
Mizar Veri�cation of Generic Algebraic Algorithms

Dissertationder Fakult�at f�ur Informatikder Eberhard-Karls-Universit�at T�ubingenzur Erlangung des Grades einesDoktors der Naturwissenschaftenvorgelegt vonChristoph SchwarzwellerT�ubingen1997



Tag der m�undlichen Quali�kation: 17.12.1997Dekan: Prof. Dr. Ulrich G�untzer1. Berichterstatter: Prof. Dr. R�udiger Loos2. Berichterstatter: Prof. Dr. David Musser



AbstractAlthough generic programming founds more and more attention | nowadays genericprogramming languages as well as generic libraries exist | there are hardly approachesfor the veri�cation of generic algorithms or generic libraries. This thesis deals withgeneric algorithms in the �eld of computer algebra. We propose theMizar system as atheorem prover capable of verifying generic algorithms on an appropriate abstract level.The main advantage of the Mizar theorem prover is its special input language thatenables textbook style presentation of proofs. For generic versions of Brown/Henriciaddition and of Euclidan's algorithm we give complete correctness proofs written inthe Mizar language.Moreover, we do not only prove algorithms correct in the usual sense. In additionwe show how to check, using the Mizar system, that a generic algebraic algorithm iscorrectly instantiated with a particular domain. Answering this question that espe-cially arises if one wants to implement generic programming languages, in the �eld ofcomputer algebra requires non trival mathematical knowledge.To build a veri�cation system using the Mizar theorem prover, we also imple-mented a generator which almost automatically computes for a given algorithm a setof theorems that imply the correctness of this algorithm.



AbstractObwohl das generische Programmieren immer mehr an Bedeutung gewinnt, | heutzu-tage existieren generische Programmiersprachen sowie generische Bibliotheken | gibtes kaum Ans�atze zur Veri�kation generischer Algorithmen oder generischer Biblio-theken. In dieser Arbeit besch�aftigen wir uns mit generischen Algorithmen aus demBereich der Computer Algebra. Wir schlagen das Mizar Sytem als einen Beweiservor, mit dem generische Algorithmen auf ad�aquater abstrakter Ebene veri�ziert wer-den k�onnen. Der Hauptvorteil des Mizar Systems ist seine spezielle Eingabesprache,die es erlaubt mathematische Beweise textbuchartig zu pr�asentieren. F�ur generischeVersionen der Brown/Henrici Addition und des Euklid'schen Algorithmus geben wirvollst�andige in Mizar formulierte Korrektheitsbeweise an.Dabei beweisen wir nicht nur die Korrektheit des Algorithmus im �ublichen Sinn.Wir zeigen ebenfalls auf, wie mit Hilfe desMizar Systems nachgewiesen werden kann,da� ein generischer algebraischer Algorithmus mit einer bestimmten Domaine kor-rekt instanziert ist. Die Beantwortung dieser Fragestellung, die insbesondere bei derImplementierung generischer Programmiersprachen auftritt, verlangt im Bereich derComputer Algebra tiefgehende mathematische Zusammenh�ange.Um dasMizar System in ein Veri�kationssystem einzubinden, haben wir au�erdemeinen Generator implementiert, der benutzerunterst�utzt aus einem gegebenen Algo-rithmus eine Menge von Theoremen berechnet, die die Korrektheit dieses Algorithmusimplizieren.
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Chapter 1IntroductionOver the last several years generic programming has received more and more attention.Many programming languages nowadays include generic concepts like polymorphism infunctional programming languages, overloading or templates in C++ ([Str94]); or theyare even completely designed as a generic language like SuchThat ([LS96], [Sch96]).Also generic libraries have been developed like the Ada Generic library or the Stl. Onthe other hand the widespread use of generic concepts more and more entails the needfor a thorough formal machine assisted veri�cation of generic algorithms | especiallyto improve the reliability of generic libraries.In this thesis we argue for the need of such a veri�cation and propose the Mizarsystem as a theorem prover for doing so in the �eld of computer algebra. We giveexamples for its use and provide some tools to integrate Mizar into a veri�cationsystem.1.1 Generic AlgorithmsGeneric programming has a lot of advantages compared with non-generic programming.It supports reusability and so safes programming. In addition generic programmingallows one to build up well structured libraries (see [MS96] or [Sch96]). But whatexactly is meant by a generic algorithm?In general one considers an algorithm to be generic if it is applicable with di�erentdata structures. Obviously that is a property of generic algorithms, but only a smallfacet of the whole. Generic programming goes much deeper, up to the essence of amethod: We look for the minimal conditions and domains under which a method works| independent of any data structure.As a rather trivial example we consider the addition of two integer polynomials.The method used here is addition of components in the coeÆcient domain. But that de-pends neither on the number of indeterminates nor on the integers themselves. It onlyrequires the existence of addition in the coeÆcient domain resp. that the coeÆcientdomain is a ring which implies the existence of addition. So, addition of polynomialsis completely independent of the structure of the given polynomial ring. Consequentlythis should lead to one generic addition algorithm for arbitrary polynomial rings overarbitrary rings. 3



Especially in the �eld of algorithmic mathematics we can �nd this kind of viewconcerning genericity. Algorithms are written over abstract domains using only theiraxioms and operations (see for example [Lip71]). In fact this is generic programming:Writing algorithms for multiple of (abstract) domains having in common that theyful�ll the (minimal) conditions which make the underlying method work.1.2 The SuchThat ProjectSuchThat is a programming language that enables generic programming in the �eldof computer algebra. SuchThat is a procedural language and can be seen as a suc-cessor of Aldes ([LC92]) from which it adopted its instructions. The main feature ofSuchThat is the possibility to express the speci�cation of an algorithm (and hencethe minimal conditions under which the algorithm works) in the language itself. Toachieve this, SuchThat contains a declaration mechanism that enables the user tointroduce arbitrary algebraic structures. Subsequently, algorithms are written basedon these structures.We consider the Euclidean algorithm as an easy example: Euclid's method forcomputing the greatest common divisor relies on the observation thatgcd(a; b) = gcd(b; amod b) for b 6= 0 and gcd(a; 0) = a:Algorithms for greatest common divisors over the integers or polynomial rings over�elds use this method by computing a remainder sequence of a and b until 0 appearsand the second equation is applicable. Now, what are the abstract conditions makingthis method work? Of course we need a quotient-remainder-function to compute theremainder sequence, hence the domain has to be a ring. But that is not enough. Whatguarantees the termination of this method? Intuitively speaking the decreasing size ofthe remainders. This is given in an abstract way by a degree function. Consequently,to compute greatest common divisors with Euclid's method we need the underlyingstructure to be a | therefore so-called | Euclidean domain with its correspondingdegree function:1"eucl.sth" 5 �global: let E be EuclideanRing;let d be DegreeFunction of E;let Amp be AmpleSet of E.Algorithm: c := GCD(a,b)Input: a,b 2 E.Output: c 2 E such that c 2 Amp & c = gcd(a,b).local: u,v,s,t 2 E.(1) [Initialization]u := a;v := b.1Note that we actually analysed the method of Euclid | to use the vocabulary of [Sch96]: welifted the integer Euclidean algorithm | and did not develop a general generic method for computinggreatest common divisors. In fact there are gcd domains in which greatest common divisors cannotbe computed using Euclid's method (see [SL95]). 4



(2) [a = 0]if u = 0 then {c := NF(v); return;}.(3) [Loop]while v 6= 0{ QR(u,v;s,t);u := v;v := t}.(4) [Normalization]c := NF(u). 2�File de�ned by parts 5, 6ab.We feel that the use of the global parameter AmpleSet of E needs some further ex-planation. Its use is due to an algorithmic problem: In general there is more thanone element in an Euclidean domain ful�lling the de�nition of the greatest commondivisor. In contrast the result of an algorithm should be unique.One possibility is to compute all greatest common divisors, the result of the algo-rithm then being a subset of the Euclidean domain. But this is impractical thinkingof a greatest common divisor algorithm as a subalgorithm whose result shall be fur-ther processed. So, let us again look at the integers. Here the solution is to give sideconditions: A greatest common divisor greater or equal than zero is computed. Thisgoes along with the concept of ample sets. (In fact the non negative integers form anample set for the integers.) Any two greatest common divisors are associates of eachother. The association relation divides the Euclidean domain into equivalence classesand an ample set is a subset of the Euclidean domain that contains exactly one elementfrom each equivalence class of associates.1 Consequently, asking for a greatest com-mon divisor that is a member of the ample set, leads to a unique result of the algorithm.We also give the speci�cations of the subalgorithms. Note that the methods ofthese subalgorithms have no inuence on the correctness of the Euclidean algorithm.Only when the algorithm is instantiated, there has to be a subalgorithm ful�lling thisspeci�cation (over the current domain).Here is the speci�cation of the quotient remainder function:"eucl.sth" 6a �Algorithm: QR(x,y;q,r)Input: x,y 2 E such that y 6= 0.Output: q,r 2 E such that x = q*y+r & (r = 0 or d(r) < d(y)). 2�File de�ned by parts 5, 6ab.To compute the normal form modulo an ample set we use | according to the paradigmof genericity | more general structures than Euclidean domains: The associationrelation is de�ned on integral domains, hence also normal forms should be de�ned onintegral domains. Consequently, we have to introduce new global declarations beforewe can state the speci�cation of the normal form subalgorithm. We use ~ to denotethe association relation.1In fact one can de�ne ample sets over arbitrary sets and arbitrary equivalence relations.
5



"eucl.sth" 6b �global: let I be integral domain;let Amp be AmpleSet of I.Algorithm: y := NF(x)Input: x 2 I.Output: y 2 I such that y 2 Amp & y ~ x. 2�File de�ned by parts 5, 6ab.Note that the just given Euclidean algorithm is by no means an abstract algorithm,but a generic algorithm | written in SuchThat | which indeed can be instantiatedand executed.For execution SuchThat algorithms are translated into C++. Due to its templatemechanism C++ is suitable to represent generic (algebraic) algorithms. Once compiled,SuchThat programs can be instantiated with special domains in the usual way.The problem with C++ templates is that type parameters are not checked forcorrectness. So calling our example algorithm with an ordinary ring (or even with agroup) lacking the necessary degree function gives an error only at runtime. To detectsuch kinds of errors already at compile time, the SuchThat compiler includes a typechecker: Based on the given declarations it checks whether the present instance is al-gebraically correct. In the example we would have to determine whether the integersform an Euclidean domain (and whether there exist algorithms for computing QF andNR over the integers). To answer these questions the SuchThat compiler is equippedwith an algebraic data base holding the necessary algebraic information.To summarize, SuchThat is a programming language that enables writing abstractalgebraic algorithms in the sense of [Lip71] nevertheless being executable programs.1.3 Example: Generic Brown/Henrici AdditionIn this section we consider as another example the algorithm of Brown and Henriciconcerning addition of fractions over gcd domains.Let I be an integral domain, and let Q be the set of fractions over I . Based onalgorithms for arithmetic operations in I one obtains algorithms for arithmetic in Q.To be able to choose a unique representative from each equivalence class of Q, weassume that I is a gcd domain; that is, an integral domain in which for each twoelements a greatest common divisor exists. We also assume that there are algorithmsfract to construct a fraction out of Elements of I and algorithms num and denom thatdecompose a fraction into numerator and denominator respectively.The algorithm accepts normalized fractions as input, giving as the result again anormalized fraction. The point is that the normalized result is achieved not by execut-ing ordinary addition of fractions followed by a normalization step, but by integratedgreatest common divisor computations. This allows singling out trivial cases leadingin general to more eÆcient runtime behaviour (see [Col74]).
6



"BrHenAdd.sth" 8a �global: let I be gcdDomain;let Q be Fractions of I;let Amp be multiplicative AmpleSet of I.Algorithm: t := BHADD(r,s)Input: r,s 2 Q such that r,s is_normalized_wrt Amp.Output: t 2 Q such that t ~ r+s & t is_normalized_wrt Amp.local: r1,r2,s1,s2,d,e,r2',s2',t1,t2,t1',t2' 2 I;(1) [r = 0 or s = 0]if r = 0 then {t := s; return};if s = 0 then {t := r; return}.(2) [get numerators and denominators]r1 := num(r); r2 := denom(r);s1 := num(s); s2 := denom(s).(3) [r and s in I]if (r2 = 1 and s2 = 1) then {t := fract(r1+s1,1); return}}.(4) [r or s in I]if r2 = 1 then {t := fract(r1*s2+s1,s2); return}};if s2 = 1 then {t := fract(s1*r2+r1,r2); return}}.(5) [general case]d := gcd(r2,s2);if d = 1 then {t := fract(r1*s2+r2*s1,r2*s2); return};r2' := r2/d; s2' := s2/d;t1 := r1*s2'+s1*r2'; t2 := r2*s2';if t1 = 0 then {t := 0; return};e := gcd(t1,d);t1' := t1/e; t2' := t2/e;t:= fract(t1',t2'). 2�File de�ned by parts 8ab.Please note that in general we do not have t = r+s, but only t ~ r+s, which meansnum(t)*denom(r+s) = denom(t)*num(r+s).1 The reason for this is that the fractiont = r+s is de�ned as usual by num(t) := num(r)*denom(s)+denom(r)*num(s) anddenom(r+s) := denom(r)*denom(s); hence r+s is no normalized fraction in generaland t = r+s cannot serve as the output speci�cation of the algorithm.The correctness of the algorithm depends on deep properties of greatest commondivisors (see [Col74]). We will see in the following how to prove them (and correctnessof the algorithm) rigorously with machine assistance.We conclude with the speci�cations of the subalgorithms. Note that the Euclideanalgorithm of section 1.2 satis�es the speci�cation of the greatest common divisor func-tion."BrHenAdd.sth" 8b �Algorithm: r1 := num(r)Input: r 2 Q.Output: r1 2 I such that r1 = num(r). 2Algorithm: r2 := denom(r)Input: r 2 Q.Output: r2 2 I such that r2 6= 0 & r2 = denom(r). 2Algorithm: r := fract(r1,r2)Input: r1,r2 2 I such that r2 6= 0.Output: r 2 Q such that r = fract(r1,r2). 21Compare the corresponding Mizar de�nitions in section 4.4.7



Algorithm d := /(r1,r2)Input: r1,r2 2 I such that r2 6= 0 & r2 divides r1.Output: d 2 I such that d = r1/r2. 2Algorithm c := gcd(a,b)Input: a,b 2 I.Output: c 2 I such that c 2 Amp & c = gcd(a,b). 2�File de�ned by parts 8ab.1.4 Proving Generic Algorithms CorrectWe have seen that the paradigm of genericity allows one to develop extremely powerfulalgebraic algorithms. On the other hand generic programming requires a more carefulveri�cation | especially if a generic algorithm will be kept in a library. From our pointof view generic algorithms introduce two kinds of correctness:First there is correctness in the usual sense; that is, an algorithm has to ful�ll itsspeci�cation. Besides, this proof has to be done on an abstract level: We need genericcorrectness proofs for generic algorithms to cover all possible instantiations of the algo-rithm's parameters in the proof. For example to prove the generic addition algorithmof Brown and Henrici correct, we have to argue over gcd domains, so just using theaxioms of a gcd domain and nothing else.The second kind of correctness concerns the use of generic algorithms: Is a par-ticular instantiation correct with respect to the speci�cation of a generic algorithm?Obviously, if a generic algorithm is called with a particular domain, the result is correctif and only if the domain ful�lls the requirements of the speci�cation. For example,if the generic Brown/Henrici algorithm of the last section is instantiated with a poly-nomial ring, we have to check whether this ring is a gcd domain. This seems to be aversion of the type problem in typed programming languages; in fact it can be seenas a type problem (see [Sch96]). Nevertheless here we comprehend it as a matter ofcorrectness, because the questions to be answered di�er extremely from the ones inordinary type checking: They include the use of mathematical theorems.As another example consider a generic algorithm which computes the absolutevalue function over an ordered semigroup. If this algorithm is called, we have to checkwhether the integers or whether the integers modulo p are a semigroup, which in ad-dition allow the required order.We believe that both kinds of correctness are important for generic programming.Especially in the �eld of computer algebra the requirements of algorithms are in noway trivial. In addition these requirements concern not only domains, but also theinput/output parameters themselves.SacLib ([CL90]) for instance contains (non generic) algorithms for factoring poly-nomials. Algorithm IUSFPF| integral univariate square-free polynomial factorization| expects as input an integral univariate square-free polynomial, which also is pos-itive, primitive and of positive degree. The result is a list of the positive irreduciblefactors of the input polynomial. Thus thinking of a generic algorithm for this task (forinstance a lifted version of IUSFPF), we see that establishing correctness of (generic)8



algebraic algorithms is by means a nontrivial mathematical process.Consequently developing generic algebraic algorithms and their veri�cation shouldgo hand in hand.1 In particular it is of considerable advantage if correctness is provedby the same people developing the algorithm.A theorem prover for supporting veri�cation of generic algebraic algorithms musttake this view into account: The gap between the language of algebra (in which wewrite algorithms and argue about their correctness) and the language of the theoremprover (in which we formally prove correctness of our algorithms) should be as smallas possible.Unfortunately, present computer algebra systems like Axiom ([JS92]), though ableto express quite complex algebraic domains, do not include proof assistance for mathe-matical theorems. On the other hand powerful theorem provers like Hol ([Hol94])require the knowledge of a proof logic and special proof tactics, topics distinct fromthe language of algebra.We propose the Mizar system ([Rud92]) as a theorem prover suitable for support-ing veri�cation of generic algebraic algorithms. Mizar2 is a system that | originallyintended for support in writing mathematical papers | admits expressing mathemati-cal knowledge in a very natural style. It also includes a large library of Mizar articlesand a checker that veri�es articles written in the Mizar language. Therefore the useris able to naturally formulate and prove theorems that arise when verifying genericalgebraic algorithms. The main goal of this thesis is to establish Mizar as a theoremprover in the �eld of computer algebra and generic algebraic algorithms.To prove generic algebraic algorithms correct using the Mizar system, we need toknow which theorems we have to prove. Given an algorithm and its speci�cation weare far away from the actual theorems ensuring correctness of the algorithm. We needto construct a so-called veri�cation condition set : a set of theorems that imply thecorrectness of the original algorithm (see [Dil94]).The classical method that allows one to compute such veri�cation condition setsis the calculus of Hoare ([Hoa69]). Using this calculus one deduces triples of the formfPgAfQg with the meaning that program A is correct with respect to precondition Pand postcondition Q: A Hoare calculus derivation depends on mathematical theoremsin the following way: To apply some of the calculus' rules, certain theorems of theunderlying theory must hold. Consequently, these theorems serve as a veri�cation con-dition set for a given generic algorithm. Moreover, we can prove exactly these theoremsusing theMizar system, thus proving that for a given generic algebraic algorithm andits speci�cation it is possible to construct a Hoare calculus derivation.Evolving algebras ([Gur93]) are a promising tool for describing algorithms on ab-stract levels. They have been used to de�ne operational semantics of programminglanguages as well as to specify real-time systems, compilers, architectures and muchmore. Evolving algebras are abstract state machines that transform a given state into1We think of using literate programming ([Knu84]), so that generic algorithms, their documentationand their veri�cation are combined in one document (see also [Sim97]). The algorithm resp. theveri�cation part then can be extracted for further processing like compilation resp. proof checking.2See also the Mizar home page http://mizar.uw.bialystok.pl.9



another one using term-based transition rules of the formif t0 then f(t1; : : : ; tn) := tn+1 endif ;where t0, f(t1; : : : ; tn) and tn+1 are terms over a given signature. Evolving algebrasallow so-called external functions: Functions that are not a�ected by the transitionrules, but determine their values by an oracle. Consequently, one can describe genericalgebraic algorithms at the appropriate level by introducing such external functionsover the necessary algebraic domains.1Unfortunately, so far evolving algebras are a rather theoretical tool. Althoughthere exist many papers using this approach,2 we only found a few interpreters forevolving algebras. Especially environments for working with evolving algebras or forproving properties about algorithms speci�ed with evolving algebras are still underdevelopment. Consequently, we decided to implement a Hoare calculus based veri�ca-tion condition generator | not at least to get quickly theorems that allow showing thepower of the Mizar system in the �eld of generic algebraic programming.1.5 OverviewThe organization of the thesis is as follows: In chapter two we describe the Mizarsystem in more detail. We show the structure of a Mizar article and give someexample proofs of algebraic theorems (which we will need to prove correctness of thegeneric Brown/Henrici addition algorithm).In chapter three we present a Hoare-calculus-based veri�cation condition generator,which is able to construct automatically veri�cation conditions for generic Brown/Hen-rici addition and for the generic Euclidean algorithm provided that the loop invariantis given. It is implemented in Scheme.The following two chapters give examples for usingMizar to prove generic algebraicalgorithms correct. Chapter four contains the veri�cation of the generic Brown/Henriciaddition algorithm of section 1.3. For that we give Mizar proofs for the veri�cationconditions constructed by the generator of section three. In chapter �ve the genericEuclidean algorithm presented in section 1.2 is veri�ed.In chapter six we discuss how to use Mizar for algebraic typechecking and give anexample proof related to the generic Euclidean algorithm.Finally, after a short summary we suggest some further work, especially some neces-sary tools to integrate the Mizar theorem prover into a veri�cation system for genericalgebraic algorithms.
1For instance the subalgorithms QF and NF of the Euclidean algorithm from above could be modeledby external functions.2See [Boe95] or http://www.eecs.umich.edu/gasm for an overview.10



