2 + zk−1. Note that for k > 1 we have
rpoly(1,z) * qpoly(k,z) = rpoly(k,z), which allows for the construction of
a polynomial h such that r(1,z) * h = p. We thus get

theorem

for L being Field

for p being Polynomial of L

for z being Element of L st z is_a_root_of p holds rpoly(1,z) divides p;

Note again, that this property is shown for polynomials over arbitrary fields.
In the next section when dealing with Schur’s criterium, we shall use the com-
plex number version of this theorem.

6 see for example [GG99].
7 compare theorem 1 in section 2.
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4.2 Schur’s Theorem

Using the general Mizar theory of polynomials for our purposes, that is for
polynomials over the complex numbers, is straightforward. We just instantiate
the parameter L describing the coefficient domain with the field of complex
numbers F_Complex from [Mil01a]. So an object of type

Polynomial of F_Complex

combines the theory of polynomials with the one of complex numbers. Hence
for such objects we have available both the predicate is_root_of defined for
polynomials and the functor Re giving the real part of a complex number. This
allows for the following definition of Hurwitz polynomials.

definition

let f be Polynomial of F_Complex;

attr f is Hurwitz means

for z being Element of F_Complex st z is_a_root_of f holds Re(z) < 0;

end;

The examination of polynomials with a degree smaller or equal then 1 is
rather uncomplex. Constant polynomials are not Hurwitz, except for the zero
polynomial which is. A linear polynomial p(x) = x − z obviously is Hurwitz if
and only if the real part of z is smaller than 0. This condition carries over to
arbitrary polynomials of degree 1. Hence we get the following three theorems for
the basic cases.

theorem

0_.(F_Complex) is non Hurwitz;

theorem

for z being Element of F_Complex st z <> 0.F_Complex

holds z * 1_.(F_Complex) is Hurwitz;

theorem

for z1,z2 being Element of F_Complex st z1 <> 0.F_Complex

holds z1 * rpoly(1,z2) is Hurwitz iff Re(z2) < 0;

In addition we proved some other properties of Hurwitz polynomials needed
later, so for example that f ∗ g is Hurwitz if and only if f and g are Hurwitz or
that for a complex number z 6= 0 we have z ∗ f is Hurwitz if and only if f is
Hurwitz.

To prove Schur’s theorem for the general case we needed to introduce the con-
jugate of a complex polynomial as given by equation (7). This is accomplished by
a Mizar functor *’ defining the coefficients of the conjugated polynomial appro-
priately.8 For that we use the functor power(G) which describes exponentiation
8 Note that the functor *’ is then overloaded, because it also stands for conjugation

of complex numbers as can be seen in the following definition.
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for arbitrary groups G, here again instantiated with F_Complex, the field of com-
plex numbers. Note that after instantiating G with F_Complex the resulting type
of the functor power(F_Complex) is automatically accomodated, so that it is no
problem multiplying its result with another complex number.

definition

let f be Polynomial of F_Complex;

func f*’ -> Polynomial of F_Complex means

for i being Element of NAT holds

it.i = power(F_Complex).(-1.F_Complex,i) * (f.i)*’;

end;

Thus prepared we could already state Schur’s theorem in Mizar. However, to
shorten writings we decided to introduce another functor describing the nomi-
nator polynomial of Schur’s construction. The functor eval describes evaluation
of polynomials.

definition

let f be Polynomial of F_Complex;

let z be Element of F_Complex;

func F*(f,z) -> Polynomial of F_Complex equals

eval(f*’,z) * f - eval(f,z) * f*’;

end;

Taking into account that the Mizar functor |. .| gives the absolute value
of complex numbers, we then get the following formulation of Schur’s theorem.
Note again that rpoly(1,z) is the polynomial p(x) = x− z.

theorem

for f being Polynomial of F_Complex st deg(f) >= 1

for z being Element of F_Complex

st Re(z) < 0 & |.eval(f,z).| < |.eval(f*’,z).|

holds f is Hurwitz iff F*(f,z) div rpoly(1,z) is Hurwitz;

The proof of the theorem relies on a thorough examination of the relation
between the real part <(z) of a complex number z and the values of |f(z)| and
|f∗(z)| in case f is a Hurwitz polynomial. It turns out that whether <(z) is
smaller or greater than 0 completely determines which value |f(z)| or |f∗(z)| is
greater. This allows later to argue about the roots of the nominator polynomial,
that is of the polynomial F*(f,z).