Chapter 2The Mizar SystemMizar [Rud92] is a theorem prover based on natural deduction (see [Kle67]). Startingfrom the axioms of set theory.1 and some axioms of the real numbers, up to nowabout 20,000 theorems from such di�erent �elds of mathematics as topology, algebra,category theory and many more have been proven and stored in a library.From our point of view the main contribution of the Mizar system is its specialproof script language. This language is declarative2 and associates the natural deduc-tion steps with English constructs, thus allowing to write proofs close to textbook style.A small example shall illustrate what we mean: Consider the following piece ofMizar code: let x be �;assume '(x);hproof of  (x)iActually, this is a proof of 8x:� : '(x) =)  (x) | or better of for x being � holds'(x) implies  (x) as written in the Mizar language. The structure of this proofexactly corresponds to the one mathematicians use: To prove an 8�quanti�cation8x:� : �(x); one takes a arbitrary but �xed element a of type � and proves �(a):Furthermore, to prove an implication ' =)  ; it is rather obvious to suppose thatformula ' holds and then to prove  :3Now, although natural deduction captures many mathematical idioms, it is notideal for every application. Often we are not interested in every individual naturaldeduction step. For example to prove a � 0 = 0 in an integral domain I , we do notwant to write the exact detailed sequence of deduction steps, but do the proof in onestep using the theorem 8x 2 I : x � 0 = 0. That is, we want to take obvious shortcutsusing knowledge that already has been proven elsewhere. This is exactly what theMizar proof checker does. We may write' by L1; : : : Ln;with the meaning that ' is an obvious consequence of the theorems L1; : : : Ln: Fur-thermore the Li may be labeled steps in the present deduction sequence or already1To be more precise, it starts from the axioms of a variant of ZFC set theory due to Tarski (see[Tar38]).2See [Har97] for a discussion of declarative and procedural proofs.3In fact this is an application of the so called deduction theorem ` ')  i� ' `  :11



proved theorems. Thus a new Mizar proof starts on the appropriate level (providedthat the theorems on which the proof is built already exists in the Mizar library).In addition Mizar includes a kind of mathematical type system: The user cande�ne so-called modes, that is mathematical structures and objects he wants to argueabout (for example integral domain or domRing, as it is called in Mizar, is such amode). Consequently, we can writelet I be domRing;let a be Element of the carrier of I;Because domRing is de�ned as a commutative ring which ful�lls the integral attribute,it inherits all properties of (commutative) rings | especially all preproved theoremsconcerning rings are applicable to I. So the theorem mentioned above | of coursebeing valid for arbitrary rings R | in the Mizar language looks like this:T : for R being Ringfor x being Element of R holdsx * 0:R = 0:R;and we only have to writea � 0:I = 0:I by T;to prove a � 0 = 0 in an integral domain I.But this is just the platform we need to reason about generic algebraic algorithms:We argue in abstract algebraic domains, so using only arguments that hold for ev-ery possible instantiation. Hence we prove the algorithms correct on the appropriateabstract algebraic level.So due to its natural proof script language,Mizar is suitable not only to formalizemathematics, but also for scientists writing generic (algebraic) algorithms: They canprove the correctness of their algorithms inMizar in almost the same way they wouldprove them without machine assistance and need not in addition go deep into a prooflogic or the tactics of a special theorem prover.In the following sections we describe Mizar in detail, give some example proofsand continue our example algorithm of section 1.3. We use StWeb, a simple literateprogramming tool derived from NuWeb [Bri89], which allows the extraction of theMizar code from this document.2.1 IntroductionIn this section we describe the overall structure of a Mizar article and show hownaturally mathematical knowledge can be formalized in Mizar. As examples we giveextracts from the article GCD.MIZ, in which we prove theorems that are crucial for thecorrectness of the generic addition algorithm of Brown and Henrici.Each Mizar article consists of two main parts: the environment part and the textproper:11To bring more structure into aMizar article, it is possible to have more than one begin in the text12



"gcd.miz" 15a �environhenvironment 15bibeginhtext proper 16, . . . i�File de�ned by parts 15a, 17ab, 18ab, 19abc, 20ab, 124, 134, 138, 142a, 143, 145a, 146.The environment consists of several directives indicating which items of the Mizarlibrary can be referenced in the text proper. By means of these directives the knowledgestored in the library is made available for the present article. Each key is followed bya list of Mizar article names.henvironment 15bi �vocabularyBOOLE,VECTSP_1,VECTSP_2,REAL_1,LINALG_1,SFAMILY,GCD;notationTARSKI,BOOLE,STRUCT_0,RLVECT_1,SETFAM_1,VECTSP_1,VECTSP_2;constructorsALGSTR_1;definitionsSTRUCT_0;theoremsTARSKI,BOOLE,WELLORD2,SUBSET_1,ENUMSET1,VECTSP_1,VECTSP_2;clustersSTRUCT_0,VECTSP_1,VECTSP_2;schemesSETFAM_1,GROUP_2;�De�nition referenced in part 15a.The directive vocabulary adds symbols of the named �les to the article's internallexicon. If there are new symbols (introduced in text proper) these have to be put inan extra vocabulary �le like GCD.VOC in this case.2The directives notations and constructors request the conceptual framework ofthe article. In Mizar it is possible to introduce synonyms, if another name is moreappropriate in the current context. So the constructors directive gives the conceptsto be used, and the notations directive gives the synonyms to be used for theseconcepts. The clusters directive will be explained in section 4.3.The definitions and theorems directives indicate which de�nitions and theoremsmay be cited in the article to justify reasonings. The directive schemes describes sec-ond order theorems that can be referenced in the text proper.The text proper includes the new mathematical knowledge; that is, new de�nitionsand theorems as well as proofs for these. Reservations declare the (mathematical)type of identi�ers from the point of reservation up to the end of the article or until thereservation is overwritten by a new one:proper. Then each begin stands for a new section of the article. But note that this is not necessaryand that begins can be introduced at places we would not consider as the starting point of a newsection.2See the beginning of appendix A for a description of this �le.13



htext proper 16i �reserve X,Y,Z for set;reserve I for domRing;reserve a,b,c,d for Element of the carrier of I;�De�nition de�ned by parts 16, 123.De�nition referenced in part 15a.After this reservation I stands for an integral domain and a,b and c are Elements of I.As a consequence every theorem about integral domains that already has been provedin an arbitrary Mizar article (that is referenced in the environment) can be appliedto them. Using these identi�ers new concepts of integral domains can be de�ned, forinstance divisibility:"gcd.miz" 17a �definitionlet I be domRing;let a,b be Element of the carrier of I;pred a divides b means :Def1:ex c being Element of the carrier of I st b = a*c;end;�File de�ned by parts 15a, 17ab, 18ab, 19abc, 20ab, 124, 134, 138, 142a, 143, 145a, 146.Note that divides is a new vocabulary item that as mentioned above must be intro-duced in a vocabulary �le. Of course such de�nitions can be used to de�ne furtherpredicates (or special functions):"gcd.miz" 17b �definitionlet I be domRing;let x be Element of the carrier of I;pred x is_unit means :Def2:x divides 1.I; :: 1.I is the multiplicative identity of Iend;definitionlet I be domRing;let a,b be Element of the carrier of I;pred a is_associated_to b means :Def3:a divides b & b divides a;antonym a is_not_associated_to b;end;�File de�ned by parts 15a, 17ab, 18ab, 19abc, 20ab, 124, 134, 138, 142a, 143, 145a, 146.The phrase antonym allows us to introduce a synonym for the negation of the justde�ned predicate. Also, one can de�ne functions over algebraic domains, but contraryto de�ning predicates one has to prove existence and uniqueness of this new de�nedfunction:11Note that the de�nition not only states properties about the resulting value, but also its type.
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"gcd.miz" 18a �definitionlet I be domRing;let x,y be Element of the carrier of I;assume d: y divides x & y <> 0.I;func x/y -> Element of the carrier of I means :Def5:it*y = x; :: it stands for the value of the defined function.existenceproofH1: ex z being Element of the carrier of Ist x = y*z by d,Def1;thus thesis by H1;end;uniquenessby d,IDOM1;:: theorem IDOM1 states that I fulfills the cancellation property.end;�File de�ned by parts 15a, 17ab, 18ab, 19abc, 20ab, 124, 134, 138, 142a, 143, 145a, 146.One of the main advantages of the Mizar language is that it allows us to formulatetheorems (and, as we will see later, proofs) in mathematical textbook style using thejust de�ned concepts, hence giving the possibility to work with a proof checker usingthe language of algebra:"gcd.miz" 18b �theoremL1:for I being domRingfor a,b,c being Element of the carrier of I holdsa divides a &((a divides b & b divides c) implies a divides c)�File de�ned by parts 15a, 17ab, 18ab, 19abc, 20ab, 124, 134, 138, 142a, 143, 145a, 146.L1 is a label that can be used to refer to this theorem in a justi�cation.1 So once provedfor arbitrary integral domains I, this theorem is applicable to every object whose typewidens to domRing; that is to every object ful�lling the properties of mode domRing.This includes for example mode gcdDomain and mode EuclideanRing because theyare de�ned as domRing with additional properties.In the next section we will see, how such a theorem is proved in Mizar.2.2 Proving Algebraic TheoremsIn this section we want to show in detail how theorems are proved in Mizar. To bemore precise, we want to illustrate that such proofs are closer to textbook proofs thanproofs of other mechanized systems in terms of the syntax in which they are stated.Hence using the Mizar language one can formulate proofs directly in the language ofalgebra.As a �rst example we prove theorem L1 of the last section. We start by introducingthe domains and the elements the theorem is about:"gcd.miz" 19a �prooflet I be domRing;let a,b,c be Element of the carrier of I;�File de�ned by parts 15a, 17ab, 18ab, 19abc, 20ab, 124, 134, 138, 142a, 143, 145a, 146.1Compare page 11. 15



Theorem L1 consists of two statements, the second of them being an implication; sowe suppose that its assumption holds and prove that the conclusion follows."gcd.miz" 19b �M1: now assumeH1: a divides b & b divides c;�File de�ned by parts 15a, 17ab, 18ab, 19abc, 20ab, 124, 134, 138, 142a, 143, 145a, 146.The next step is to expand the de�nition of divides into an existence statement. InMizar existence elimination is done using consider. Note that the existence of theelement introduced by consider has to be justi�ed, by the de�nition of divides inthis case."gcd.miz" 19c �consider d being Element of the carrier of I such thatH2: a*d = b by H1,Def1;consider e being Element of the carrier of I such thatH3: b*e = c by H1,Def1;�File de�ned by parts 15a, 17ab, 18ab, 19abc, 20ab, 124, 134, 138, 142a, 143, 145a, 146.Using the just introduced elements and arithmetics of integral domains,1 we get ourassertion by applying once again the de�nition of divides:"gcd.miz" 20a �H4: a*(d*e) = (a*d)*e by VECTSP_1:def 16.= b*e by H2.= c by H3;thus (a divides b & b divides c) implies a divides c by H4,Def1;end;�File de�ned by parts 15a, 17ab, 18ab, 19abc, 20ab, 124, 134, 138, 142a, 143, 145a, 146.The �rst statement of the theorem is an immediate consequence of our de�nitions andthe properties of an integral domain, and we conclude the proof with:"gcd.miz" 20b �M2: a*1.I = a by VECTSP_2:1;M3: a divides a by M2,Def1;thus thesis by M1,M3;end;�File de�ned by parts 15a, 17ab, 18ab, 19abc, 20ab, 124, 134, 138, 142a, 143, 145a, 146.We see that this proof exactly follows the argumentation used by mathematicians.Consequently scientists writing generic algebraic algorithms can develop correctnessproofs in Mizar right alongside the proofs they have in mind. As another example,we give a Mizar proof of the following well known theorem.1The theorem we use has not been proven for integral domains, but for arbitrary associative groupstructures. It is due to the Mizar type system that we can use it here.
16



hexample lemma 20ci �theoremL11:for a,b being Element of the carrier of I holdsa is_associated_to b iff (ex c st (c is_unit & a*c = b))hproof of theorem L11 20di�De�nition referenced in part 124.In theMizar proof script language an if and only if statement has to be proven by twoimplications, so the overall structure of the above theorem's proof is simply as follows.hproof of theorem L11 20di �proofK1: for a,b being Element of the carrier of I holdsa is_associated_to b implies(ex c being Element of the carrier of I st (c is_unit & a*c = b))hproof of theorem L11, if 21biK2: for a,b being Element of the carrier of I holds(ex c being Element of the carrier of I st (c is_unit & a*c = b))implies a is_associated_to bhproof of theorem L11, only if 21aithus thesis by K1,K2;end;�De�nition referenced in part 20c.The proof of the only if direction (K2) is straightforward: It only requires applicationof de�nitions and some arithmetic.hproof of theorem L11, only if 21ai �prooflet a,b be Element of the carrier of I;assume H1: (ex c st (c is_unit & a*c = b));consider c being Element of the carrier of I such thatH2: c is_unit & a*c = b by H1;H3: c divides 1.I by H2,Def2;consider d being Element of the carrier of I such thatH5: c*d = 1.I by H3,Def1;H6: a = a*1.I by VECTSP_2:1.= a*(c*d) by H5.= (a*c)*d by VECTSP_1:def 16.= b*d by H2;H7: b divides a by H6,Def1;H8: a divides b by H2,Def1;thus thesis by H7,H8,Def3;end;�De�nition referenced in part 20d.The proof of the if direction (K1) starts as usual with introducing the required ele-ments and the application of the corresponding de�nitions, in order to show by usingproperties of the integral domain that the assertion holds:17



hproof of theorem L11, if 21bi �prooflet a,b be Element of the carrier of I;assume H0: a is_associated_to b;H2: a divides b & b divides a by H0,Def3;consider c being Element of the carrier of I such thatH5: b = a*c by H2,Def1;consider d being Element of the carrier of I such thatH6: a = b*d by H2,Def1;hcases of theorem L11, if 22ai�De�nition referenced in part 20d.But then | as indicated by the name of the macro | we have to distinguish whethera = 0.I or whether a 6= 0.I. To do so the Mizar language has a special feature: thecases phrase.hcases of theorem L11, if 22ai �M: now per cases;case A: a <> 0.I;hproof of theorem L11, if, case A 22bicase B: a = 0.I;hproof of theorem L11, if, case B 23aiend; ::casesthus thesis by M;end;�De�nition referenced in part 21b.Here it is obvious for the Mizar proof checker that A and B together cover all possiblecases. But it may happen that this must be proved before and referenced at levelM. Now the rest of the proof is easy: In both cases it only requires some arithmeticfollowed by an application of the de�nition of unit.Here is the proof of the case a 6= 0.I: Combining the introduced elements c and dgives c * d = 1.I by cancelling a, hence that c is a unit.hproof of theorem L11, if, case A 22bi �H7: a = b*d by H6.= (a*c)*d by H5.= a*(c*d) by VECTSP_1:def 16;H8: c*d = 1.I by H7,L10,A;H9: c divides 1.I by H8,Def1;H10: c is_unit by H9,Def2;thus thesis by H10,H5;�De�nition referenced in part 22a.
18



What follows now is the proof of the other case a = 0.I: We show that b = a * 1.I,thus getting the thesis because 1.I is a unit.hproof of theorem L11, if, case B 23ai �H1: b = a*c by H5.= 0.I by B,VECTSP_2:26.= 0.I*1.I by VECTSP_2:1.= a*1.I by B;H2: 1.I is_unitproofM1: 1.I*1.I = 1.I by VECTSP_2:1;M2: 1.I divides 1.I by M1,Def1;thus thesis by M2,Def2;end;thus thesis by H2,H1;�De�nition referenced in part 22a.This completes the proof of theorem L11. Note that the proof just given | like the onefor theorem L1 | although easy to read for human beings, is accepted by the Mizarproof checker.2.3 A Theorem of Brown and HenriciIn this section we give aMizar proof for a theorem of Brown and Henrici, which statesa nontrivial property of the greatest common divisor in arbitrary gcd domains I . InMizar it is formulated like this:hBrown/Henrici theorem 23bi �theoremfor Amp being AmpleSet of Ifor r1,r2,s1,s2 being Element of the carrier of I holds(gcd(r1,r2,Amp) = 1.I & gcd(s1,s2,Amp) = 1.I &r2 <> 0.I & s2 <> 0.I)impliesgcd(r1*(s2/gcd(r2,s2,Amp))+s1*(r2/gcd(r2,s2,Amp)),r2*(s2/gcd(r2,s2,Amp)),Amp) =gcd(r1*(s2/gcd(r2,s2,Amp))+s1*(r2/gcd(r2,s2,Amp)),gcd(r2,s2,Amp),Amp)hproof of Brown/Henrici theorem 27b, . . . i�De�nition referenced in part 146.We present the proof for two reasons. First we want to give an extended Mizar proofof a nontrivial algebraic theorem. On the other hand this theorem is the heart of thecorrectness of the above presented generic Brown/Henrici addition algorithm.Before we can give the entire proof, we have to do some preparations.1 We startwith the Mizar de�nition of the greatest common divisor function.2 The Mizarde�nition of gcd domains is included in section 4.3.1The Mizar de�nition of ample sets and gcd domains can be found in section 4.2 and 4.3 respec-tively. A couple of theorems about divisibility in integral domains and greatest common divisors ingcd domains are stated and proved in appendix A.1 and A.3 respectively.2The corresponding correctness | that is existence and uniqueness | proof can be found at thebeginning of appendix A.3. 19



hDefinition of gcd function 24i �definitionlet I be gcdDomain;let Amp be AmpleSet of I;let x,y be Element of the carrier of I;func gcd(x,y,Amp) -> Element of the carrier of I means :Def4:it 2 Amp &it divides x &it divides y &(for z being Element of the carrier of Ist (z divides x & z divides y) holds (z divides it));hcorrectness proof of gcd function 145bi�De�nition referenced in part 146.Note that | contrary to the greatest common divisor function in SuchThat, whereit was a global parameter | this de�nition of the greatest common divisor functioncontains the ample set as one of its arguments. Considered as a function over a gcddomain the ample set obviously has to be an explicit parameter: Without choosing a�xed ample set, the value of the greatest common divisor is not uniquely determined;for example the greatest common divisor of 4 and 6 over the integers can be 2 or �2. InMizar however, the implicit use of function parameters is restricted only to operationsbeing part of the underlying structure like gcd domain in this case. Nevertheless, ina programming language like SuchThat one does not want to enumerate all theseparameters explicitly, but rather to introduce them in terms of global declarations.This may be compared with the algorithm's dependence on the size of memory:The result of the algorithm strongly depends on this size | giving an overow erroror the desired result. However, no one would agree to consider the size of memory asan explicit argument of an algorithm.Consequently we are forced to make this kind of global SuchThat declarationsexplicit when translating SuchThat algorithms into the Mizar language.1After de�ning gcd domains and their corresponding greatest common divisor functionthe next step is to establish �ve properties of this function originally stated in [Col74].Using these properties we will be able to give the proof of the Brown/Henrici theorem.Note that the following properties hold for arbitrary ample sets in arbitrary integraldomains I.hgcd theorems 25i �theoremT0:for Amp being AmpleSet of Ifor a,b,c being Element of the carrier of I holdsgcd(gcd(a,b,Amp),c,Amp) = gcd(a,gcd(b,c,Amp),Amp)hproof of theorem T0 151ai1It is possible in Mizar to de�ne an algebraic structure gcdDomain-with-AmpleSet, extending thestructure of gcd domains by a corresponding ample set. Over this structure the greatest commondivisor function again is the usual two argumented function. But this does not go along with our viewof algebraic structures, in which a gcd domain is an integral domain ful�lling the greatest commondivisor property and nothing more. An ample set | especially one for a speci�c relation like association| is a matter of computing in such domains, and therefore should not be contained in the originalstructure de�nition of a gcd domain. 20



theoremT1:for Amp being AmpleSet of Ifor a,b,c being Element of the carrier of I holdsgcd(a*c,b*c,Amp) is_associated_to c*gcd(a,b,Amp)hproof of theorem T1 151bitheoremT2:for Amp being AmpleSet of Ifor a,b,c being Element of the carrier of I holdsgcd(a,b,Amp) = 1.I implies gcd(a,b*c,Amp) = gcd(a,c,Amp)hproof of theorem T2 153itheoremT3:for Amp being AmpleSet of Ifor a,b,c being Element of the carrier of I holds(c = gcd(a,b,Amp) & c <> 0.I) implies gcd(a/c,b/c,Amp) = 1.Ihproof of theorem T3 26a, . . . itheoremT4:for Amp being AmpleSet of Ifor a,b,c being Element of the carrier of I holdsgcd(a+b*c,c,Amp) = gcd(a,c,Amp)hproof of theorem T4 154i�De�nition referenced in part 146.Here we only give the proof of theorem T3 as an example. We note that the other fourtheorems are proved in a similar way; the corresponding proofs can be found at theend of appendix A.3. The proof starts as usual with the introduction of objects thetheorem is about followed by stating the given assumptions.hproof of theorem T3 26ai �prooflet Amp be AmpleSet of I;let a,b,c be Element of the carrier of I;assume H0: c = gcd(a,b,Amp) & c <> 0.I;�De�nition de�ned by parts 26abc, 27a.De�nition referenced in part 25.Our �rst goal is to show that 1.I and gcd(a/c,b/c,Amp) are associates of each other.Therefore we introduce elements a1 and b1 representing the quotients a/c and b/crespectively, concluding that c equals gcd(a1*c,b1*c,Amp).hproof of theorem T3 26bi �consider a1 being Element of the carrier of I such that H1: a1 = a/c;consider b1 being Element of the carrier of I such that H2: b1 = b/c;M1: c divides a & c divides b by Def4,H0;H3: a1*c = a & b1*c = b by H1,H2,Def5,M1,H0;H5: c = gcd(a,b,Amp) by H0.= gcd(a1*c,b1*c,Amp) by H3;�De�nition de�ned by parts 26abc, 27a.De�nition referenced in part 25. 21



Now we apply theorem T1, which allows us to factor c out of gcd(a1*c,b1*c,Amp).After that, cancelling c gives the desired result.hproof of theorem T3 26ci �H6: gcd(a1*c,b1*c,Amp) is_associated_to c*gcd(a1,b1,Amp) by T1;H7: c is_associated_to c*gcd(a1,b1,Amp) by H5,H6;M3: c*1.I is_associated_to c*gcd(a1,b1,Amp) by H7,VECTSP_2:1;H8: 1.I is_associated_to gcd(a1,b1,Amp) by M3,L15,H0;�De�nition de�ned by parts 26abc, 27a.De�nition referenced in part 25.The last step consists of showing that 1.I and gcd(a1,b1,Amp) are not only associatesof each other, but in fact are equal. This is done using the fact that two elements ofan ample set being associates of each other must be identical.1hproof of theorem T3 27ai �H9: gcd(a1,b1,Amp) is_associated_to 1.I by H8,L2;H10: gcd(a1,b1,Amp) is Element of Amp by Def4;H11: 1.I is Element of Amp by Def8;H12: gcd(a1,b1,Amp) = 1.I by H9,H10,H11,AMP;thus thesis by H1,H2,H12;end;�De�nition de�ned by parts 26abc, 27a.De�nition referenced in part 25.Based on the above �ve theorems about the greatest common divisor function, onesucceeds in giving a Mizar proof for the theorem of Brown and Henrici as follows.We start by introducing synonyms for gcd(r2,s2,Amp), r2/gcd(r2,s2,Amp) ands2/gcd(r2,s2,Amp):hproof of Brown/Henrici theorem 27bi �prooflet Amp be AmpleSet of I;let r1,r2,s1,s2 be Element of the carrier of I;assume H1: gcd(r1,r2,Amp) = 1.I & gcd(s1,s2,Amp) = 1.I &r2 <> 0.I & s2 <> 0.I;consider d being Element of the carrier of I such thatH2: d = gcd(r2,s2,Amp);H2a: d divides s2 & d divides r2 by H2,Def4;K: d <> 0.I by H2,H1,L12;consider r being Element of the carrier of I such that H4: r = r2/d;consider s being Element of the carrier of I such that H5: s = s2/d;�De�nition de�ned by parts 27b, 28abc, 29a.De�nition referenced in part 23b.The proof of the Brown/Henrici theorem takes advantage of the fact thatr2(s2=gcd(r2; s2; Amp)= gcd(r2; s2; Amp)(r2=gcd(r2; s2; Amp))(s2=gcd(r2; s2; Amp)):1See section 4.2 for a Mizar de�nition of ample sets and their corresponding properties.22



Consequently two applications of theorem T2 will eliminate s2/gcd(r2,s2,Amp) andr2/gcd(r2,s2,Amp) leaving the desired gcd(r2,s2,Amp) resp. d as the second argu-ment of the gcd-function.So, all we have to show is that the requirements for theorem T2 hold, namely thatgcd(r1*s+s1*r,s,Amp) = 1.I and gcd(r1*s+s1*r,r,Amp) = 1.I.To prove the �rst requirement, we use theorems T3 and T2 to conclude thathproof of Brown/Henrici theorem 28ai �H9: gcd(r,s,Amp) = 1.I by H4,H5,H2,K,T3;H7: gcd(s,s1,Amp) = 1.Ihproof of H7 30aiH8: gcd(s,s1*r,Amp) = gcd(s,r,Amp) by H7,T2;�De�nition de�ned by parts 27b, 28abc, 29a.De�nition referenced in part 23b.These two equations (H8 and H9) enable us to show that the above mentioned require-ment holds, hence to execute the �rst elimination step. In the Mizar language thislooks as follows.hproof of Brown/Henrici theorem 28bi �:: Requirement for theorem T2H10: gcd(r1*s+s1*r,s,Amp)= gcd(s1*r,s,Amp) by T4.= gcd(s,s1*r,Amp) by L13.= gcd(s,r,Amp) by H8.= gcd(r,s,Amp) by L13.= 1.I by H9;H11: r2*s = s*(d*r)hproof of H11 29bi:: Elimination of s = s2/gcd(r2,s2,Amp)H12: gcd(r1*s+s1*r,r2*s,Amp)= gcd(r1*s+s1*r,s*(d*r),Amp) by H11.= gcd(r1*s+s1*r,d*r,Amp) by H10,T2;�De�nition de�ned by parts 27b, 28abc, 29a.De�nition referenced in part 23b.To prove the second requirement we proceed the same way: First we use theorems T3and T2 to show the necessary preliminaries (H15 and H16):hproof of Brown/Henrici theorem 28ci �H14: gcd(r,r1,Amp) = 1.Ihproof of H14 30biH15: gcd(r,r1*s,Amp) = gcd(r,s,Amp) by H14,T2;H16: gcd(r,s,Amp) = 1.I by H4,H5,H2,K,T3;�De�nition de�ned by parts 27b, 28abc, 29a.De�nition referenced in part 23b.Just like before we can prove that the necessary requirement for theorem T2 holds. So,we also eliminate r2/gcd(r2,s2,Amp) and complete the proof with23



hproof of Brown/Henrici theorem 29ai �:: Requirement for theorem T2H17: gcd(r1*s+s1*r,r,Amp)= gcd(r1*s,r,Amp) by T4.= gcd(r,r1*s,Amp) by L13.= gcd(r,s,Amp) by H15.= 1.I by H16;:: Elimination of r = r2/gcd(r2,s2,Amp)H18: gcd(r1*s+s1*r,d*r,Amp)= gcd(r1*s+s1*r,d,Amp) by H17,T2;H19: gcd(r1*s+s1*r,r2*s,Amp)= gcd(r1*s+s1*r,d,Amp) :: Remember that d = gcd(r2,s2,Amp).by H12,H18;thus thesis by H19,H4,H5,H2;end;�De�nition de�ned by parts 27b, 28abc, 29a.De�nition referenced in part 23b.Note again that the proof just presented is not only a thorough argumentation to showthat the theorem of Brown and Henrici holds, but also an accepted proof script for theMizar proof checker.We conclude this section by giving the subproofs we left out above, when proving theBrown/Henrici theorem. They are easy done by equational reasoning and using basicproperties of the greatest common divisor function.hproof of H11 29bi �proofH0: d divides d by L1;H0a: d divides d*r2 by L6;H1: r2*s = ((1.I)*r2)*s by VECTSP_2:1.= ((d/d)*r2)*s by K,L7.= ((d*r2)/d)*s by K,H0,H0a,L8.= (d*(r2/d))*s by K,H2a,H0a,L8.= (d*r)*s by H4.= s*(d*r);thus thesis by H1;end;�De�nition referenced in part 28b.hproof of H7 30ai �proofM1: gcd(s,s1,Amp) divides s1 by Def4;M2: gcd(s,s1,Amp) divides s by Def4;consider e being Element of the carrier of I such thatM3: gcd(s,s1,Amp)*e = s by M2,Def1;M4: gcd(s,s1,Amp)*(e*d)= (gcd(s,s1,Amp)*e)*d by VECTSP_1:def 16.= s*d by M3.= s2 by K,H2a,H5,Def5;M5: gcd(s,s1,Amp) divides s2 by M4,Def1;M6: gcd(s,s1,Amp) divides gcd(s1,s2,Amp) by M1,M5,Def4;M7: gcd(s,s1,Amp) divides 1.I by M6,H1;M8: (1.I)*gcd(s,s1,Amp) = gcd(s,s1,Amp) by VECTSP_2:1;M9: 1.I divides gcd(s,s1,Amp) by M8,Def1;24



M10: gcd(s,s1,Amp) is_associated_to 1.I by M7,M9,Def3;M11: gcd(s,s1,Amp) is Element of Amp by Def4;M12: 1.I is Element of Amp by Def8;thus thesis by M10,M11,M12,AMP;end;�De�nition referenced in part 28a.hproof of H14 30bi �proofM1: gcd(r,r1,Amp) divides r1 by Def4;M2: gcd(r,r1,Amp) divides r by Def4;consider e being Element of the carrier of I such thatM3: gcd(r,r1,Amp)*e = r by M2,Def1;M4: gcd(r,r1,Amp)*(e*d)= (gcd(r,r1,Amp)*e)*d by VECTSP_1:def 16.= r*d by M3.= r2 by K,H2a,H4,Def5;M5: gcd(r,r1,Amp) divides r2 by M4,Def1;M6: gcd(r,r1,Amp) divides gcd(r1,r2,Amp) by M1,M5,Def4;M7: gcd(r,r1,Amp) divides 1.I by M6,H1;M8: (1.I)*gcd(r,r1,Amp) = gcd(r,r1,Amp) by VECTSP_2:1;M9: 1.I divides gcd(r,r1,Amp) by M8,Def1;M10: gcd(r,r1,Amp) is_associated_to 1.I by M7,M9,Def3;M11: gcd(r,r1,Amp) is Element of Amp by Def4;M12: 1.I is Element of Amp by Def8;thus thesis by M10,M11,M12,AMP;end;�De�nition referenced in part 28c.
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Chapter 3A Veri�cation ConditionGeneratorTo use the Mizar system as a tool for the veri�cation of generic algebraic algorithmsone has to construct a set of theorems that ensure the correctness of the algorithm |a set of veri�cation conditions. These theorems then can be proved using Mizar toverify the correctness of the given algorithm.In this chapter we describe a veri�cation condition generator; that is, a programwhich almost automatically constructs such theorems out of a given algorithm and itsspeci�cation.The generator is based on the Hoare calculus.1 We start with an algorithm and itsinput/output speci�cation considering this as a Hoare triple to be proved.Showing that a triple holds requires a derivation starting with the axioms of thecalculus and the given triple as its �nal formula. But instead of trying to �nd such aderivation, it is much easier to start with the entire triple: One uses the rules of thecalculus in a backward manner to reduce the assertion to simpler Hoare triples, untilaxioms are reached. Our generator uses such so-called backward rules.Note that we do not process the SuchThat algorithm itself but its representationin an abstract syntax or, to be more precise, a parse tree of the original SuchThatalgorithm represented in Scheme. There are two reasons for this:The SuchThat compiler uses Scheme as an intermediate language into whicheach SuchThat algorithm is translated. So starting with this representation frees usfrom parsing, performing syntax checks and so on. All these things are done by theSuchThat compiler. Nevertheless we included some of these checks in order to usethe generator in a stand-alone mode, too.On the other hand using abstract syntax makes the generator programming lan-guage independent in the sense that the generator is applicable to every programminglanguage that can be translated into this representation. And it is a minor task toconstruct a Scheme representation out of a parse tree independently of the originalprogramming language.1For an introduction to the Hoare calculus see [Dil94] or [Hoa69].26



The generator is divides its task into three parts:� annotating the algorithm� constructing abstract theorems� constructing speci�c theoremsThe �rst step consists of annotating the given algorithm: we introduce abstractintermediate predicates Pi in sequences and invariants Pj for loops. This allows toapply Hoare's rules in a backward manner.Subsequently theorems are constructed: First abstract theorems are generatedbased on the Hoare calculus. By abstract theorems we mean theorems with variablesPi for the predicates. As a consequence up to this point we can ensure the correctnessof the theorems; that is, these theorems imply the correctness of the given algorithmdue to Hoare calculus.The last thing to do is to �nd speci�c counterparts for the abstract predicateswith the input/output speci�cation as a starting point. We have implemented someheuristics to get simple theorems, and there are two points worth mentioning:� Not every abstract predicate will be specialized (e.g. loop invariants lie in theresponsibility of the user). Before starting this part of the generator the user hasthe possibility to set predicates by hand. The generator then tries to �ll in theremaining predicates with respect to the user given ones.� The results of the generator should be considered as an aid to the user. Contraryto the abstract theorems there is not always a guarantee that the specializedtheorems hold, because the chosen speci�c predicate may be not suitable (but ifthe specialized theorems hold they ensure the correctness of the given algorithm).In the following sections we describe the structure of the veri�cation condition gene-rator. Note that we use StWeb so that the Scheme code can be extracted from thisdocument.3.1 The Kernel of the GeneratorThe construction principle behind the generator is that of viewing the given algorithmas an object on which di�erent activities are performed. These activities may generatetheorems for the algorithm or may do something completely di�erent. So to annotatea given algorithm there is nothing to be done but calling the corresponding activities."kernel.scm" 35a �(define (annotate prog)(do-activities prog 'annotations))�File de�ned by parts 35ab, 39b, 40ab.We proceed the same way, whether we want to construct abstract theorems or getconjectures for the abstract theorems:
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"kernel.scm" 35b �(define (generate-theorems annotated-prog)(do-activities annotated-prog 'generations))(define (guess annotated-prog)(do-activities annotated-prog 'guesses))�File de�ned by parts 35ab, 39b, 40ab.The activities that have to be performed depend on the kind of the given programstatement (for example whether it is a while-construct or a simple assignment). We usethe alist package of the SLib1 ([ELJ94]) to store this information, namely informationabout the format of the construct, of how to annotate it, of how to generate abstracttheorems and of how to �nd conjectures for abstract theorems."initialize-tables.scm" 35c �(require 'alist)(define formats '())(define annotations '())(define generations '())(define guesses '())�File de�ned by parts 35c, 184ab, 185ab, 186b.How are activities for annotating algorithms and generating theorems represented?An activity is a Scheme list consisting of an activity name and an optional number offurther arguments describing the activity in more detail.As an example we consider the while-construct (while condition action): Toannotate this, we have to introduce an intermediate predicate after condition (theloop invariant) and to recursively annotate action.2 This is written (in Scheme) asfollows.hwhile annotations 36ai �'((rec 'action)(insert-pred-after 'condition))�De�nition referenced in part 36c.Constructing theorems for the while-construct is based on the while rule of the Hoarecalculus: finv ^ bgS finvg;finvgwhile bdo S; finv ^ :bgWhen computing veri�cation conditions in a backward manner, in general we will nothave inv nor b itself. In fact we will have nothing more but arbitrary predicates Pand Q. As a consequence, we will have to prove fPg while b S fQg; using in additionthe so-called implication rule:P ! P 0; fP 0g S fQ0g; Q0 ! QfPg S fQg1We used Gambit Scheme Version 2.5.1 and Slib version 2a2.2Compare chapter 3.3. 28



These two rules together show that to verify an arbitrary while-statement, it suÆcesto show P ! inv; finv ^ bgS finvg and (inv ^ :b) ! Q:1 In our representation weget the following list of activities:hwhile generations 36bi �'((theorem-is 'pre 'inv)(theorem-is '(and inv (not condition)) 'post)(rec '((and inv condition) action inv)))�De�nition referenced in part 36c.New activities can be added with insert-newconstruct. Besides the activities onehas to specify a key and the format of the construct.hinsert rules 36ci �(insert-newconstruct 'while'(while condition action)hwhile annotations 36aihwhile generations 36bi)�De�nition de�ned by parts 36c, 38b, 39a, 41a.De�nition referenced in part 185a.Note that to expand the generator with a new programming language construct (usinginsert-newconstruct) one only has to add the rules for processing it.We shall take the procedure call as a second example, also to describe the rule weimplemented to prove such a call correct. For that we need the notion of substitution:To substitute a variable x by a term t in a formula (or another term) s; one replaceseach free occurrence of x in s by t: We denote the resulting formula (term) by sx[t]:We require a procedure to have no side e�ects; that is, the only variables changed bya procedure call are the ones explicitly given in the output speci�cation. We furtherassume thatfinput�specification(f)g f(*x ;*z ) foutput�specification(f)gwhere *x stands for the formal input parameters and *z for the formal output param-eters of procedure f , is a valid Hoare formula.2 To prove a speci�c procedure callcorrect, we adopted the following theorem for procedure calls from [Gri81]:Let I be a predicate and let procedure f be correct with respect to its speci�cationas mentioned above. Assume that none of the free identi�ers in I appear in the outputvariables *z of f . Then holdsfinput�specification(f)*x [*a ]^ Ig f(*a ;*c ) foutput�specification(f)*x ;*z [*a ;*c ]^ Ig: 2The predicate I captures the notion of invariance: predicates that do not refer tothe output variables of a subalgorithm remain unchanged throughout the procedurecall. Requiring I to be invariant for procedure f of course restricts the procedure call.On the other hand this rule is easier to handle and allows for better constructing of1Some authors refer to this as the derived while rule.2Thus, we suppose subalgorithms to be correct with respect to their speci�cation.29



speci�c predicates. Furthermore the restriction will be trivially ful�lled if the outputvariables of the procedure call are fresh, which is the case in most procedure calls inalgebraic algorithms (see our examples).To prove that fPg f(*a ;*c ) fQg resp. fPg c := f(*a ) fQg holds for arbitrarypredicates P and Q;1 we proceed as we did with the while rule: Again we integrate theimplication rule into the activities, getting the following three conditions to prove.� P �! input�specification(f)*x [*a ];� (P ^ output�specification(f)*x ;*z [*a ;*c ]) �! Q resp.(P ^ output�specification(f)*x ;z[*a ; c]) �! Q and� None of the free identi�ers of P equals z resp. appear in *z .The straightforward translation of these conditions into our Scheme representationgives the following activities for procedure call.hprocedure call generations 38ai �'((is-invariant-for 'pre '(outputparam proc))(theorem-is 'pre'(subst (inputspec 'proc)(formalparam 'proc)(actualparam 'proc)))(theorem-is '(and pre(subst (outputspec 'proc)(formalparam 'proc)(actualparam 'proc)))'post) ))�De�nition referenced in part 38b.Because there is nothing to do to annotate a procedure call, inserting the procedurecall activities looks as follows. (The star in the format de�nition indicates that anynumber of arguments will be accepted.)hinsert rules 38bi �(insert-newconstruct 'call'(call proc * *)'nonehprocedure call generations 38ai�De�nition de�ned by parts 36c, 38b, 39a, 41a.De�nition referenced in part 185a.Yet to be described are activities for the assignment, if, sequences, and return con-structs. Note that the activities for generating theorems directly mirror the corre-sponding Hoare rules.21Note that z := f(*x ) is just another syntax for f(*x ; z).2The return rule states that the predicate holding before the return is executed implies the post-condition of the original algorithm. 30



hinsert rules 39ai �(insert-newconstruct 'set!'(set! var term)'none'((theorem-is 'pre '(subst post var term))))(insert-newconstruct 'begin'(begin *)'((rec 'all) (insert-pred-before 'all))'((rec 'all)))(insert-newconstruct 'if'((if condition action1)(if condition action1 action2))'((rec 'action1) (rec 'action2))'((rec '((and pre condition) action1 post))(rec '((and pre (not condition)) action2 post))))(insert-newconstruct 'return'((return) (return term))'none'((theorem-is 'pre 'outputspec)))�De�nition de�ned by parts 36c, 38b, 39a, 41a.De�nition referenced in part 185a.The point is that we consider an activity like (insert-pred-after symbol ) to be aScheme procedure with two arguments called prog and theme. The argument themestates in which of the three stages the generating process actually is: It may have thevalues 'annotations, 'generations and 'guesses, which correspond to the di�erentalist's of activities. As a consequence do-activities only has to look for the kindof the given algorithm, take the activities according to this kind and theme and applythese activities to its other argument prog:"kernel.scm" 39b �(define (do-activities prog theme)(if (is-sequence-without-begin? (car prog))(do-activities (cons 'begin prog) theme)hget key of prog 183aihcheck format of prog 183bi(let ((activity-list (get (eval theme) key))(ergprog prog))(do ((activities activity-list (cdr activities))(ergprog prog (if (actual? (car activities) prog)(apply (eval (car activities))(list ergprog theme))ergprog)))((or (empty? activities)(equal? activities 'none)) ergprog) ))))))�File de�ned by parts 35ab, 39b, 40ab.
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The reader may have observed that the activities for recursively annotating algorithmsand constructing theorems are both named simply rec. We wanted to avoid di�erentnames for activities that recursively annotate algorithms resp. construct theorems, sowe introduce rec as a procedure that calls the \real" procedure according to the giventheme:"kernel.scm" 40a �(define (rec symbol)(lambda (prog theme)(cond ((equal? theme 'annotations)((ann-rec symbol) prog))((equal? theme 'generations)((gen-rec symbol) prog))((equal? theme 'guesses)((guess-rec symbol) prog))(else(error 'procedure 'rec: theme 'is 'unknown)))))�File de�ned by parts 35ab, 39b, 40ab.We conclude this section with an easy but powerful activity, namely the simulateactivity. This activity allows us to reduce the treatment of new constructs to onesalready de�ned: simulate is equipped with an abstract algorithm scheme consistingonly of already known parts. If called with an algorithm simulate constructs a newalgorithm according to its abstract scheme and annotates this new one. Thus thenew unknown construct is eliminated and for the equivalent part theorems can beconstructed using Hoare calculus rules.1"kernel.scm" 40b �(define (simulate scheme)(lambda (prog . theme)(let ((actual-prog (construct prog scheme)))(annotate actual-prog))))�File de�ned by parts 35ab, 39b, 40ab.For example implementing the repeat-construct using simulate looks as follows. Notethat we only need activities for annotating repeat. Generating theorems for thisconstruct is done using the activities for the substituted while-statement.hinsert rules 41ai �(insert-newconstruct 'repeat'(repeat action until condition)'((simulate '(action (while (not condition) action))) ))�De�nition de�ned by parts 36c, 38b, 39a, 41a.De�nition referenced in part 185a.1Note that simulate allows one to introduce new programming language constructs without takingcare of rules to prove their correctness. One only needs to specify an equivalent already processablealgorithm.
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3.2 Example: Generic Euclidean AlgorithmBefore we go into the details of the veri�cation condition generator, we want to illus-trate our approach with an example. We consider the generic Euclidean algorithm ofsection 1.2. Starting with the input �le, we describe all three stages of the generatorconcluding with a veri�cation condition set for the algorithm.The input �le consists of two parts: the algorithm prototype and the algorithmbody. The algorithm prototype is a result of the �rst part of the SuchThat typechecker which handles SuchThat declarations: a prototype is the internal counterpartof the algorithm header."eucl-procedure.txt" 41b �(prototype(GCD a b out c)(internal (\in u EuclideanRing) (\in v EuclideanRing)(\in s EuclideanRing) (\in t EuclideanRing))(input (\in a EuclideanRing) (\in b EuclideanRing))(output (\in c EuclideanRing)(with (\in c Amp) (= c (gcd a b))) ))�File de�ned by parts 41bc.The second part of the input �le is a straightforward translation of the algorithm bodyinto the internal Scheme representation of the SuchThat compiler:"eucl-procedure.txt" 41c �(set! u a)(set! v b)(if (= u 0) ((set! c (NF v)) (return)))(while (not (= v 0))((call QR u v s t)(set! u v)(set! v t)))(set! c (NF u))�File de�ned by parts 41bc.So the input �le contains all information about what to prove, namely the pre- and thepostcondition and the algorithm itself. But in addition we need the input/output speci-�cations of the subalgorithms to handle procedure calls. We assume their prototypesto be (besides others) in the �le prototypes.txt."prototypes.txt" 42a �(prototype(QR x y out q r)(input (\in x EuclideanRing) (\in y EuclideanRing)(with (not (= y 0))))(output (\in q EuclideanRing) (\in r EuclideanRing)(with (= x (+ (* q y) r))(or (= r 0) (< (delta r) (delta y))))))33