theorem

for f being Polynomial of F_Complex st deg(f) >= 1 & f is Hurwitz

for z being Element of F_Complex

holds (Re(z) < 0 implies |.eval(f,z).| < |.eval(f*’,z).|) &

(Re(z) > 0 implies |.eval(f,z).| > |.eval(f*’,z).|) &

(Re(z) = 0 implies |.eval(f,z).| = |.eval(f*’,z).|);
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The corresponding proof is rather technical. In Mizar, however, the applica-
tion of theorems for complex numbers has been automatized in the sense that a
number of basic theorems are automatically applied, in this way shortening the
proof [NB04]. In addition the Encyclopedia of Mathematics in Mizar (EMM)
collecting theorems of a theory — in this case concerning complex numbers —
originally spread over the whole repository produced a kindly working environ-
ment to accomplish the task.

Note also that this theorem implies that even for polynomials with degree
> 1, it is not always necessary to reduce the problem of stability to a basic case:
If we find a complex number z with <(z) < 0 such that |f(z)| ≥ |f∗(z)| we
immediately get that f is not a Hurwitz polynomial.

theorem

for f being Polynomial of F_Complex st deg(f) >= 1

holds (ex z being Element of F_Complex

st Re(z) < 0 & |.eval(f,z).| >= |.eval(f*’,z).|)

implies f is non Hurwitz;

The rest of the proof basically applies the theorem from above two times,
once for each direction. We first proved the following, more general version of
Schur’s theorem from [Sch21]: For complex numbers z1 and z2 such that |z1| >
|z2| and a complex polynomial f(x) with degree ≥ 1 holds f(x) is a Hurwitz
polynomial if and only if g(x) = z1 ∗ f(x)− z2 ∗ f∗(x) is a Hurwitz polynomial:
Because of |z1| > |z2| we have now |f(x)| ≥ |f∗(x)|, if <(x) ≥ 0, and hence
|z1 ∗ f(x)| > |z2 ∗ f∗(x)|, which shows the first direction. For the other direction
we only note, that f(x) = z′1 ∗ g(x)− z′2 ∗ g∗(x) with

z′1 =
z∗1

|z1|2 − |z2|2
and z′2 = − z2

|z1|2 − |z2|2
,

so that |z′1| > |z′2| finishes the proof.
From this Schur’s theorem easily follows by instantiating z1 with f∗(z) and

z2 with f(z) giving essentially the functor F*(f,z) from above. Note that we
here need in addition that the denominator polynomial p(x) = x − z, that is
rpoly(1,z), divides the nominator polynomial f∗(z) ∗ f(x)− f(z) ∗ f∗(x), that
is F*(f,z). This, however, is ensured by the fact that z is a root of f∗(z)∗f(x)−
f(z) ∗ f∗(x) and the — automatically available — complex number version of
the main theorem of section 4.1.

So this part of the proof requires both arithmetics — including conjugates
— and abstract values of complex numbers and arithmetics of polynomials over
complex numbers. In Mizar, as already mentioned, this is achieved by instan-
tiating the general theory of polynomials with the field of complex numbers.
Then of course the absolute value, defined originally for complex numbers, is
available for the coefficients of complex polynomials, also. Consequenly, the just
described proof steps could be accomplished based on these two theories without
other preparations or additional lemmas.
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5 Conclusions

In this paper we have considered electrical engineering as an application area
for mathematical knowledge management. We have focused on stability theory
of networks and have shown by a Mizar formalization of Schur’s theorem that
interesting mathematical knowledge in electrical engineering can be successfully
handled with mathematical knowledge management systems.

We believe that both electrical engineering and mathematical knowledge
management can benefit from a further development of collaboration in the
area of mathematical knowledge. The combination of mathematical knowledge
managements systems and repositories with analysis and design tools for elec-
trical networks can provide electrical engineers with a thorough mathematical
basis for their work. In addition this would lead also to the use of less known
theoretical results, such as for example Schur’s theorem, in new applications.

For mathematical knowledge management electrical engineering can serve as
an additional test bed, in which new developments can be tried out. And, of
course, in this way a whole group of potential new users of mathematical knowl-
edge management systems could be adressed.
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