(prototype(NF x out y)(input (\in x IntegralDomain))(output (\in y IntegralDomain)(with (\in y Amp) (x is_associated_to y))))�File de�ned by parts 42a, 163.The �rst stage of the generator annotates the given algorithm. We use natural numbersi to denote abstract predicates Pi: So, annotating our example results in"eucl-annotations.txt" 42b �0(set! u a) 1(set! v b) 2(if (= u 0)(begin (set! c (NF v)) 3(return))) 4(while (not (= v 0)) 7(begin (call QR u v s t) 6(set! u v) 5(set! v t))) 8(set! c (NF u))9�Based on these abstract predicates the user can enter loop invariants or any otherpredicate desired (except for pre- and postcondition (0 and 9) being automatically setto the input and the output speci�cation). Here we only set the loop invariant (7):(put-pred 7 '(= (gcd u v) (gcd a b))).In the second stage Hoare's rules are applied in a backward manner to decompose theoriginal Hoare triple finput�specificationg algorithm foutput�specificationg untilonly programming code free theorems remain. Thereby predicates are still used in anabstract manner only. We get"eucl-pretheorems.txt" 43 �(implies 0 (subst 1 u a))(implies 1 (subst 2 v b))(implies (and 2 (= u 0)) (subst true (x y) (v c)))(implies (and (and 2 (= u 0))(subst (and (\in y Amp) (x is_associated_to y))(x y) (v c)))3)(implies 3 (and (\in c Amp) (= c (gcd a b))))(implies 4 7) 34



(implies (and 7 (= v 0)) 8)(implies (and 7 (not (= v 0))) (subst (not (= y 0)) (x y q r) (u v s t)))(implies (and (and 7 (not (= v 0)))(subst (and (= x (+ (* q y) r))(or (= r 0) (< (delta r) (delta y))))(x y q r) (u v s t)))6)(implies 6 (subst 5 u v))(implies 5 (subst 7 v t))(implies 8 (subst true (x y) (u c)))(implies (and 8 (subst (and (\in y Amp) (x is_associated_to y))(x y) (u c)))9)�This set of theorems is a set of veri�cation conditions in the sense of [Dil94]: If we �ndspeci�c counterparts of the abstract predicates that allow proving these theorems, theoriginal algorithm is correct with respect to its speci�cation.Based on the input/output speci�cation (and the given loop invariant) the laststage of the generator constructs the following nontrivial theorems."eucl-theorems.txt" 44 �(implies (and (= u a) (= v b) (= u 0) (\in c Amp) (c is_associated_to b))(and (\in c Amp) (= c (gcd a b))))(implies (and (= u a) (= v b) (not (= u 0)))(= (gcd u v) (gcd a b)))(implies (and (= (gcd u v) (gcd a b)) (not (= v 0))(= u (+ (* s v) t)) (or (= t 0) (< (delta t) (delta v))))(= (gcd v t) (gcd a b)))(implies (and (= (gcd u v) (gcd a b)) (= v 0)(\in c Amp) (c is_associated_to u))(and (\in c Amp) (= c (gcd a b))))�The �rst theorem corresponds to step (2), the last one to step (4) of the algorithm.The third theorem states that the formula attached to the loop | predicate 7 fromabove | indeed is a loop invariant. The second theorem is trivial for the Mizar proofchecker though our trivial-theorem checker has not detected this (and therefore is quitefar from being accomplished).We will prove the �rst and the two last theorems in chapter �ve. Thus we will showthat the theorems necessary to construct a Hoare calculus derivation for the Euclideanalgorithm hold, hence that the generic Euclidean algorithm of section 1.2 is correctwith respect to its speci�cation for arbitrary Euclidean domains.35



3.3 Annotating AlgorithmsAn annotated algorithm is an algorithm with formulas | known as annotations | em-bedded within it. A properly annotated algorithm is an algorithm in which annotationshave been inserted at the following points:(i) before each command i for 0 � i < n in a sequence of commands 1; 2; : : : nand(ii) after the condition in each loop.In (i) the sequence 1; 2; : : : n must not be a subsequence of a longer sequence ofcommands. A properly annotated Hoare triple is a formula fPg  fQg where  is aproperly annotated algorithm.Given a properly annotated Hoare triple, it is easy to construct theorems accordingto the Hoare calculus because each command (with its pre- and postcondition) exactly�ts to a backward Hoare rule. Furthermore introducing the intermediate predicatesenables the user to take action into the verifying process: He can set as many predi-cates as he wants.In the following we describe the activities necessary to carry out annotating algo-rithms: insert-pred-after resp. insert-pred-before and ann-rec.Procedure insert-pred-after has to handle two cases: Inserting a predicate aftereach command (in a sequence) and after a special symbol only (for instance after thecondition in a while-construct)."annotations.scm" 45a �(define (insert-pred-after symbol)(lambda (prog . theme)(if (equal? symbol 'all)hinsert-pred-after all 45bihinsert-pred-after special 46ai) ))�File de�ned by parts 45a, 46b, 48b, 49a, 177.Given the symbol 'all we begin annotating from the end of the sequence. Note thatwe distinguish between sequences starting with the key 'begin or not.hinsert-pred-after all 45bi �(if (or (empty? prog)(empty? (cdr prog)))prog(if (equal? (car prog) 'begin)(let ((rest((insert-pred-after 'all) (cddr prog))))(begin(set! prednr (+ prednr 1))(append (list 'begin (cadr prog))(cons prednr rest))))36



(let ((rest((insert-pred-after 'all) (cdr prog))))(begin(set! prednr (+ prednr 1))(append (list (car prog) prednr)rest))) ))�De�nition referenced in part 45a.Given a special symbol | that is a symbol not equal to 'all|we look for this symbolin the format de�nition of the present algorithm. If it exists, we insert a predicate afterthe corresponding part of the algorithm.hinsert-pred-after special 46ai �(do ((format (get formats (get-key prog)) (cdr format))(pr prog (cdr pr))(ergprog '() (append ergprog (list (car pr)) )))((equal? (car format) symbol)(begin(set! prednr (+ prednr 1))(append (append ergprog (list (car pr)))(cons prednr (cdr pr)) )))(if (empty? (cdr format))(error 'insert-pred-after: symbol 'does 'not'appear 'in 'format 'of prog)) )�De�nition referenced in part 45a.Procedure insert-pred-before works in exactly the same way. We omit this proce-dure here, but it can be found in appendix B.1.Procedure ann-rec has to handle the same cases like insert-pred-after:"annotations.scm" 46b �(define (ann-rec symbol)(lambda (prog)(if (equal? symbol 'all)hann-rec all 47aihann-rec special 47bi) ))�File de�ned by parts 45a, 46b, 48b, 49a, 177.In the 'all case | that is the present algorithm is a sequence | we only have to calleach part of the sequence recursively.hann-rec all 47ai �(if (empty? prog)prog(if (equal? (car prog) 'begin)(append (list 'begin (annotate (cadr prog)))((ann-rec 'all) (cddr prog)))(cons (annotate (car prog))((ann-rec 'all) (cdr prog))) ))�De�nition referenced in part 46b. 37



Given a special symbol we look for it in the format de�nition of the present algorithmand annotate the corresponding part of the algorithm.hann-rec special 47bi �(let* ((key (get-key prog))(format (get-actual formats prog)))(if (not(member symbol format))hcheck other formats 48ai(do ((form format (cdr form))(pr prog (cdr pr))(ergprog '()(append ergprog (list (car pr)) )))((equal? (car form) symbol)(append ergprog(append (list (annotate (car pr)))(cdr pr)))) )))�De�nition referenced in part 46b.If the given symbol does not appear in the corresponding format, we check whetherthere are other formats of the present algorithm in which this symbol is included.1 Ifnot, we report an error.2hcheck other formats 48ai �(do ((other-formats (get formats key)(cdr other-formats)))((member symbol (car other-formats)) prog)(if (empty? formats)(error 'procedure 'rec: symbol 'does 'not'appear 'in 'activities 'of prog)))�De�nition referenced in part 47b.In the rest of this section we describe the main procedure make-annotations for anno-tating algorithms: We assume that the algorithm is given in a �le (written by hand orby the SuchThat compiler) starting with the input/output speci�cation followed bythe algorithm as described in the last section. Procedure make-annotated �rst readsthe input �le (assigning the given algorithm to proglist and the prototypes of the �leprototypes.txt to spec-list):"annotations.scm" 48b �(define (make-annotated inputfile outputfile)(set! proglist '())hread program specs 190cihread input �le 190bi�File de�ned by parts 45a, 46b, 48b, 49a, 177.1for instance the if-construct has two formats: with and without alternative.2This is not necessary because do-activities checks whether an activity applies to a given algo-rithm, but it may help to �nd faulty insertions of programming language constructs.38



Before we go into the main loop, we prepare the output �le, in which the resultingannotated algorithm is written. Especially we write the �rst predicate (0) | whichstands for the input speci�cation of the algorithm | into the �le."annotations.scm" 49a �hopen output �le 191ai(set! prednr 0)(write prednr current-output-port)(newline current-output-port)hannotate main loop 49bi)�File de�ned by parts 45a, 46b, 48b, 49a, 177.In the main loop each command is annotated and written to the output �le. Betweentwo such commands an abstract predicate is inserted.hannotate main loop 49bi �(do ((prog proglist (cdr prog)))((empty? prog) hclose output �le 191ci)(begin(set! block (annotate (car prog)))hwrite block 191bi(newline current-output-port)(set! prednr (+ prednr 1))(write prednr current-output-port)(newline current-output-port))) )�De�nition referenced in part 49a.3.4 Constructing Abstract TheoremsTo construct theorems out of a given Hoare triple we have to apply the rules of Hoare'scalculus in a backward manner until the whole program code is replaced. Which rulehas to be applied to a special algorithm is given by the activities according to the givenalgorithm's kind. Here we describe the implementation of these activities: theorem-is,gen-rec and is-invariant-for.A theorem activity is equipped with two arguments: assumption and conclusion.1These arguments are again abstract schemes (of formulas) that are �lled with thecorresponding parts of the present algorithm."theorems.scm" 50a �(define (theorem-is ass concl)(lambda (annotated-prog . theme)(if (and (equal? (get-key annotated-prog)'set!)(list? (caddr (cadr annotated-prog))))hfunction call 50bi(begin(set! theorem-list1Compare page 29. 39



(cons (list 'implies(construct annotated-prog ass)(construct annotated-prog concl))theorem-list))annotated-prog) )))�File de�ned by parts 50ac, 51c, 52a.Procedure calls with only one output variable z are usually written more naturally asz := f(*x ) | or (set! c (f *x)) in Scheme representation. If such a procedure callis detected,1 we generate theorems for the equivalent call f(*x ; z):hfunction call 50bi �(begin(let ((scheme(list 'pre(cons 'call(cons (oper annotated-prog)((actualparam 'proc) annotated-prog)))'post)))(generate-theorems (construct annotated-prog scheme)))annotated-prog)�De�nition referenced in part 50a.Like the other recursive procedures gen-rec has to distinguish between processingsequences and other constructs. Thus we get again"theorems.scm" 50c �(define (gen-rec scheme)(lambda (annotated-prog . theme)(if (equal? scheme 'all)hgen-rec all 51aihgen-rec special 51bi) ))�File de�ned by parts 50ac, 51c, 52a.Given the symbol 'all we have a sequence. So we generate theorems for each constructof the sequence according to the intermediate predicates (resp. the annotations). Webuild the current Hoare triple using the already mentioned procedure construct.hgen-rec all 51ai �(do ((pr (if (equal? (get-key annotated-prog) 'begin)(append (list (car annotated-prog))(cdadr annotated-prog)(cddr annotated-prog))annotated-prog)(cddr pr)))((empty? (cdr pr)) annotated-prog)(generate-theorems (construct pr '(pre first intermed))) )�De�nition referenced in part 50c.If a special symbol is given, this symbol is an abstract scheme describing which Hoaretriple has to be called recursively.1 So again we construct the triple to be called out ofthis scheme according to the given algorithm:1Note that both ordinary assignment and this kind of procedure call have 'set! as key.1In fact this kind of scheme implements Hoare rules not eliminating program code at once.40



hgen-rec special 51bi �(begin(generate-theorems (construct annotated-prog scheme))annotated-prog)�De�nition referenced in part 50c.Procedure is-invariant-for is due to our rule for procedure calls requiring the pre-condition to be invariant for the procedure.2 Here we only replace abstract parts ofthis condition according to the given algorithm (using again procedure construct)and add it to the sidecondition-list. Checking whether this condition is ful�lled is notpossible until speci�c predicates have been built."theorems.scm" 51c �(define (is-invariant-for formula proc)(lambda (annotated-prog . theme)(begin(let ((side-cond(list 'is-invariant-for(construct annotated-prog formula)((actualout 'proc) annotated-prog)) ))(set! side-cond-list(cons side-cond side-cond-list)))annotated-prog)))�File de�ned by parts 50ac, 51c, 52a.In the main procedure make-theorems we again �rst read an (annotated) algorithmfrom an input �le and prepare the output �le. Note, that we do not check syntax ofthe given algorithm here because we assume the input �le to be constructed by theannotation stage of our generator, where formats already have been checked."theorems.scm" 52a �(define (make-theorems inputfile outputfile)(set! proglist '())hread input �le 190bihopen output �le 191ai(set! theorem-list '())(set! side-cond-list '())hmake-theorems main loop 52bi)�File de�ned by parts 50ac, 51c, 52a.For each construct of the algorithm (with its corresponding pre- and postcondition)we generate theorems and side conditions and add them to the theorem-list resp.sidecondition-list:hmake-theorems main loop 52bi �(do ((prog proglist (cddr prog)))((empty? (cdr prog))(beginhwrite+close output �le 192ai2Compare page 29. 41



(initialize-predlist (+ prednr 1)) ))(let ((actual-prog (list (car prog)(cadr prog)(caddr prog))))(generate-theorems actual-prog))))�De�nition referenced in part 52a.3.5 From Abstract to Speci�c TheoremsUp to this point we have constructed a set of theorems ensuring the correctness of agiven algorithm. But all the intermediate predicates that have been introduced ac-cording to the rules of the Hoare calculus are still abstract ones. In the following wegive some simple rules to �ll in this gap. Our examples will show that these easyrules are strong enough to construct theorems for the algorithms we presented in theintroduction (provided that the loop invariant for the Euclidean algorithm is given).Let us �rst look at the assignment construct. If we have fPgx := t fQg; we knowthat setting P � Qx[t] makes this triple valid. But most algebraic algorithms startwith an initialization phase followed by a loop or an if-statement. To compute speci�cpredicates for a loop or an if-statement, it is much better to have a speci�c predicateas precondition. So we decided to implement a di�erent rule that allows | startingwith the input-speci�cation | to move forward through the algorithm:1fPg x := t fP ^ x = tg; if x is not free in P:Note that during the initialization phase the condition is trivially ful�lled. If x is freein P we use the classical rule getting for the most theorems concerning assignmenttrivial ones.So we expand our list of rules2 for computing speci�c predicates byhassignment rule 53i �(set! guesses(put guesses 'set!'((set-predicate 'post '(and pre (= var term))'provided 'is-not-free 'var 'pre)(set-predicate 'pre '(subst post var term)) )))�De�nition referenced in part 185a.The next rule concerns the return-statement. A return stands for a semantic end ofthe algorithm, so we may assume that such a statement is embraced by an if-statementfPg if condition fA; returng fQgbecause otherwise the code following the return will never be executed. Only if thecondition is false, Q will be needed as a precondition for the following statements, soQ � (P ^ :condition) is a reasonable setting. We get1This approach can be compared with the one in [Wan96], where the veri�cation of C++ programsis investigated.2Note that these rules again are considered to be Scheme procedures.42



hreturn rule 54ai �(set! guesses(put guesses 'if'((set-predicate 'post '(and pre (not condition))'provided 'is-included 'return 'proc)(rec '((and pre condition) action1 post))(rec '((and pre (not condition)) action2 post)) )))�De�nition referenced in part 185a.Due to the second and the third rule speci�c theorems are computed for the substate-ments of the if-construct.To get speci�c predicates after a while-loop and a procedure call we use rathertrivial rules. After the execution of a while-loop we know that the loop invariant invas well as the condition's negation hold. So we set Q � (I ^ :condition) gettinghwhile rule 54bi �(set! guesses(put guesses 'while'((set-predicate 'post '(and inv (not condition)))(rec '((and inv condition) action inv)) )))�De�nition referenced in part 185a.Analogously for the procedure call we have that after executing the call the (invariant)precondition and the subalgorithm's output speci�cation hold:hprocedure call rule 54ci �(set! guesses(put guesses 'call'((set-predicate'post'(and pre(subst (outputspec 'proc)(formalparam 'proc)(actualparam 'proc))) ))))�De�nition referenced in part 185a.Note that in both cases this setting leads to at least one trivial theorem of the formP �! P . In the following we describe the implementation of the activities for con-structing speci�c theorems set-predicate and guess-rec.Procedure set-predicate has two arguments both being abstract schemes of for-mulas. The �rst one is the predicate to be set to the second one. We start with �llingin these schemes according to the present algorithm. We do not want to override al-ready de�ned predicates (especially those having been set by the user), so if the �rstformula is already speci�c we do nothing. Otherwise the setting is done, provided thatthe optional argument ass | the condition under which the rule is applicable | canbe evaluated to true."guesses.scm" 55a � 43



(define (set-predicate formula1 formula2 . ass)(lambda (annotated-prog . theme)(let ((form1 (construct annotated-prog formula1))(form2 (construct annotated-prog formula2)))(if (is-not-already-specific form1)(if (or (empty? ass)(apply (eval (cadr ass))(construct annotated-prog (cddr ass)) ))(put-pred form1 form2))))annotated-prog))�File de�ned by parts 55ab, 56ac, 178.Procedure guess-rec works exactly like gen-rec: To each necessary part of the algo-rithm the corresponding activities for constructing speci�c theorems are applied:"guesses.scm" 55b �(define (guess-rec symbol)(lambda (annotated-prog . theme)(if (equal? symbol 'all)(do ((pr (if (equal? (get-key annotated-prog) 'begin)(append (list (car annotated-prog))(cdadr annotated-prog)(cddr annotated-prog))annotated-prog)(cddr pr)))((empty? (cdr pr)) annotated-prog)(guess (construct pr '(pre first intermed))) )(begin(guess (construct annotated-prog symbol))annotated-prog))))�File de�ned by parts 55ab, 56ac, 178.The main procedure for constructing speci�c theorems starts with setting the �rstpredicate to the input-speci�cation and setting the last to the output-speci�cation.After the main loop | where the above presented rules are applied | it reads theabstract theorems from the input �le and �lls them in using the just computed speci�cpredicates. Finally, the resulting theorems are written into the output �le."guesses.scm" 56a �(define (make-guesses inputfile outputfile)(put-pred 0 ((inputspec) 'proc))(put-pred prednr ((outputspec) 'proc))hmake-guesses main loop 56bi(set! proglist '())hread input �le 190bihwrite theorems 192bi)�File de�ned by parts 55ab, 56ac, 178.In its loop, make-guesses simply applies procedure guess to each part of the givenalgorithm to get speci�c predicates necessary to �ll in the abstract theorems.44



hmake-guesses main loop 56bi �(do ((prog proglist (cddr prog)))((empty? (cdr prog)) hguesses message 193ai)(let ((actual-prog (list (car prog)(cadr prog)(caddr prog))))(guess actual-prog)))�De�nition referenced in part 56a.One drawback of the Hoare calculus is the large number of theorems that are con-structed, many of them in addition being trivial. So we have included a proceduremake-nontrivial-theorems that tries to �lter out such trivial theorems making theresulting �le as short as possible."guesses.scm" 56c �(define (make-nontrivial-theorems inputfile outputfile)(set! proglist '())hread input �le 190bihopen output �le 191aihhandle predicates 193bi(do ((theorems proglist (cdr theorems)))((empty? theorems) hclose output �le 191ci)(if (not(is-trivial (car theorems)))(begin(write (car theorems) current-output-port)(newline current-output-port)(newline current-output-port))) )))�File de�ned by parts 55ab, 56ac, 178.This completes the description of our veri�cation condition generator although manyother functions exist. These can be found in appendix B; some of the more importantones are commented in appendix B.1.
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Chapter 4Veri�cation of GenericBrown/Henrici AdditionIn this chapter we present a machine assisted proof of the correctness of the genericBrown/Henrici addition algorithm of section 1.3. To be more precise, we show thatthe veri�cation conditions | constructed by the generator of the last chapter | holdby giving the corresponding Mizar proofs. These veri�cation conditions are given insection 4.1.To prove these theorems, we need some preparation: We have to provide in Mizarthe necessary algebraic structures and concepts. In doing so, we start from integraldomains, which are already included in the Mizar library. We de�ne ample sets forintegral domains and gcd domains in section 4.2 and 4.3 respectively. Furthermore weintroduce the concept of normal forms | closely related to ample sets |in section 4.2.Subsequently we de�ne fractions over an integral domain | the elements the algo-rithm deals with. Finally, in section 4.5 we prove some exemplary veri�cation condi-tions, the remaining ones being in appendix A.6.4.1 Veri�cation ConditionsThe output �le constructed by the veri�cation condition generator contains 15 non-trivial theorems. The remaining 29 theorems were found to be trivial by the generator.These 15 theorems are divided into two groups: First, there are theorems directlyconnected to the algorithm's output; that is, theorems stating that the result of thealgorithm ful�lls its output speci�cation.Here we only present the theorems we prove in section 4.5. The remaining veri�ca-tion conditions can be found in appendix A.5. Note that ~ stands for the associationrelation over fractions whereas is_associated_to used above demotes the associationrelation over integral domains based on divisibility."BrHenAdd-theorems.txt" 59a �(implies (and (is_normalized_wrt r Amp) (is_normalized_wrt s Amp)(not (= r 0)) (not (= s 0)) (= r1 (num r)) (= r2 (denom r))(not (= r2 0)) (= s1 (num s)) (= s2 (denom s)) (not (= s2 0))(= r2 1) (= s2 1) (= t (fract (+ r1 s1) 1)))(and (~ t (+ r s)) (is_normalized_wrt t Amp)))46



(implies (and (is_normalized_wrt r Amp) (is_normalized_wrt s Amp)(not (= r 0)) (not (= s 0)) (= r1 (num r)) (= r2 (denom r))(not (= r2 0)) (= s1 (num s)) (= s2 (denom s)) (not (= s2 0))(not (and (= r2 1) (= s2 1))) (not (= r2 1)) (not (= s2 1))(\in d Amp) (= d (gcd r2 s2)) (= d 1)(= t (fract (+ (* r1 s2) (* r2 s1)) (* r2 s2))))(and (~ t (+ r s)) (is_normalized_wrt t Amp)))�File de�ned by parts 59ab, 161, 162.The �rst theorem corresponds to the return in step (3) of the algorithm, the secondone to the return in step (5), where d = gcd(r2,s2) = 1.The second group consists of theorems concerned with procedure calls. They ensurethat at the point where subalgorithms are called, the corresponding input speci�cationis in fact ful�lled. Here, these theorems concern the calls of fract and /. Again wegive two theorems as examples, the remaining ones being listed in appendix A.5."BrHenAdd-theorems.txt" 59b �(implies (and (is_normalized_wrt r Amp) (is_normalized_wrt s Amp)(not (= r 0)) (not (= s 0)) (= r1 (num r)) (= r2 (denom r))(not (= r2 0)) (= s1 (num s)) (= s2 (denom s)) (not (= s2 0))(not (and (= r2 1) (= s2 1))) (not (= r2 1)) (not (= s2 1))(\in d Amp) (= d (gcd r2 s2)) (not (= d 1))(= r2' (/ r2 d)) (= s2' (/ s2 d))(= t1 (+ (* r1 s2') (* s1 r2'))) (= t2 (* r2 s2'))(not (= t1 0)) (\in e Amp) (= e (gcd t1 d))(= t1' (/ t1 e)))(and (not (= e 0)) (e divides t2)))(implies (and (is_normalized_wrt r Amp) (is_normalized_wrt s Amp)(not (= r 0)) (not (= s 0)) (= r1 (num r)) (= r2 (denom r))(not (= r2 0)) (= s1 (num s)) (= s2 (denom s)) (not (= s2 0))(not (and (= r2 1) (= s2 1))) (not (= r2 1)) (not (= s2 1))(\in d Amp) (= d (gcd r2 s2)) (not (= d 1))(= r2' (/ r2 d)) (= s2' (/ s2 d))(= t1 (+ (* r1 s2') (* s1 r2'))) (= t2 (* r2 s2'))(not (= t1 0)) (\in e Amp) (= e (gcd t1 d))(= t1' (/ t1 e)) (= t2' (/ t2 e)))(not (= t2' 0)))�File de�ned by parts 59ab, 161, 162.The �rst theorem establishes the applicability of procedure / to compute t2' = t2/ein step (5) of the algorithm, the other one the applicability of fract to compute t =fract(t1',t2') at the end of the algorithm.4.2 De�nition of Ample SetsAmple sets are sets of representatives modulo an equivalence relation (see [Col74] or[Mus71]). Here we need ample sets for the association relation over integral domains.They are necessary for the generic Brown/Henrici addition algorithm in order to get aunique greatest common divisor function. Here is the Mizar de�nition:47



hDefinition of AmpleSet 60ai �definitionlet I be domRing;mode AmpSet of I -> non empty Subset of the carrier of I means :Def8a:(for a being Element of the carrier of I ex z being Element of itst z is_associated_to a) &(for x,y being Element of it holdsx <> y implies x is_not_associated_to y);hexistence proof of AmpSet 61, . . . i�De�nition de�ned by parts 60a, 69b.De�nition referenced in part 138.The existence of ample sets is due to the axiom of choice. It allows one to chose oneelement out of each equivalence class of associates of the integral domain. Here weonly give the de�nition of the association classes; correctness proofs and some furtherproperties are included in appendix A.2.hDefinition of association classes 60bi �definitionlet I be domRing;let a be Element of the carrier of I;func Class a -> non empty Subset of the carrier of I means :Defh1:(for b being Element of the carrier of I holdsb 2 it iff b is_associated_to a);hcorrectness proof of Class 135idefinitionlet I be domRing;func Classes I -> Subset-Family of the carrier of I means :Defh2:(for A being Subset of the carrier of I holdsA 2 it iff (ex a being Element of the carrier of I st A = Class a));hcorrectness proof of Classes 137i�De�nition referenced in part 134.We start the existence proof concerning ample sets by setting M to the set of associationclasses of the integral domain I. As should be clear, the �rst goal is to apply the axiomof choice to M.hexistence proof of AmpSet 61i �existenceproofset M = Classes I;K1: M is non empty by CL2;:: CL2 states that Classes I is non empty (see appendix A.2).reconsider M as non empty set by K1;�De�nition de�ned by parts 61, 62abc, 63ab.De�nition referenced in part 60a.Note that in Mizar the axiom of choice is not an axiom but a theorem1 contained inthe Mizar article WELLORD2. It looks as follows.1It can be proved by use of the axiom of Tarski, which is included in the axiomatics of Mizar (seethe introduction of chapter two). 48



(for X st X 2 M holds X <> ;) &(for X,Y st X 2 M & Y 2 M & X <> Y holds X \ Y = ;)impliesex Choice being set stfor X st X 2 M ex x st Choice \ X = x ;To apply this theorem we �rst have to establish two preconditions about the set ofassociation classes M; to be more precise, we have to show that the the associationclasses X form a partition on M:hexistence proof of AmpSet 62ai �K2: for X st X 2 M holds X <> ;hproof of K2 65aiK3: for X,Y st X 2 M & Y 2 M & X <> Y holds X \ Y = ;hproof of K3 65bi�De�nition de�ned by parts 61, 62abc, 63ab.De�nition referenced in part 60a.Using K2 and K3 we can establish the existence of a set AmpS' that contains exactly oneelement out of each association class X. It is easy to prove that this set is nonempty.1hexistence proof of AmpSet 62bi �consider AmpS' being set such thatK5: for X st X 2 M ex x being Anyst AmpS' \ X = {x} by K2,K3,WELLORD2:27;K5a: AmpS' is non emptyhproof of K5a 65cireconsider AmpS' as non empty set by K5a;�De�nition de�ned by parts 61, 62abc, 63ab.De�nition referenced in part 60a.Unfortunately, so far we cannot conclude that there are no other elements in AmpS' butthe ones of the integral domain I, hence we cannot prove that AmpS' � I. So we de�nea second set AmpS containing only those elements of AmpS' that are also members ofan association class X:hexistence proof of AmpSet 62ci �set AmpS = { x where x is Element of AmpS':ex X being non empty Subset of the carrier of Ist X 2 M & AmpS' \ X = {x}};�De�nition de�ned by parts 61, 62abc, 63ab.De�nition referenced in part 60a.Note that the properties of AmpS' do not automatically carry over to this new set.We have to show again the choice set property for AmpS. Subsequently we succeed inproving that AmpS is a nonempty subset of I, thus that AmpS has the type required byour de�nition.1We need non-emptiness of AmpS' introduced by reconsider for mode Element of AmpS', which isnot accepted by the Mizar checker for empty sets.49



hexistence proof of AmpSet 63ai �K6a: for X being Element of M holdsex z being Element of AmpS st AmpS \ X = {z}hproof of K6a 66a, . . . iK6: AmpS is non empty Subset of the carrier of Ihproof of K6 68bireconsider AmpS as non empty Subset of the carrier of I by K6;�De�nition de�ned by parts 61, 62abc, 63ab.De�nition referenced in part 60a.It remains to show that AmpS has the desired properties, namely that for every elementa 2 I there is an element z 2 AmpS, such that a and z are associates of each other,and that two distinct elements of AmpS are not associated to each other. In the Mizarlanguage it looks like this:hexistence proof of AmpSet 63bi �K7: for a being Element of the carrier of Iex z being Element of AmpS st z is_associated_to ahproof of K7 63ciK8: for x,y being Element of AmpS holdsx <> y implies x is_not_associated_to yhproof of K8 64a, . . . ithus thesis by K7,K8;end;end;�De�nition de�ned by parts 61, 62abc, 63ab.De�nition referenced in part 60a.Properties K7 and K8 of course hold because AmpS is de�ned via the axiom of choice.K7 is an immediate consequence of the fact that for each subset of M there is an elementz of this subset being also a member of AmpS.hproof of K7 63ci �prooflet a be Element of the carrier of I;H0: Class a 2 M by Defh2; :: remember that M = Classes Ireconsider N = Class a as Element of M by H0;consider z being Element of AmpS such thatH1: AmpS \ N = {z} by K6a;H1a: z 2 {z} by ENUMSET1:4;H1b: z 2 AmpS \ Class a by H1a,H1;H2: z 2 Class a by H1b,BOOLE:def 3;H3: z is_associated_to a by H2,Defh1;thus thesis by H3;end;�De�nition referenced in part 63b.Property K8 follows because there is only one element out of each association class inAmpS. We proceed by contradiction, �rst proving that both x and y are contained inAmpS \ Class x if they are Elements of AmpS and associates of each other.
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hproof of K8 64ai �prooflet x,y be Element of AmpS;assume H0: x <> y;assume H1: x is_associated_to y;H2: x is_associated_to x & y is_associated_to x by H1,L2;H3: x 2 Class x & y 2 Class x by H2,Defh1;H6: x 2 AmpS \ Class x & y 2 AmpS \ Class x by H3,BOOLE:def 3;�De�nition de�ned by parts 64ab.De�nition referenced in part 63b.We know | by the axiom of choice | that AmpS \ Class x is a one-element set.Consequently we get x = y by using H6, a contradiction.hproof of K8 64bi �H8: Class x 2 M by Defh2;consider z being Element of AmpS such thatH9: AmpS \ Class x = {z} by H8,K6a;H10: x 2 {z} & y 2 {z} by H6,H9;H11: x = z & y = z by H10,ENUMSET1:3;thus thesis by H0,H11;end;�De�nition de�ned by parts 64ab.De�nition referenced in part 63b.This completes the main level of the existence proof concerning ample sets. In thefollowing we want to �ll in the gaps we left in order to make clear the overall structureof the proof. The reader not being interested in these details may continue at page 55.We start with proving properties K2 and K3 about M = Classes I that we neededabove in order to apply the axiom of choice at level K5. The �rst one states, that eachsubset X of M is nonempty, which is easy to prove because each X is an association classof the integral domain I.hproof of K2 65ai �prooflet X be Any such that H0: X 2 M;consider A being Element of the carrier of I such thatH1: X = Class A by H0,Defh2;thus thesis by H1;end;�De�nition referenced in part 62a.The second condition requires that two subsets X and Y are either equal or distinct,thus that the association classes induce an equivalence relation on I. This is an easyexercise we proved in theorem CL1. We do not present the proof of CL1 here, but it isincluded in appendix A.2.
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hproof of K3 65bi �prooflet X,Y be Any such that H0: X 2 M & Y 2 M & X <> Y;assume H1: X \ Y <> ;;consider A being Element of the carrier of I such thatH2: X = Class A by H0,Defh2;consider B being Element of the carrier of I such thatH3: Y = Class B by H0,Defh2;H4: X = Y by H1,H2,H3,CL1;thus contradiction by H0,H4;end;�De�nition referenced in part 62a.At level K5a we had to show that the set AmpS' de�ned by applying the axiom ofchoice is nonempty. This follows by taking an arbitrary association class: Due to thede�nition of AmpS', there is an element x out of this class being also in AmpS'.hproof of K5a 65ci �proofM0: Class 1.I 2 M by Defh2;consider x being Any such thatM1: AmpS' \ Class 1.I = {x} by K5,M0;M2: x 2 {x} by ENUMSET1:4;M3: x 2 AmpS' \ Class 1.I by M2,M1;thus thesis by M3,BOOLE:def 3;end;�De�nition referenced in part 62b.As we said above, the properties of AmpS' do not automatically carry over to AmpS. Ofcourse they hold because AmpS is de�ned via AmpS', but we have to prove the existenceof an element x with AmpS \ X = fxg again for the new set AmpS. We start by showingthat x 2 AmpS and x 2 AmpS \ X if x is in AmpS \ X = fxg.hproof of K6a 66ai �prooflet X be Element of M;consider x being Any such thatH1: AmpS' \ X = {x} by K5;M4: x 2 AmpShproof of M4 67biH2b: x 2 AmpS \ Xhproof of H2b 68ai�De�nition de�ned by parts 66abc, 67a.De�nition referenced in part 63a.To establish our assertion AmpS \ X = fxg, we have to prove two inclusions. The �rstone is easy to show, because y 2 fxg implies y 2 AmpS \ X by the just proven levelH2b.hproof of K6a 66bi �H3a: for y being Any holds y 2 {x} implies y 2 AmpS \ Xby H2b,ENUMSET1:3;�De�nition de�ned by parts 66abc, 67a.De�nition referenced in part 63a. 52



To prove the second implication | AmpS \ X � fxg | we go back to the set AmpS',of which we know that AmpS' \ X = fxg. Thus we get the desired thesis by showingthat y 2 AmpS \ X implies y 2 AmpS', which follows by the de�nition of AmpS.hproof of K6a 66ci �H3b: for y being Any holds y 2 AmpS \ X implies y 2 {x}prooflet y be Any;assume M0: y 2 AmpS \ X;M1a: y 2 AmpS & y 2 X by M0,BOOLE:def 3;consider zz being Element of AmpS' such thatM1: y = zz &(ex X being non empty Subset of the carrier of Ist X 2 M & AmpS' \ X = {zz}) by M1a;M2a: y 2 AmpS' by M1;M2: y 2 AmpS' \ X by M1a,M2a,BOOLE:def 3;thus thesis by M2,H1;end;�De�nition de�ned by parts 66abc, 67a.De�nition referenced in part 63a.Consequently, we can prove the choice set property of AmpS using levels H3a and H3b.Note that we also have to reference label M4 stating that x indeed is an element out ofAmpS and not only of type Any.hproof of K6a 67ai �H3c: AmpS \ X = {x} by H3a,H3b,TARSKI:2;thus thesis by H3c,M4;end;�De�nition de�ned by parts 66abc, 67a.De�nition referenced in part 63a.To establish the choice set property of AmpS, all that remains to show is x 2 AmpS andx 2 AmpS \ X (the proofs of levels M4 and H2b we left out above). The �rst assertionfollows by using the de�nition of the set AmpS', the second one is an easy consequenceof the �rst:hproof of M4 67bi �proofM0a: X 2 Classes I;M0: X is non empty Subset of the carrier of I by M0a,CL3;M1a: x 2 {x} by ENUMSET1:4;M2: x 2 AmpS' by M1a,H1,BOOLE:def 3;M3: ex X being non empty Subset of the carrier of Ist X 2 M & AmpS' \ X = {x} by M0,H1;thus thesis by M2,M3;end;�De�nition referenced in part 66a. 53



hproof of H2b 68ai �proofM1a: x 2 {x} by ENUMSET1:4;M1: x 2 X by M1a,H1,BOOLE:def 3;thus thesis by M1,M4,BOOLE:def 3;end;�De�nition referenced in part 66a.To �ll in the last gap in the existence proof for ample sets of integral domains we haveto show that AmpS is a nonempty subset of I This is done in Mizar as follows:hproof of K6 68bi �proofH0: AmpS is non emptyhproof of H0 68ciH1: for z being Any holdsz 2 AmpS implies z 2 the carrier of Ihproof of H1 69aithus thesis by H0,H1,TARSKI:def 3;end;�De�nition referenced in part 63a.To prove level H0, we proceed the same way, we used to show non-emptiness of the setAmpS': We know that there is an element x being a member of both AmpS' and Class1.I. Thus, this x also is a member of AmpS by de�nition.hproof of H0 68ci �proofM0: Class 1.I 2 M by Defh2;consider x being Any such thatM1: AmpS' \ Class 1.I = {x} by K5,M0;M2: x 2 {x} by ENUMSET1:4;M3: x 2 AmpS' \ Class 1.I by M2,M1;M4: x 2 AmpS' by M3,BOOLE:def 3;M5: x 2 AmpS by M4,M1,M0;thus thesis by M5;end;�De�nition referenced in part 68b.The proof of level H1 is a trivial consequence of the de�nition of AmpS. Remember thatthe property proved here was the reason for introducing AmpS.hproof of H1 69ai �prooflet z be Any;assume H3: z 2 AmpS;consider x being Element of AmpS' such thatH4: z = x &(ex X being non empty Subset of the carrier of Ist X 2 M & AmpS' \ X = {x}) by H3;consider X being non empty Subset of the carrier of I such thatH4a: X 2 M & AmpS' \ X = {z} by H4;H5: z 2 {z} by ENUMSET1:4;H6: z 2 AmpS' \ X by H4a,H5;H7: z 2 X by H6,BOOLE:def 3;thus thesis by H7;end;�De�nition referenced in part 68b. 54



So far, we established the existence of ample sets for association classes in integraldomains. As a matter of convenience we require that 1.I always is an element ofour ample sets | whereas 0.I anyhow is contained in every ample set, because theassociation class of 0.I contains only one element. Consequently, we de�ne:hDefinition of AmpleSet 69bi �definitionlet I be domRing;mode AmpleSet of I -> non empty Subset of the carrier of I means :Def8:it is AmpSet of I &1.I 2 it;hexistence proof of AmpleSet 139ireserve Amp for AmpleSet of I;�De�nition de�ned by parts 60a, 69b.De�nition referenced in part 138.It is easy to show the existence of these special ample sets: In an ordinary ample setthere is an element x being associated to 1.I. We only have to take an ample set andexchange this x by 1.I:hDefining AmpleSet 69ci �let A be AmpSet of I;consider x being Element of A such thatH1: x is_associated_to (1.I) by Def8a;set A' = { z where z is Element of A : z <> x } U {(1.I)};�De�nition referenced in part 139.The rest of the proof consists of showing that A' again ful�lls the de�nition of an ampleset for the association classes of the integral domain I. It is very close to the proof justgiven, so we omit it here (it can be found in appendix A.2).As we will see, using ample sets to de�ne the greatest common divisor function onlysuÆces to show gcd(num(t),denom(t)) = 1 for the output t of the Brown/Henriciaddition algorithm. To establish that t is a normalized fraction | that is, in additionholds that denom(t) is an element of the ample set1 | we need our ample sets to bemultiplicative:hDefinition of multiplicative AmpleSet 70ai �definitionlet I be domRing;let Amp be AmpleSet of I;pred Amp is_multiplicative means :Def25:for x,y being Element of Amp holds x*y 2 Amp;end;�De�nition de�ned by parts 70ab.De�nition referenced in part 142a.1See section 4.4 for a thorough Mizar de�nition of normalized fractions.55



The main property of multiplicative ample set we will use to verify the Brown/Henriciaddition algorithm, is that they are also closed with respect to division:hDefinition of multiplicative AmpleSet 70bi �theoremfor Amp being AmpleSet of I holdsAmp is_multiplicative implies(for x,y being Element of Amp holds(y divides x & y <> (0.I)) implies x/y 2 Amp)hproof of AMP5 142bi�De�nition de�ned by parts 70ab.De�nition referenced in part 142a.We conclude this section with the de�nition of a normal form modulo an ample set,though this is not necessary for veri�cation of the Brown/Henrici addition algorithm.2The normal form of an element x out of I is nothing more than the element z of thecorresponding ample set associated to x:hDefinition of Normal Form 71ai �definitionlet I be domRing;let Amp be AmpleSet of I;let x be Element of the carrier of I;func NF(x,Amp) -> Element of the carrier of I means :Def20:it 2 Amp & it is_associated_to x;hcorrectness proof of normal form 144i�De�nition referenced in part 143.4.3 De�nition of Gcd DomainsA gcd domain is an integral domain I , in which for each two elements x and y in I agreatest common divisor exists. Integral domains are already included in the Mizarlibrary (where they are called domRing). To introduce gcd domains we de�ne thefollowing attribute gcd-like on integral domains.hDefinition of gcdDomain 71bi �definitionlet I be domRing;attr I is gcd-like means :Def7:(for x,y being Element of the carrier of Iex z being Element of the carrier of I stz divides x &z divides y &(for zz being Element of the carrier of Ist (zz divides x & zz divides y)holds zz divides z));2We need the de�nition when verifying the generic Euclidean algorithm of section 1.2 in chapter5. Note also that the predicate normalized of section 4.4 can be de�ned via normal forms using thefact that a 2 Amp i� a = NF(a,Amp). 56



end;�De�nition de�ned by parts 71bc.De�nition referenced in part 145a.In Mizar each type must have nonempty denotation.1 Consequently, before de�ningmode gcdDomain as gcd-like domRing, we have to show that a domRing ful�lling theattribute gcd-like exists. Formally this is done with an existential cluster. After thecluster de�nition we succeed in de�ning mode gcdDomain as indicated.hDefinition of gcdDomain 71ci �definitioncluster gcd-like domRing;existencehexistence proof of gcdDomain 72aiend;definitionmode gcdDomain is gcd-like domRing;end;�De�nition de�ned by parts 71bc.De�nition referenced in part 145a.Fortunately we need not prove the existence of gcd domains from scratch. Mizaralready contains the algebraic structure Field, so we proceed by proving that a �eldis a gcd domain. To show that a �eld is an integral domain, we use the correspondingtheorem out of the Mizar library.2 It remains to prove that a �eld is gcd-like:hexistence proof of gcdDomain 72ai �proofconsider F being strict Field;reconsider F as domRing by VECTSP_2:13;H4: F is gcd-likehproof of gcd-like 72bithus thesis by H4;end;�De�nition referenced in part 71c.To show that the �eld F is gcd-like, we have to �nd a greatest common divisor for eachpair of elements x and y out of F.1 We proceed by considering two cases:hproof of gcd-like 72bi �prooflet x,y be Element of the carrier of F;H3: now per cases;case A: x <> 0.F;hproof of gcd-like, case A 73bicase B: x = 0.F;1This prohibits modes like non empty empty set.2Note that the type of F has to be changed using reconsider, because otherwise Mizar will notaccept step H4. The reason is that attribute gcd-like (as well as divides) is de�ned for domRing only.1Note that in �elds for x and y not both being zero every element z 6= 0 is a greatest commondivisor of x and y. Using in addition ample sets for normalization, this implies that 1 and 0 are theonly possible values for greatest common divisors in �elds.57



hproof of gcd-like, case B 73aithus thesis by H3;end;�De�nition referenced in part 72a.We start with case B: If x = 0.F, then y is a greatest common divisor of x and y.The proof is simply done by listing the required properties properties of the attributegcd-like.hproof of gcd-like, case B 73ai �B0: y divides y by L1;B1: y*0.F = 0.F by VECTSP_2:26;B2: y divides 0.F by B1,Def1;B3: for z being Element of the carrier of Fst (z divides 0.F & z divides y)holds z divides y;thus thesis by B,B0,B2,B3;end;�De�nition referenced in part 72b.To show the other case | x 6= 0.F |, we prove that 1.F is a greatest common divisorof x and y. The �rst two properties of gcd-like| 1.F divides x and 1.F dividesx | are an immediate consequence of 1.F being the multiplicative identity of �eld F.hproof of gcd-like, case A 73bi �A1: x = 1.F*x & y = 1.F*y by VECTSP_2:1;A2: 1.F divides x & 1.F divides y by A1,Def1;A5: for z being Element of the carrier of Fst (z divides x & z divides y)holds z divides 1.Fhproof of gcd-like, case A, label A5 73c, . . . ithus thesis by A2,A5;�De�nition referenced in part 72b.It remains to show that every element z dividing both x and y also divides 1.F. If wehave z 6= 0.F, this follows by taking the multiplicative inverse z' of z.hproof of gcd-like, case A, label A5 73ci �prooflet z be Element of the carrier of F;M1: now per cases;case A1: z <> 0.F;consider z' being Element of the carrier of F such thatM11: z*z' = 1.F by A1,VECTSP_1:def 20;thus z divides 1.F by M11,Def1;�De�nition de�ned by parts 73c, 74.De�nition referenced in part 73b.If z = 0.F| and z divides x|, we conclude that also x equals 0.F| a contradictionto the assumption x 6= 0.F from above:hproof of gcd-like, case A, label A5 74i �case A2: z = 0.F; 58



assume M12: z divides x;consider d being Element of the carrier of F such thatM13: 0.F*d = x by M12,Def1,A2;M14: x = 0.F by M13,VECTSP_2:26;thus z divides 1.F by M14,A;end; :: casesthus thesis by M1;end;�De�nition de�ned by parts 73c, 74.De�nition referenced in part 73b.So far, we established the existence of gcd domains (the de�nition of the greatestcommon divisor function can be found in section 2.3) and ample sets for integraldomains in Mizar. In the next section we start with the actual correctness proof ofthe generic Brown/Henrici addition algorithm by introducing the algebraic structuresand objects the algorithm deals with.
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4.4 De�nition of FractionsIn this section we presentMizar de�nitions for the domains and functions the genericBrown/Henrici addition algorithm works on. We have to introduce fractions over anintegral domain as well as constructors for them: num, denom and fract. Also we needaddition of two fractions, additive and multiplicative unity of fractions and two furtherpredicates ~ and is_normalized_wrt.The above mentioned de�nitions are contained in theMizar article BrHenAdd.miz,which of course begins with the necessary environment."BrHenAdd.miz" 75a �hBrHenAdd environment 164i�File de�ned by parts 75ab, 76a, 77ab, 78, 79ab, 80ab, 81ab, 82ab, 83, 84ab, 85abc, 86ab, 87ab,88abc, 89, 90abc, 91, 158b, 159, 160, 165, 174.We start with the introduction of fractions over an integral domain I. A fraction isa pair over I with its second element being not zero. Consequently we use the Mizarconstructors for arbitrary pairs, de�ned in the article MCART_1. Existence of fractionsis simply proved by showing that [0,1] is of this kind."BrHenAdd.miz" 75b �definitionlet I be domRing;mode Fraction of I-> Element of [:the carrier of I,the carrier of I:]means :Def52:ex a,b being Element of the carrier of Ist (it = [a,b] & b <> 0.I);existenceproofH1: 1.I <> 0.I by VECTSP_1:def 21;take [0.I,1.I];thus thesis by H1;end;end;�File de�ned by parts 75ab, 76a, 77ab, 78, 79ab, 80ab, 81ab, 82ab, 83, 84ab, 85abc, 86ab, 87ab,88abc, 89, 90abc, 91, 158b, 159, 160, 165, 174.The set Q of fractions over an integral domain I1 contains all just de�ned pairs. In theMizar language this is described by saying u 2 Q if and only if a suitable predicateover u holds."BrHenAdd.miz" 76a �definitionlet I be domRing;mode Fractions of I-> non empty Subset of [:the carrier of I,the carrier of I:]means :Def57:1Compare the global declarations of the algorithm on page 6.60



for u being Any holdsu 2 it iff ex a,b being Element of the carrier of I st(u = [a,b] & b <> 0.I);hexistence proof of fractions 76bi�File de�ned by parts 75ab, 76a, 77ab, 78, 79ab, 80ab, 81ab, 82ab, 83, 84ab, 85abc, 86ab, 87ab,88abc, 89, 90abc, 91, 158b, 159, 160, 165, 174.Existence of the set Q is shown by just taking the desired set (here called M). Note thatthe main e�ort goes into proving that M has the type required by the de�nition, that isin proving that M in fact is a nonempty subset of the Cartesian product of the integraldomain I | whereas the de�ning property of Q trivially holds for M.hexistence proof of fractions 76bi �existenceproofset M = {[a,b] where a,b is Element of the carrier of I:b <> 0.I };H2: for u being Any holdsu 2 M iff ex a,b being Element of the carrier of I st(u = [a,b] & b <> 0.I);H0: for u being Any holds u 2 M impliesu 2 [:the carrier of I,the carrier of I:]prooflet u be Any;assume H12: u 2 M;H13: ex a,b being Element of the carrier of I st(u = [a,b] & b <> 0.I) by H12;thus thesis by H13;end;H1: M is Subset of [:the carrier of I,the carrier of I:]by H0,TARSKI:def 3;H3: M is non emptyproofH31: 1.I <> 0.I by VECTSP_1:def 21;consider u being Any such that H32: u = [0.I,1.I];H33: u 2 M by H31,H32;thus thesis by H33;end;thus thesis by H1,H2,H3;end;end;�De�nition referenced in part 76a.In the following we show two simple consequences of our de�nitions, nevertheless beingvery helpful in later proofs. The �rst one states that for every fraction the secondelement of the corresponding pair | the denominator | is not zero."BrHenAdd.miz" 77a �theoremN:for I being domRingfor u being Fraction of I holds u`2 <> 0.I61



prooflet I be domRing;let u be Fraction of I;consider a,b being Element of the carrier of I such thatH0: u = [a,b] & b <> 0.I by Def52;H1: u`2 = b by H0,MCART_1:def 2;thus thesis by H0,H1;end;�File de�ned by parts 75ab, 76a, 77ab, 78, 79ab, 80ab, 81ab, 82ab, 83, 84ab, 85abc, 86ab, 87ab,88abc, 89, 90abc, 91, 158b, 159, 160, 165, 174.The second property connects the set Q of fractions with the individual fractions u.Note that the proof is nothing more than referencing the two de�nitions."BrHenAdd.miz" 77b �theoremfor I being domRingfor Q being Fractions of Ifor u being Fraction of I holds u is Element of Qprooflet I be domRing;let Q be Fractions of I;let u be Fraction of I;H0: ex a,b being Element of the carrier of Ist (u = [a,b] & b <> 0.I) by Def52;thus thesis by H0,Def57;end;�File de�ned by parts 75ab, 76a, 77ab, 78, 79ab, 80ab, 81ab, 82ab, 83, 84ab, 85abc, 86ab, 87ab,88abc, 89, 90abc, 91, 158b, 159, 160, 165, 174.Now that we have made fractions available in Mizar, we de�ne constructors for them:the functions num, denom and fract. This is not necessary | we could use the abovementioned pair constructors of Mizar | but we prefer having the same vocabularyin the algorithm and its corresponding Mizar proof. Consequently the following de�-nitions are hardly more than renaming the pair constructors of Mizar for the specialcase of fractions over integral domains I (this includes that the type of the result is |contrary to the one of arbitrary pairs | Element of the carrier of I)."BrHenAdd.miz" 78 �definitionlet I be domRing;let u be Fraction of I;func num(u) -> Element of the carrier of I means :Def55:it = u`1;correctness;end;definitionlet I be domRing;let u be Fraction of I;func denom(u) -> Element of the carrier of I means :Def53:it = u`2; 62



correctness;end;definitionlet I be domRing;let u1,u2 be Element of the carrier of I;assume A:u2 <> 0.I;func fract(u1,u2) -> Fraction of I means :Def54:it = [u1,u2];existenceproofconsider u being Any such that H3: u = [u1,u2];H1: u is Fraction of I by H3,A,Def52;thus thesis by H1,H3;end;uniqueness;end;�File de�ned by parts 75ab, 76a, 77ab, 78, 79ab, 80ab, 81ab, 82ab, 83, 84ab, 85abc, 86ab, 87ab,88abc, 89, 90abc, 91, 158b, 159, 160, 165, 174.Before going on with de�ning addition of fractions, we want to prove three theoremsabout the just de�ned functions num, denom and fract. The proofs are simple (theyrequire application of de�nitions only), so we omit them here. The interested readercan �nd them in appendix A.4.The �rst theorem shows that the usual de�ning equation about our constructorsholds:"BrHenAdd.miz" 79a �theoremfor I being domRingfor u being Fraction of I holds u = fract(num(u),denom(u))hproof of fraction's constructor equation 156bi�File de�ned by parts 75ab, 76a, 77ab, 78, 79ab, 80ab, 81ab, 82ab, 83, 84ab, 85abc, 86ab, 87ab,88abc, 89, 90abc, 91, 158b, 159, 160, 165, 174.The second one shows that for fractions u the denominator denom(u) is not zero. Itis just a reformulation of theorem N on page 61, which stated that the second pairelement u`2 does not equal zero."BrHenAdd.miz" 79b �theoremTT: for I being domRingfor u being Fraction of I holdsdenom(u) <> 0.Ihproof of denom 156ci�File de�ned by parts 75ab, 76a, 77ab, 78, 79ab, 80ab, 81ab, 82ab, 83, 84ab, 85abc, 86ab, 87ab,88abc, 89, 90abc, 91, 158b, 159, 160, 165, 174.The last theorem connects fractions with the corresponding elements of the integraldomain I. We need this property later in our veri�cation proofs, where we have todecompose fractions into elements of the integral domain, to apply the theorem ofBrown and Henrici we proved in section 2.3.63



"BrHenAdd.miz" 80a �theoremF1:for I being domRingfor u being Fraction of Ifor a being Element of the carrier of Ifor b being Element of the carrier of I st b <> 0.I holds(a = num(u) & b = denom(u)) iff fract(a,b) = uhproof of F1 157ai�File de�ned by parts 75ab, 76a, 77ab, 78, 79ab, 80ab, 81ab, 82ab, 83, 84ab, 85abc, 86ab, 87ab,88abc, 89, 90abc, 91, 158b, 159, 160, 165, 174.In the following we introduce addition of fractions1 over an integral domain I. Weuse the usual de�nition giving not the representatives of the equivalence relation overfractions (see below): a=b+ c=d := (ad+ bc)=bd:Again the existence proof is easy: It is trivial to get a fraction u with the desiredproperties; all we have to show is that this u is of the type required by the de�nition,namely that it is a pair over the integral domain:"BrHenAdd.miz" 80b �definitionlet I be domRing;let u,v be Fraction of I;func u+v -> Fraction of I means :Def70:it = [u`1*v`2+v`1*u`2, u`2*v`2];existenceproofH1: u`2 <> 0.I & v`2 <> 0.I by N;H2: u`2*v`2 <> 0.I by H1,VECTSP_2:15;consider a being Element of the carrier of I such thatH6: a = u`1*v`2+v`1*u`2;consider b being Element of the carrier of I such thatH7: b = u`2*v`2;consider u being Element of [:the carrier of I,the carrier of I:]such that H3: u = [a,b];H4: u is Fraction of I by H3,H2,H7,Def52;thus thesis by H3,H4,H6,H7;end;uniqueness;end;�File de�ned by parts 75ab, 76a, 77ab, 78, 79ab, 80ab, 81ab, 82ab, 83, 84ab, 85abc, 86ab, 87ab, 88abc,89, 90abc, 91, 158b, 159, 160, 165, 174.Note that this de�nition implies that the result t of the Brown/Henrici addition al-gorithm in general does not ful�ll t = r+s. To overcome this problem, it is possibleto de�ne the sum u+v by (u+v)`1 * u`2*v`2 = (u+v)`2 * u`1*v`2+v`1*u`2, thusstating that u+v and [u`1*v`2+v`1*u`2, u`2*v`2] belong to the same equivalenceclass. In this case the sum u+v is not uniquely determined, hence we would have tode�ne u+v inMizar not as a function, but as a mode. However we prefer de�ning + asa function, thus being forced to accept that not t = r+s, but only t ~ r+s | where~ stands for the usual equivalence relation over fractions | holds for the result t ofBrown/Henrici addition.1Note that it is no problem in Mizar to use the symbol + to denote addition over both the integraldomain I and fractions over I. 64



The following theorem1 classi�es addition of fractions in terms of our constructorsnum, denom and fract."BrHenAdd.miz" 81a �theoremfor I being domRingfor u,v being Fraction of I holdsu+v = fract(num(u)*denom(v)+num(v)*denom(u),denom(u)*denom(v))hproof of fraction addition 158ai�File de�ned by parts 75ab, 76a, 77ab, 78, 79ab, 80ab, 81ab, 82ab, 83, 84ab, 85abc, 86ab, 87ab,88abc, 89, 90abc, 91, 158b, 159, 160, 165, 174.Again we present a theorem that states a connection between addition of fractions andthe corresponding elements of the integral domain I. The proof is done by just substi-tuting the elements of I standing for numerators and denominators in the de�nition ofthe addition function."BrHenAdd.miz" 81b �theoremF2:for I being domRingfor r,s being Fraction of Ifor r1,r2,s1,s2 being Element of the carrier of I holds(r1 = num(r) & r2 = denom(r) & s1 = num(s) & s2 = denom(s)) impliesnum(r+s) = r1*s2+s1*r2 & denom(r+s) = r2*s2hproof of F2 157bi�File de�ned by parts 75ab, 76a, 77ab, 78, 79ab, 80ab, 81ab, 82ab, 83, 84ab, 85abc, 86ab, 87ab,88abc, 89, 90abc, 91, 158b, 159, 160, 165, 174.We carry on with de�ning the additive and multiplicative unity 0.Q and 1.Q for theset of fractions Q over an integral domain. This requires nothing more than renamingfract(0.I,1.I) and fract(0.I,1.I) respectively. Consequently the correspondingcorrectness proofs are trivial. Theorems showing that 0.Q and 1.Q indeed are unitiesfor fractions can be found in appendix A.4.2"BrHenAdd.miz" 82a �definitionlet I be domRing;let Q be Fractions of I;func 0.Q -> Fraction of I means :Def74:it = fract(0.I,1.I);correctness;end;definitionlet I be domRing;let Q be Fractions of I;1The Mizar proofs of this and the next theorem can be found in appendix A.4.2For completion, we also de�ned multiplication of fractions, although we did not need this opera-tion for the veri�cation of Brown/Henrici addition. (It is necessary to prove generic Brown/Henricimultiplication correct; see [Sch97b].) 65



func 1.Q -> Fraction of I means :Def75:it = fract(1.I,1.I);correctness;end;�File de�ned by parts 75ab, 76a, 77ab, 78, 79ab, 80ab, 81ab, 82ab, 83, 84ab, 85abc, 86ab, 87ab,88abc, 89, 90abc, 91, 158b, 159, 160, 165, 174.It remains to de�ne the above mentioned predicates ~ and is_normalized_wrt. Theyare necessary to express the input/output speci�cation of Brown/Henrici addition inMizar: Proving the algorithm correct consists mainly of showing that the output tful�lls these two predicates.The �rst one describes, when two fractions belong to the same equivalence class;that is, when they denote the same value."BrHenAdd.miz" 82b �definitionlet I be domRing;let u,v be Fraction of I;pred u ~ v means :Def76:num(u)*denom(v) = num(v)*denom(u);end;�File de�ned by parts 75ab, 76a, 77ab, 78, 79ab, 80ab, 81ab, 82ab, 83, 84ab, 85abc, 86ab, 87ab,88abc, 89, 90abc, 91, 158b, 159, 160, 165, 174.The other predicate is the already several times mentioned is_normalized_wrt. Notethat it can be de�ned over gcd domains only. In fact this is the reason for theBrown/Henrici algorithm computing in gcd domains only, and not in arbitrary integraldomains."BrHenAdd.miz" 83 �definitionlet G be gcdDomain;let u be Fraction of G;let Amp be AmpleSet of G;pred u is_normalized_wrt Amp means :Def73:gcd(num(u),denom(u),Amp) = 1.G &denom(u) 2 Amp;end;�File de�ned by parts 75ab, 76a, 77ab, 78, 79ab, 80ab, 81ab, 82ab, 83, 84ab, 85abc, 86ab, 87ab,88abc, 89, 90abc, 91, 158b, 159, 160, 165, 174.
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So far, we �nished the necessary preparations to prove the veri�cation conditionfor the generic Brown/Henrici addition algorithm, which follows next.4.5 Proving the Veri�cation ConditionsIn this section we show, how to prove veri�cation conditions for the generic Brown/Hen-rici addition algorithm | and consequently the correctness of this algorithm | usingMizar. Here we only present four exemplary theorems, the ones given in section 4.1.The remaining proofs are included in appendix A.6.We start with Mizar reservations for the necessary algebraic objects. Note thatthese reservations directly correspond to the global and local declarations of the Brown/Henrici addition algorithm."BrHenAdd.miz" 84a �reserve G for gcdDomain;reserve Q for Fractions of G;reserve Amp for AmpleSet of G;reserve s,r,t for Fraction of G;reserve r1,r2,s1,s2,d,e,r2',s2',t1,t2,t1',t2'for Element of the carrier of G;�File de�ned by parts 75ab, 76a, 77ab, 78, 79ab, 80ab, 81ab, 82ab, 83, 84ab, 85abc, 86ab, 87ab,88abc, 89, 90abc, 91, 158b, 159, 160, 165, 174.In the �rst part of this section we prove two theorems about the correctness ofprocedure calls. The �rst one states correctness of the application of procedure / tocompute t2' = t2/e in step (5) of the algorithm. Note that the following is a directtranslation of the theorem in Scheme representation constructed by our veri�cationcondition generator."BrHenAdd.miz" 84b �theorem(Amp is_multiplicative &r is_normalized_wrt Amp & s is_normalized_wrt Amp &not(r = 0.Q) & not(s = 0.Q) &r1 = num(r) & r2 = denom(r) & r2 <> 0.G &s1 = num(s) & s2 = denom(s) & s2 <> 0.G &not(r2 = 1.G & s2 = 1.G) & r2 <> 1.G & s2 <> 1.G &d 2 Amp & d = gcd(r2,s2,Amp) & d <> 1.G &r2' = r2/d & s2' = s2/d &t1 = r1*s2'+s1*r2' & t2 = r2*s2' &t1 <> 0.G & e 2 Amp & e = gcd(t1,d,Amp) & t1' = t1/e)implies (e <> 0.G & e divides t2)�File de�ned by parts 75ab, 76a, 77ab, 78, 79ab, 80ab, 81ab, 82ab, 83, 84ab, 85abc, 86ab, 87ab,88abc, 89, 90abc, 91, 158b, 159, 160, 165, 174.As obvious the proof starts with stating the assumptions. Note that we do not need tolist all assumptions of the theorem, but only those necessary to prove the assertions.67



"BrHenAdd.miz" 85a �proofM: now assumeH0: d = gcd(r2,s2,Amp) & t2 = r2*s2' &t1 <> 0.G & e = gcd(t1,d,Amp);�File de�ned by parts 75ab, 76a, 77ab, 78, 79ab, 80ab, 81ab, 82ab, 83, 84ab, 85abc, 86ab, 87ab, 88abc,89, 90abc, 91, 158b, 159, 160, 165, 174.To show e divides t2 = r2*s2' we use the de�nition of the greatest common divisorfunction and transitivity of divides, which was proved in theorem GCD:2.1"BrHenAdd.miz" 85b �H1: e divides d & d divides r2 by H0,GCD:def 12;H4: e divides r2 by H1,GCD:2;H5: e divides r2*s2' by H4,GCD:7;�File de�ned by parts 75ab, 76a, 77ab, 78, 79ab, 80ab, 81ab, 82ab, 83, 84ab, 85abc, 86ab, 87ab,88abc, 89, 90abc, 91, 158b, 159, 160, 165, 174.The remaining e 6= 0.G is an immediate consequence of theorem GCD:33, stating thatthe greatest common divisor of a and b is zero if and only if a = 0.G and b = 0.G."BrHenAdd.miz" 85c �thus thesis by H5,GCD:33;end; :: Mthus thesis by M;end;�File de�ned by parts 75ab, 76a, 77ab, 78, 79ab, 80ab, 81ab, 82ab, 83, 84ab, 85abc, 86ab, 87ab,88abc, 89, 90abc, 91, 158b, 159, 160, 165, 174.The second theorem concerns the call of fract in step (5) at the end of the algorithm,which requires the element t2' | the denominator of the constructed fraction | tobe not zero."BrHenAdd.miz" 86a �theoremBH14:(Amp is_multiplicative &r is_normalized_wrt Amp & s is_normalized_wrt Amp &not(r = 0.Q) & not(s = 0.Q) &r1 = num(r) & r2 = denom(r) & r2 <> 0.G &s1 = num(s) & s2 = denom(s) & s2 <> 0.G &not(r2 = 1.G & s2 = 1.G) & r2 <> 1.G & s2 <> 1.G &d 2 Amp & d = gcd(r2,s2,Amp) & d <> 1.G &r2' = r2/d & s2' = s2/d &t1 = r1*s2'+s1*r2' & t2 = r2*s2' &1Note that theorems about greatest common divisors and divisibility are cited by GCD:n and notby the levels we introduced in chapter two or in appendix A.1 and A.3. The reason for this is thatthey are contained in a di�erent Mizar article: Once an article is accepted by the proof checker, oneconstructs a so-calledMizar abstract containing only de�nitions and theorems, but no proofs. Duringthis construction new labels for theorems (and de�nitions) are automatically constructed consisting ofthe article's name followed by a number. These levels allow one to reference these theorems in otherarticles. 68



t1 <> 0.G & e 2 Amp & e = gcd(t1,d,Amp) &t1' = t1/e & t2' = t2/e)implies t2' <> 0.G�File de�ned by parts 75ab, 76a, 77ab, 78, 79ab, 80ab, 81ab, 82ab, 83, 84ab, 85abc, 86ab, 87ab,88abc, 89, 90abc, 91, 158b, 159, 160, 165, 174.The proof of this theorem begins like the last one by showing that e divides t2 =r2*s2' and e 6= 0.G.1 Please note that t2' = (r2*(s2/gcd(r2,s2)))/e, especiallythe exact form of the nominator."BrHenAdd.miz" 86b �proofM: nowassume H0: r2 <> 0.G & s2 <> 0.G &d = gcd(r2,s2,Amp) & s2' = s2/d &t2 = r2*s2' & t1 <> 0.G &e = gcd(t1,d,Amp) & t2' = t2/e;H1: e divides d & d divides r2 by H0,GCD:def 12;H4: e divides r2 by H1,GCD:2;H5: e divides r2*s2' by H4,GCD:7;H2: e <> 0.G by H0,GCD:33;�File de�ned by parts 75ab, 76a, 77ab, 78, 79ab, 80ab, 81ab, 82ab, 83, 84ab, 85abc, 86ab, 87ab,88abc, 89, 90abc, 91, 158b, 159, 160, 165, 174.The next step consists of showing that the numerator r2*s2' of t2' does not equalzero. For that we use theorem GCD:8 | stating that a/b = 0.G if and only if a = 0.G| to conclude s2' 6= 0.G:"BrHenAdd.miz" 87a �H7: d <> 0.G by H0,GCD:33;H9: gcd(r2,s2,Amp) divides s2 by GCD:def 12;H8: s2/gcd(r2,s2,Amp) <> 0.G by H0,H7,H9,GCD:8;�File de�ned by parts 75ab, 76a, 77ab, 78, 79ab, 80ab, 81ab, 82ab, 83, 84ab, 85abc, 86ab, 87ab,88abc, 89, 90abc, 91, 158b, 159, 160, 165, 174.Thus we get the desired r2*s2' 6= 0.G by applying the de�ning property of integraldomains I x*y = 0.I �! (x = 0.I _ y = 0.I), stated in theorem VECTSP_2:15.Using again theorem GCD:8 completes the proof."BrHenAdd.miz" 87b �H6: r2*s2' <> 0.G by H0,H8,VECTSP_2:15;thus thesis by H6,H5,H2,GCD:8;end; :: Mthus thesis by M;end;�File de�ned by parts 75ab, 76a, 77ab, 78, 79ab, 80ab, 81ab, 82ab, 83, 84ab, 85abc, 86ab, 87ab,88abc, 89, 90abc, 91, 158b, 159, 160, 165, 174.1We could have conclude this at once by the theorem above. But then we would have to state atlevel H0 all the assumptions necessary to apply this theorem, rather than only the ones we need toestablish the current assertions. 69



In the following we prove two theorems directly connected with the output t of thealgorithm, thus showing that the output t of the algorithm indeed ful�lls the outputspeci�cation. These theorems fall into two groups. One group requires the applicationof the theorem of Brown and Henrici of section 2.3 (referenced as GCD:40). The othergroup consists of theorems due to special cases that can therefore proved without thistheorem.We continue with a theorem of the second kind that is due to step (3) of thealgorithm."BrHenAdd.miz" 88a �theorem(Amp is_multiplicative &r is_normalized_wrt Amp & s is_normalized_wrt Amp &not(r = 0.Q) & not(s = 0.Q) &r1 = num(r) & r2 = denom(r) & r2 <> 0.G &s1 = num(s) & s2 = denom(s) & s2 <> 0.G &r2 = 1.G & s2 = 1.G & t = fract(r1+s1,1.G))implies (t ~ r+s & t is_normalized_wrt Amp)�File de�ned by parts 75ab, 76a, 77ab, 78, 79ab, 80ab, 81ab, 82ab, 83, 84ab, 85abc, 86ab, 87ab,88abc, 89, 90abc, 91, 158b, 159, 160, 165, 174.After stating the necessary assumptions we �rst prove that t is a normalized fraction.To do so, according to the de�nition of is_normalized_wrt (Def73) we have to showgcd(num(t),denom(t),Amp) = 1.G and denom(t) 2 Amp. This is no trouble, becausewe have denom(t) = 1.G by assumption."BrHenAdd.miz" 88b �proofM: now assumeH0: r is_normalized_wrt Amp & s is_normalized_wrt Amp &r1 = num(r) & r2 = denom(r) & s1 = num(s) & s2 = denom(s) &r2 = 1.G & s2 = 1.G & t = fract(r1+s1,1.G);H2: 0.G <> 1.G by VECTSP_1:31;H1: num(t) = r1+s1 & denom(t) = 1.G by H0,H2,F1;H3: gcd(r1+s1,1.G,Amp) = 1.G & denom(t) 2 Amp by H1,GCD:21,GCD:32;H5: t is_normalized_wrt Amp by H3,H1,Def73;�File de�ned by parts 75ab, 76a, 77ab, 78, 79ab, 80ab, 81ab, 82ab, 83, 84ab, 85abc, 86ab, 87ab,88abc, 89, 90abc, 91, 158b, 159, 160, 165, 174.To show t ~ r+s, we only have to take num(r+s) = r1*s2+s1*r2 and denom(r+s) =r2*s21 and substitute r2 = 1.G and s2 = 1.G respectively to get the desired equationnum(t)*denom(r+s) = num(r+s)*denom(t)."BrHenAdd.miz" 88c �H7: num(r+s) = r1*s2+s1*r2 by H0,F2.= r1*1.G+s1*r2 by H0.= r1*1.G+s1*1.G by H0.= r1+s1*1.G by VECTSP_2:1.= r1+s1 by VECTSP_2:1;1Compare theorem F2 on page 65. 70



H8: denom(r+s) = r2*s2 by H0,F2.= 1.G*s2 by H0.= s2 by VECTSP_2:1.= 1.G by H0;H9: num(t)*denom(r+s) = (r1+s1)*denom(r+s) by H0,H2,F1.= (r1+s1)*1.G by H8.= num(r+s)*1.G by H7.= num(r+s)*denom(t) by H0,H2,F1;H10: t ~ (r+s) by H9,Def76;thus thesis by H10,H5;end; :: Mthus thesis by M;end;�File de�ned by parts 75ab, 76a, 77ab, 78, 79ab, 80ab, 81ab, 82ab, 83, 84ab, 85abc, 86ab, 87ab,88abc, 89, 90abc, 91, 158b, 159, 160, 165, 174.We conclude this section with proving a theorem that actually requires the use of theBrown/Henrici theorem. It shows that t computed in step (5) of the algorithm, whered = gcd(r2,s2) = 1, indeed is normalized and equivalent to r+s."BrHenAdd.miz" 89 �theorem(Amp is_multiplicative &r is_normalized_wrt Amp & s is_normalized_wrt Amp &not(r = 0.Q) & not(s = 0.Q) &r1 = num(r) & r2 = denom(r) & r2 <> 0.G &s1 = num(s) & s2 = denom(s) & s2 <> 0.G &not(r2 = 1.G & s2 = 1.G) & r2 <> 1.G & s2 <> 1.G &d 2 Amp & d = gcd(r2,s2,Amp) & d = 1.G &t = fract(r1*s2+r2*s1, r2*s2))implies (t ~ r+s & t is_normalized_wrt Amp)�File de�ned by parts 75ab, 76a, 77ab, 78, 79ab, 80ab, 81ab, 82ab, 83, 84ab, 85abc, 86ab, 87ab,88abc, 89, 90abc, 91, 158b, 159, 160, 165, 174.The �rst step of the proof is to establish gcd(r1,r2,Amp) = 1.G and gcd(s1,s2,Amp)= 1.G, which follows from the de�nition of is_normalized_wrt."BrHenAdd.miz" 90a �proofM: now assumeH0: Amp is_multiplicative &r is_normalized_wrt Amp & s is_normalized_wrt Amp &r1 = num(r) & r2 = denom(r) & r2 <> 0.G &s1 = num(s) & s2 = denom(s) & s2 <> 0.G &d = gcd(r2,s2,Amp) & d = 1.G & t = fract(r1*s2+r2*s1,r2*s2);H3: r2*s2 <> 0.G by H0,VECTSP_2:15;H1: denom(t) = r2*s2 by H0,H3,F1;H2: num(t) = r1*s2+r2*s1 by H0,H3,F1;H4: gcd(r1,r2,Amp) = 1.G & gcd(s1,s2,Amp) = 1.G by H0,Def73;�File de�ned by parts 75ab, 76a, 77ab, 78, 79ab, 80ab, 81ab, 82ab, 83, 84ab, 85abc, 86ab, 87ab, 88abc,89, 90abc, 91, 158b, 159, 160, 165, 174.To show gcd(num(t),denom(t),Amp) = 1.G we apply the theorem of Brown andHenrici. This is done by extending the term gcd(r1*s2+r2*s1,r2*s2,Amp)| which71



in fact is gcd(num(t),denom(t),Amp)| to the form the theorem requires. After thisapplication the assumption gcd(r2,s2,Amp) = 1.G allows us to infer that the originalterm also equals 1.G."BrHenAdd.miz" 90b �H5: gcd(r1*s2+r2*s1,r2*s2,Amp)= gcd(r1*(s2/1.G)+r2*s1,r2*s2,Amp) by GCD:10.= gcd(r1*(s2/1.G)+s1*(r2/1.G),r2*s2,Amp) by GCD:10.= gcd(r1*(s2/1.G)+s1*(r2/1.G),r2*(s2/1.G),Amp) by GCD:10.= gcd(r1*(s2/gcd(r2,s2,Amp))+s1*(r2/gcd(r2,s2,Amp)),r2*(s2/gcd(r2,s2,Amp)),Amp) by H0.= gcd(r1*(s2/gcd(r2,s2,Amp))+s1*(r2/gcd(r2,s2,Amp)),gcd(r2,s2,Amp),Amp) by GCD:40,H4,H0.= 1.G by H0,GCD:32;�File de�ned by parts 75ab, 76a, 77ab, 78, 79ab, 80ab, 81ab, 82ab, 83, 84ab, 85abc, 86ab, 87ab,88abc, 89, 90abc, 91, 158b, 159, 160, 165, 174.Next we show that denom(t) = r2*s2 is an element of the ample set Amp. This followsfrom the assumption that r and s are normalized fractions. Note that we need Amp tobe multiplicative to conclude r2*s2 2 Amp at level H6."BrHenAdd.miz" 90c �H8: r2 2 Amp & s2 2 Amp by H0,Def73;reconsider r2,s2 as Element of Amp by H8;H6: r2*s2 2 Amp by H0,GCD:def 9;H7: t is_normalized_wrt Amp by H6,H5,H2,H1,Def73;�File de�ned by parts 75ab, 76a, 77ab, 78, 79ab, 80ab, 81ab, 82ab, 83, 84ab, 85abc, 86ab, 87ab,88abc, 89, 90abc, 91, 158b, 159, 160, 165, 174.It remains to show that t ~ r+s. This is done by the same technique we used in thepreceding proof:"BrHenAdd.miz" 91 �H9: num(t)*denom(r+s) = (r1*s2+r2*s1)*denom(r+s) by H2.= (r1*s2+r2*s1)*(r2*s2) by H0,F2.= num(r+s)*(r2*s2) by H0,F2.= num(r+s)*denom(t) by H1;H13: t ~ (r+s) by H9,Def76;thus thesis by H13,H7;end; :: Mthus thesis by M;end;�File de�ned by parts 75ab, 76a, 77ab, 78, 79ab, 80ab, 81ab, 82ab, 83, 84ab, 85abc, 86ab, 87ab, 88abc,89, 90abc, 91, 158b, 159, 160, 165, 174.We end by mentioning that the Mizar article BrHenAdd.miz we just presentedindeed serves as a correctness proof for the generic Brown/Henrici addition algorithm,because the theorems proved in this article (by machine assistance) enable the con-struction of a Hoare calculus derivation for this algorithm.
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Chapter 5Veri�cation of a GenericEuclidean AlgorithmIn this section we will prove Mizar theorems that enable the construction of a Hoarecalculus derivation for the generic Euclidean algorithm of chapter 1.2. Unfortunatelyso far the Mizar library does not contain Euclidean domains. Therefore we introducethis algebraic structure in section 5.1. Subsequently we give Mizar proofs for theveri�cation conditions constructed by our veri�cation condition generator.15.1 De�nition of Euclidean DomainsIn the following we de�ne Euclidean domains in Mizar as well as their correspondingdegree functions. We include this de�nitions together with the veri�cation proofsconcerning the generic Euclidean algorithm in an extra Mizar article. Consequently,we have start with the necessary environment. For completion we also give the �leEUCL.VOC which contains the vocabulary items introduced in the text proper."eucl.voc" 92a �VEuclideanMEuclideanRingMDegreeFunction�"eucl.miz" 92b �environvocabularyVECTSP_1,VECTSP_2,REAL_1,LINALG_1,FUNC,GCD,EUCL;notationTARSKI,ARYTM,STRUCT_0,RLVECT_1,VECTSP_1,VECTSP_2,FUNCT_2,NAT_1,PRELAMB,GCD;constructorsNAT_1,ALGSTR_1,VECTSP_1,VECTSP_2,ARYTM,PRELAMB,GCD;definitionsTARSKI,GCD;theorems1Compare section 3.2. 73



TARSKI,VECTSP_1,VECTSP_2,GCD;clustersSTRUCT_0,VECTSP_1,VECTSP_2,FUNCT_2,GCD;schemesNAT_1;requirementsARYTM;beginreserve I for domRing;reserve a,b,c for Element of the carrier of I;hlemma for Euclidean algorithm 133i�File de�ned by parts 92b, 93, 94, 96abc, 97abc, 98abcd, 99abc.To introduce Euclidean domains, we use the already de�ned integral domains (ordomRing as it is called inMizar). An Euclidean domain is an integral domain ful�llingthe following attribute."eucl.miz" 93 �definitionlet I be domRing;attr I is Euclidean means :Def1:ex f being Function of the carrier of I,NAT st(for a,b being Element of the carrier of I st b <> 0.I holds(ex q,r being Element of the carrier of I st(a = q*b+r & (r = 0.I or f.r < f.b))));end;�File de�ned by parts 92b, 93, 94, 96abc, 97abc, 98abcd, 99abc.EachMizar type must have nonempty denotation.1 As a consequence before de�ningmode EuclideanRing as Euclidean domRing, we have to show the existence of sucha domain. Formally this is done with an existential cluster:"eucl.miz" 94 �definitioncluster Euclidean domRing;existenceproofhexistence proof for Euclidean domains 95a, . . . iend;definitionmode EuclideanRing is Euclidean domRing;end;�File de�ned by parts 92b, 93, 94, 96abc, 97abc, 98abcd, 99abc.To show existence of Euclidean domRing we have to construct a Mizar object ful-�lling all the requirements of the de�nition of Euclidean and domRing. Fortunately1This prohibits types like empty non-empty set.74



we do not have to do this from scratch, but can use mode Field and show that everyfunction f is an Euclidean function for �elds1 by using the fact that in a �eld eachelement b 6= 0 has a multiplicative inverse:hexistence proof for Euclidean domains 95ai �L:for F being Fieldfor f being Function of the carrier of F, NAT holds(for a,b being Element of the carrier of F st b <> 0.F holds(ex q,r being Element of the carrier of F st(a = q*b+r & (r = 0.F or f.r < f.b))))prooflet F be Field;let f be Function of the carrier of F, NAT;H2: now let a,b be Element of the carrier of F;assume H3: b <> 0.F;consider x being Element of the carrier of F such thatH5: b*x = 1.F by H3,VECTSP_1:30;H6: (a*x)*b+0.F= a*(b*x)+0.F by VECTSP_1:28.= a*1.F+0.F by H5.= a+0.F by VECTSP_1:29.= a by VECTSP_1:25;thus b <> 0.F implies(ex q,r being Element of the carrier of F st(a = q*b+r & (r = 0.F or f.r < f.b))) by H6;end; :: H2thus thesis by H2;end;�De�nition de�ned by parts 95ab.De�nition referenced in part 94.The rest of the existence proof is easy: A �eld F is an integral domain simply by theMizar theorem VECTSP_2:13, hence using the just proven lemma L we can completethe proof.2hexistence proof for Euclidean domains 95bi �consider F being Field;reconsider F as domRing by VECTSP_2:13;consider f being Function of the carrier of F,NAT;H2: (for a,b being Element of the carrier of F st b <> 0.F holds(ex q,r being Element of the carrier of F st(a =q*b+r & (r = 0.F or f.r < f.b)))) by L;H3: F is Euclidean by H2,Def1;thus thesis by H3;end;�De�nition de�ned by parts 95ab.De�nition referenced in part 94.In addition we de�ne the mode DegreeFunction of an Euclidean domain. Existenceof degree functions trivially follows from the de�nition above:1In fact this proves that every �eld is an Euclidean domain.2Note that we have to change the type of F using reconsider. The reason is that the attributeEuclidean is de�ned for integral domains only | and not for �elds.
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"eucl.miz" 96a �definitionlet E be EuclideanRing;mode DegreeFunction of E ->Function of the carrier of E, NAT means :Def2:(for a,b being Element of the carrier of E st b <> 0.E holds(ex q,r being Element of the carrier of E st(a = q*b+r & (r = 0.E or it.r < it.b))));existence by Def1;end;�File de�ned by parts 92b, 93, 94, 96abc, 97abc, 98abcd, 99abc.A second problem concerns the existence of a greatest common divisor functionin Euclidean domains.1 We de�ned the greatest common divisor according to theparadigm of genericity in the most general way: for gcd domains.2 Clearly this impliesthe existence of a greatest common divisor function in every gcd domain | especiallyin Euclidean domains. But Mizar does not know that Euclidean domains are gcddomains. So we �rst have to prove this.3"eucl.miz" 96b �hEuclidean domain is gcd domain 103a, . . . i�File de�ned by parts 92b, 93, 94, 96abc, 97abc, 98abcd, 99abc.To include the just mentioned property into the Mizar type hierarchy (which freesus from referencing this theorem each time we talk about a greatest common divisorfunction in Euclidean domains), we use the conditional cluster:"eucl.miz" 96c �definitioncluster Euclidean -> gcd-like domRing;coherence by EG;end;�File de�ned by parts 92b, 93, 94, 96abc, 97abc, 98abcd, 99abc.Now we have collected all we need to prove the Euclidean algorithm of section 1.2correct using the Mizar system. Note that we extended the Mizar type system byEuclidean domains, thus also gave a proof for a new SuchThat global declaration,namely for let Euclidean domain be gcd domain.5.2 Proofs of the Veri�cation ConditionsIn this section we prove the veri�cation conditions for the Euclidean algorithm wealready presented at the end of section 3.2. As usual we start with translating theglobal and local declarations of the algorithm into the Mizar language.1Do not confound this with algorithms computing the greatest common divisor function: Sucha function exists in every gcd domain by just attaching to each pair of elements the correspondinggreatest common divisor, whereas algorithms for this function may be varying or even non existent.2Compare section 4.3 and section 2.3.3This theorem will be proved in section 5.2. 76



"eucl.miz" 97a �reserve E for EuclideanRing;reserve d for DegreeFunction of E;reserve Amp for AmpleSet of E;reserve a,b,c for Element of the carrier of E;reserve u,v,s,t for Element of the carrier of E;�File de�ned by parts 92b, 93, 94, 96abc, 97abc, 98abcd, 99abc.For completeness we also state the following theorem being trivial for the Mizarproof checker. The reason is that although the theorem trivially holds our veri�cationcondition generator did not detect this."eucl.miz" 97b �theorem(u = a & v = b) implies (gcd(u,v,Amp) = gcd(a,b,Amp));�File de�ned by parts 92b, 93, 94, 96abc, 97abc, 98abcd, 99abc.The next theorem is due to step (2) of the algorithm: It captures the case that the�rst input variable a is zero."eucl.miz" 97c �theorem(u = a & v = b & u = 0.E & c 2 Amp & c is_associated_to v)implies (c 2 Amp & c = gcd(a,b,Amp))proof�File de�ned by parts 92b, 93, 94, 96abc, 97abc, 98abcd, 99abc.The proof consists of two steps. First we show that the normal form of v | the localvariable holding the second input variable b | equals the greatest common divisor ofa and b."eucl.miz" 98a �assume H1: u = a & v = b & u = 0.E & c 2 Amp & c is_associated_to v;H2: gcd(a,b,Amp) = gcd(u,v,Amp) by H1.= gcd(0.E,v,Amp) by H1.= NF(v,Amp) by GCD:30;�File de�ned by parts 92b, 93, 94, 96abc, 97abc, 98abcd, 99abc.The second step is to prove that c equals the normal form of v. This is an immediateconsequence of the assumptions c 2 Amp and c is_associated_to v:"eucl.miz" 98b �H4: c = NF(v,Amp) by H1,GCD:def 10;thus thesis by H4,H2,H1;end;�File de�ned by parts 92b, 93, 94, 96abc, 97abc, 98abcd, 99abc.The following theorem concerns the last step of the algorithm: It states that the normalform c computed after the while-loop indeed is the greatest common divisor of the inputvariables a and b. 77



"eucl.miz" 98c �theorem(gcd(u,v,Amp) = gcd(a,b,Amp) & v = 0.E &c 2 Amp & c is_associated_to u)implies (c 2 Amp & c = gcd(a,b,Amp))�File de�ned by parts 92b, 93, 94, 96abc, 97abc, 98abcd, 99abc.This theorem is nearly the same as the one before. Consequently its proof is hardlymore than a copy of the one above:"eucl.miz" 98d �proofassume H1: gcd(u,v,Amp) = gcd(a,b,Amp) & v = 0.E &c 2 Amp & c is_associated_to u;H2: gcd(a,b,Amp) = gcd(u,v,Amp) by H1.= gcd(u,0.E,Amp) by H1.= NF(u,Amp) by GCD:30.= c by H1,GCD:def 10;thus thesis by H1,H2;end;�File de�ned by parts 92b, 93, 94, 96abc, 97abc, 98abcd, 99abc.The last theorem we have to prove, shows correctness of the while-loop. In fact itproves Euclid's equation about greatest common divisors gcd(a; b) = gcd(b; amod b)for b 6= 0:1"eucl.miz" 99a �theorem(gcd(u,v,Amp) = gcd(a,b,Amp) & v <> 0.E &u = s*v+t & (t = 0.E or d.t < d.v))implies (gcd(v,t,Amp) = gcd(a,b,Amp))�File de�ned by parts 92b, 93, 94, 96abc, 97abc, 98abcd, 99abc.To prove the theorem we �rst show that gcd(v,t,Amp) and gcd(a,b,Amp) are asso-ciates of each other:"eucl.miz" 99b �proofassume H1: gcd(u,v,Amp) = gcd(a,b,Amp) & v <> 0.E &u = s*v+t & (t = 0.E or d.t < d.v);H2: gcd(v,t,Amp) divides gcd(u,v,Amp)hproof of H2 100aiH3: gcd(u,v,Amp) divides gcd(v,t,Amp)hproof of H3 100biH4: gcd(u,v,Amp) is_associated_to gcd(v,t,Amp)by H2,H3,GCD:def 3;�File de�ned by parts 92b, 93, 94, 96abc, 97abc, 98abcd, 99abc.By the de�nition of the greatest common divisor function both gcd(v,t,Amp) andgcd(u,v,Amp) are a member of the ample set Amp. Thus they are equal, and we cancomplete the proof using the assumption gcd(u,v,Amp) = gcd(a,b,Amp).1Compare the description of the algorithm on page 4.78



"eucl.miz" 99c �H5: gcd(u,v,Amp) is Element of Amp by GCD:def 12;H6: gcd(v,t,Amp) is Element of Amp by GCD:def 12;H7: gcd(v,t,Amp) = gcd(u,v,Amp) by H4,H5,H6,GCD:22.= gcd(a,b,Amp) by H1;thus thesis by H7;end;�File de�ned by parts 92b, 93, 94, 96abc, 97abc, 98abcd, 99abc.We end with the proofs of the division properties of gcd(v,t,Amp) and gcd(a,b,Amp)necessary to complete the above proof. They are easy done requiring only fundamentalfacts of the predicate divides and the greatest common divisor function.hproof of H2 100ai �proofM1: gcd(v,t,Amp) divides t & gcd(v,t,Amp) divides v by GCD:27;M3: v divides s*v by GCD:6;M4: gcd(v,t,Amp) divides s*v by M1,M3,GCD:2;M5: gcd(v,t,Amp) divides s*v+t by M4,M1,L1;M6: gcd(v,t,Amp) divides u by M5,H1;thus thesis by M1,M6,GCD:def 12;end;�De�nition referenced in part 99b.hproof of H3 100bi �proofM1: gcd(u,v,Amp) divides u & gcd(u,v,Amp) divides v by GCD:27;M3: v divides s*v by GCD:6;M4: gcd(u,v,Amp) divides s*v by M1,M3,GCD:2;M5: gcd(u,v,Amp) divides u-(s*v) by M1,M4,L1;M6: t = u-(s*v) by H1,VECTSP_2:22;M7: gcd(u,v,Amp) divides t by M5,M6;thus thesis by M1,M7,GCD:def 12;end;�De�nition referenced in part 99b.
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Chapter 6Mizar and AlgebraicTypecheckingNow that we have seen how to prove that a generic algebraic algorithm ful�lls itsspeci�cation using Mizar, we come back to the second kind of veri�cation concerninggeneric algorithms we mentioned in section 1.4: the problem of instantiations. Wepointed out that it is by no means trivial in the �eld of computer algebra to show thata particular domain ful�lls the requirements given by the algorithm. This question isdeeply connected with SuchThat's global declarations. In the following we discusshow to treat this problem using the Mizar system.6.1 Global Declarations in SuchThatGlobal declarations enable a SuchThat user to build the algebraic environment nec-essary for a generic algebraic algorithm: They introduce the algebraic objects the algo-rithm shall deal with. Furthermore, based on these global declarations the SuchThattype checker tests whether a particular instantiation is correct with respect to a genericalgorithm.SuchThat declarations fall into two categories. The �rst one | which we alreadyused in our example algorithms | allows one to introduce identi�ers for algebraicobjects, for example let R be Ring ;let G be gcdDomain ;let Amp be AmpleSet of G:The other kind of SuchThat declarations refers to mathematical theorems, thus re-lating two mathematical structures. Examples arelet GF(p) be prime field ;let prime field be field ;let GF(p) also be vector space:All these declarations are loaded in a so-called algebraic database used by the typechecker. Following the implications given by the declarations, the type checker decideswhether the actual parameters of a procedure call ful�ll the necessary requirements80



given by the speci�cation of the formal parameters. Consequently the amount andthe kind of declarations is crucial for the acceptance of an instantiated generic alge-braic algorithm by the typechecker.1 For example, the above declarations state thatan algorithm written for arbitrary �elds is correctly instantiated if called with GF(p)| provided that p is a prime. The Brown/Henrici addition algorithm called with theintegers will be accepted if the algebraic database allows inferring that the integers area gcd domain.2Note that there is no check whether the declarations represent valid mathematicaltheorems. For instance, no error message will occur if a user declares the following.let ring be fieldConsequently, algorithms over �elds will be considered correct if called with the inte-gers. This obviously leads to runtime errors due to the inversion operation of �eldsbeing non existent for integers. So it seems natural to look for possibilities to verifymathematical correctness of SuchThat declarations.For already mentioned reasons the Mizar system is capable of expressing and toproving such theorems. We will give an extended example in the next section. Notethat we do not propose to run Mizar to check global declarations at compile time.This would lead to an unacceptable loss of eÆciency. Instead we suggest verifying thetheorems contained in the algebraic database,3 thus improving the reliability of theknowledge the type checker uses.Furthermore there are cases where such type questions reach into the veri�cationof the generic algorithms themselves. Consider as an example again our Euclideanalgorithm: We de�ned the greatest common divisor function for arbitrary gcd domains.Consequently, to use this function in Euclidean domains we must tell the Mizar proofchecker that Euclidean domains are a special kind of gcd domains. But this impliesthat generic algorithms written for arbitrary gcd domains are correctly instantiated byEuclidean domains; in other words the correctness of the following global SuchThatdeclaration let EuclideanRing be gcdDomain:The next section gives an example for aMizar proof of theorems arising during theveri�cation of SuchThat global declarations, namely for the property of Euclideandomains we just presented.6.2 Proving Declarations CorrectIn this section we want to give an example for proving global SuchThat declarationscorrect using Mizar | not at least to present once again the fascinating facilities ofthe Mizar proof script language. We will show the following theorem:1We believe that in a future version of SuchThat the algebraic database will contain some built-inknowledge concerning important algebraic domains.2Properties of integers are an example for such built-in knowledge.3This is the same approach used before, when showing correctness of generic algebraic algorithmswith respect to their speci�cations: Obviously the proofs are not done during compilation; they arerather to raise certainty of the algorithmic library.81



hEuclidean domain is gcd domain 103ai �theoremEG:for E being EuclideanRing holds E is gcdDomain�De�nition de�ned by parts 103ab.De�nition referenced in part 96b.From the mathematical point of view this is just a theorem connecting two algebraicdomains. However from the generic algorithmic point of view it states that arbitraryalgorithms written for gcd domains can be correctly instantiated by Euclidean domains;in particular the generic Brown/Henrici addition algorithm is correct (for Euclideandomains), if greatest common divisors are computed by the Euclidean algorithm ofsection 1.2.To prove this theorem we have to show that Euclidean domains ful�ll the predicategcd-like:1hEuclidean domain is gcd domain 103bi �prooflet E be EuclideanRing;M: now let d be DegreeFunction of E;N: E is gcd-likehproof of N 104aithus thesis by N;end; :: Mthus thesis by M;end;�De�nition de�ned by parts 103ab.De�nition referenced in part 96b.To be more precise, we have to prove that for arbitrary elements x and y of E thereexists a greatest common divisor z. We proceed by case distinction.hproof of N 104ai �prooflet x,y be Element of the carrier of E;M1: now per cases;case A: x = 0.E;hproof of case A 104bicase B: x <> 0.E;hproof of case B 105a, . . . iend; :: casesthus thesis by M1;end;�De�nition referenced in part 103b.The �rst case | x = 0.E | is rather trivial. We simply show that y is a greatestcommon divisor of y and 0.E:21Compare the de�nition of gcd-like on page 57.2Note that showing E to be a gcd domain does not involve ample sets. It suÆces to show that agreatest common divisor exists. Ample sets are necessary only for de�ning a greatest common divisorfunction to get a unique result. 82



hproof of case A 104bi �A1: y divides y by GCD:2;A2: y*0.E = 0.E by VECTSP_2:26;A3: y divides 0.E by A2,GCD:def 1;A4: y divides x by A3,A;A5: for zz being Element of the carrier of Est (zz divides x & zz divides y)holds (zz divides y);thus thesis by A1,A5,A4;�De�nition referenced in part 104a.The other case requires some more work. We follow the ideal theoretic proof given in[Lip81].1 We start by setting M to the set of linear combinations of x and y (the idealgenerated by x and y):hproof of case B 105ai �set M = { z where z is Element of the carrier of E:ex s,t being Element of the carrier of Est z = s*x+t*y};B1: x 2 M & y 2 Mhproof of B1 111bi�De�nition de�ned by parts 105ab, 106abc, 108abc.De�nition referenced in part 104a.The key to the proof is to take an element g 6= 0.E with minimal degree d.g out ofM.2 To do so, we �rst have to show, that such an element g exists. We use the followingMizar scheme stating that every subset of the natural numbers contains a minimalelement:scheme Min f P[Nat] g :ex k st P[k] & for n st P[n] holds k � nprovided ex k st P[k];So we de�ne P[Nat] suitable for our situation | P holds for the natural numbern, if there is an element 0:E 6= z 2 M having n as its degree | and prove the necessaryprecondition about P to apply scheme Min.hproof of case B 105bi �defpred P[Nat] meansex z being Element of the carrier of Est (z 2 M & z <> 0.E & 1 = d.z);B2: ex k being Nat st P[k]proofB21: x 2 M & x <> 0.E by B,B1;B23: ex k being Nat st k = d.x;thus thesis by B21,B23;end;1Note that using the same method one can show that Euclidean domains are principal ideal do-mains.2The element g will turn out to be a greatest common divisor of x and y.83



consider k being Nat such thatB4: P[k] & for n being Nat st P[n] holds k � n from Min(B2);�De�nition de�ned by parts 105ab, 106abc, 108abc.De�nition referenced in part 104a.Now we can choose the desired element g being the element z of E for which P[k]holds. In addition we de�ne G to be the set of products with g (again this actually isthe ideal generated by g).hproof of case B 106ai �consider g being Element of the carrier of E such thatB5: g 2 M & g <> 0.E & k = d.g &for n being Nat st(ex z being Element of the carrier of Est (z 2 M & z <> 0.E & n = d.z)) holds k � n by B4;set G = { z where z is Element of the carrier of E:ex r being Element of the carrier of E st z = r*g};�De�nition de�ned by parts 105ab, 106abc, 108abc.De�nition referenced in part 104a.In fact the main e�ort to show that the element g is a greatest common divisor of xand y goes into proving the following identity of M and G. But before we give the proof,we want to show how to conclude using this property that g is a greatest commondivisor of x and y.hproof of case B 106bi �B11: M = Ghproof of B11 109ai�De�nition de�ned by parts 105ab, 106abc, 108abc.De�nition referenced in part 104a.The above equation allows us to infer x 2 G and y 2 G, from which we immediatelyconclude the �rst two requirements of a greatest common divisor for x and y.hproof of case B 106ci �B12: g divides x & g divides yproofH1: x 2 G & y 2 G by B11,B1;consider zx being Element of the carrier of E such thatH2: x = zx &ex r being Element of the carrier of E st zx = r*g by H1;consider zy being Element of the carrier of E such thatH3: y = zy &ex r being Element of the carrier of E st zy = r*g by H1;thus thesis by H2,H3,GCD:def 1;end;�De�nition de�ned by parts 105ab, 106abc, 108abc.De�nition referenced in part 104a.
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It remains to show the "greatest property" of g. This is done by decomposing x, y andg and some equational reasoning. First we decompose x and y into products with zdue to the assumptions x divides z and y divides z.hproof of case B 108ai �B13: for z being Element of the carrier of Eholds (z divides x & z divides y) implies z divides gprooflet z be Element of the carrier of E;assume H1: z divides x & z divides y;consider u being Element of the carrier of E such thatH2: x = z*u by H1,GCD:def 1;consider v being Element of the carrier of E such thatH3: y = z*v by H1,GCD:def 1;�De�nition de�ned by parts 105ab, 106abc, 108abc.De�nition referenced in part 104a.On the other hand g 2 M = fz j 9s; t : z = s � x + t � yg gives us the following decom-position of g into a sum of products with x and y.hproof of case B 108bi �consider zz being Element of the carrier of E such thatH4: g = zz &ex s,t being Element of the carrier of E stzz = s*x+t*y by B5;consider s,t being Element of the carrier of E such thatH5: zz = s*x+t*y by H4;�De�nition de�ned by parts 105ab, 106abc, 108abc.De�nition referenced in part 104a.Substituting the products for x and y in the decomposition of g (and some equationalreasoning based on the arithmetics of E) shows, that g is a product of z, hence thedesired g divides z completing the proof of our theorem.hproof of case B 108ci �H6: g = s*x+t*y by H4,H5.= s*(u*z)+t*y by H2.= s*(u*z)+t*(v*z) by H3.= (s*u)*z+t*(v*z) by VECTSP_1:def 16.= (s*u)*z+(t*v)*z by VECTSP_1:def 16.= (s*u+t*v)*z by VECTSP_2:1;thus thesis by H6,GCD:def 1;end;thus thesis by B12,B13;�De�nition de�ned by parts 105ab, 106abc, 108abc.De�nition referenced in part 104a.In the rest of this section we present the proof of M = G to �ll in the gap we left in theproof above. As usual we show such a statement by two implications.
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hproof of B11 109ai �proofB6: for z being Any holds z 2 M implies z 2 Ghproof of B6 109b, . . . iB7: for z being Any holds z 2 G implies z 2 Mhproof of B7 110a, . . . ithus thesis by B6,B7,TARSKI:2;end;�De�nition referenced in part 106b.To prove M � G we apply the Euclidean property of E: We divide an arbitrary z 2 M byg getting the following.1hproof of B6 109bi �prooflet z be Any;assume B61: z 2 M;consider z2 being Element of the carrier of E such thatB67: z = z2 &ex s,t being Element of the carrier of E stz2 = s*x+t*y by B61;reconsider z as Element of the carrier of E by B67;consider q,r being Element of the carrier of E such thatB62: z = q*g+r & (r = 0.E or d.r < d.g) by B5,Def2;�De�nition de�ned by parts 109bc.De�nition referenced in part 109a.After showing r 2 M, we can conclude r = 0.E due to the minmality of g's degree.This implies z = q*g, hence the desired z 2 G = fx j 9y : x = y � gg.hproof of B6 109ci �B63: r 2 Mhproof of B63 111ciB64: r = 0.E by B62,B63,B5;B65: z = q*g+r by B62.= q*g+0.E by B64.= q*g by VECTSP_2:1;thus thesis by B65;end;�De�nition de�ned by parts 109bc.De�nition referenced in part 109a.The proof of the other direction G � M again is done by taking the decompositions ofz and g followed by a suitable substitution. We start with decomposing an arbitraryz 2 G into z = u*g.1Note that we have to change the type of z from Any to Element of the carrier of E usingreconsider before the operations of E are applicable to z.
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hproof of B7 110ai �prooflet z be Any;assume B71: z 2 G;consider z2 being Element of the carrier of E such thatB72: z = z2 &ex s being Element of the carrier of E stz2 = s*g by B71;reconsider z as Element of the carrier of E by B72;consider u,v being Element of the carrier of E such thatB73: z2 = u*g by B72;B74: z = u*g by B72,B73;�De�nition de�ned by parts 110ab, 111a.De�nition referenced in part 109a.In addition we know that g = s*x+t*y for suitable elements s and t, because g is anElement of the set M of linear combinations of x and y.hproof of B7 110bi �consider z1 being Element of the carrier of E such thatB75: g = z1 &ex s,t being Element of the carrier of E stz1 = s*x+t*y by B5;consider s,t being Element of the carrier of E such thatB76: z1 = s*x+t*y by B75;B77: g = s*x+t*y by B75,B76;�De�nition de�ned by parts 110ab, 111a.De�nition referenced in part 109a.Like above substituting g by s*x+t*y in u*g gives the desired representation of z interms of products with x and y:hproof of B7 111ai �B78: z = u*g by B74.= u*(s*x+t*y) by B77.= u*(s*x)+u*(t*y) by VECTSP_2:1.= (u*s)*x+u*(t*y) by VECTSP_1:def 16.= (u*s)*x+(u*t)*y by VECTSP_1:def 16;thus thesis by B78;end;�De�nition de�ned by parts 110ab, 111a.De�nition referenced in part 109a.We conclude this section with giving the proofs of some technical statements we leftout above. The �rst one states that x and y are contained in the set M | which wasthe ideal generated by x and y.
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hproof of B1 111bi �proofH1: 1.E*x+0.E*y= 1.E*x+0.E by VECTSP_2:26.= 1.E*x by VECTSP_2:1.= x by VECTSP_2:1;H2: 0.E*x+1.E*y= 0.E+1.E*y by VECTSP_2:26.= 1.E*y by VECTSP_2:1.= y by VECTSP_2:1;thus thesis by H1,H2;end;�De�nition referenced in part 105a.The second proof shows that r is an Element of M if r is given by z = q*g+r. Weneeded this fact to conclude r = 0.E in the proof of M = G.hproof of B63 111ci �proofH1: z+(-(q*g))= (q*g+r)+(-(q*g)) by B62.= (r+q*g)+(-(q*g)).= r+((q*g)+(-(q*g))) by VECTSP_2:1.= r+0.E by VECTSP_2:1.= r by VECTSP_2:1;consider z1 being Element of the carrier of Esuch that H2: g = z1 &ex s,t being Element of the carrier of E stz1 = s*x+t*y by B5;consider s,t being Element of the carrier of Esuch that H3: z1 = s*x+t*y by H2;H4: g = s*x+t*y by H2,H3;consider u,v being Element of the carrier of Esuch that B68: z2 = u*x+v*y by B67;B69: z = u*x+v*y by B67,B68;H5: r = (u+((-q)*s))*x+(v+((-q)*t))*yhproof of H5 112ithus thesis by H5;end;�De�nition referenced in part 109c.The following last proof is part of the one we just presented. It is the equationalreasoning necessary to show level H5 stating the required linear combination of r interms of x and y.hproof of H5 112i �proofH: r = z+(-(q*g)) by H1.= z+(-(q*(s*x+t*y))) by H4.= z+(-(q*(s*x)+q*(t*y))) by VECTSP_2:1.= z+((-(q*(s*x)))+(-(q*(t*y))))by VECTSP_2:25.= (u*x+v*y)+((-(q*(s*x)))+(-(q*(t*y))))by B69.= ((u*x+v*y)+(-(q*(s*x))))+(-(q*(t*y)))88



by VECTSP_2:1.= ((u*x+(-(q*(s*x))))+v*y)+(-(q*(t*y)))by VECTSP_2:1.= (u*x+(-(q*(s*x))))+(v*y+(-(q*(t*y))))by VECTSP_2:1.= (u*x+((-q)*(s*x)))+(v*y+(-(q*(t*y))))by VECTSP_2:28.= (u*x+((-q)*(s*x)))+(v*y+((-q)*(t*y)))by VECTSP_2:28.= (u*x+((-q)*s)*x)+(v*y+((-q)*(t*y)))by VECTSP_1:def 16.= (u*x+((-q)*s)*x)+(v*y+((-q)*t)*y)by VECTSP_1:def 16.= (u+((-q)*s))*x+(v*y+((-q)*t)*y)by VECTSP_2:1.= (u+((-q)*s))*x+(v+((-q)*t))*yby VECTSP_2:1;thus thesis by H;end;�De�nition referenced in part 111c.
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Chapter 7Conclusions and Further WorkWe have presented a new approach to bringing machine assistance into the �eld ofgeneric programming. Thereby we focused on generic algebraic algorithms and theirveri�cation. Using the Mizar system we succeeded in verifying generic versions ofBrown/Henrici addition and of Euclid's algorithm on the appropriate algebraic level;thus our proofs are independent of any particular instantiation. We also showed,how to support algebraic typechecking with Mizar, and hence how to check algebraicdeclarations used in the generic programming language SuchThat.The emphasis is on the fact that algebraic proof in Mizar can be directly writtenin the language of algebra and need not be transformed into a more or less completelydi�erent proof language. In addition we provided a veri�cation condition generator,which computes out of a given SuchThat algorithm and user-given lemmata the the-orems necessary to establish its correctness.Mizar's original purpose was to bring mathematics | including the necessary prooftechniques | onto the computer and to build a library of mathematical knowledge.In fact, so far the library is nothing more than a collection of articles accepted by theMizar proof checker: Reusing the knowledge is not supported as well as it needs tobe for our purpose. Consequently, to build a veri�cation system for generic algebraicalgorithms around the Mizar system requires some further work. In this context wedo mention four points.� First of all, we need a tool for searching the Mizar library. At the beginning ofa veri�cation we have to look at which kinds of algebraic domains are already in-cluded in the library and which theorems about these domains have been proven.We did some experiments using Glimpse ([MG96]), a powerful indexing andquery system: After indexing the �les | the Mizar abstracts in our case |it allows one to look through these �les without the need of specifying �lenames. It enables the user to look for arbitrary keywords, for instance gcdDomain,VectorSpace or finite-dimensional.� In a next step the search tool should be extended not only to look for algebraickeywords, but also for whole theorems. This would enable the user to look fortheorems similar to the ones he wants to prove. Using such theorems may shortenthe veri�cation proofs dramatically. The veri�cation of the Brown/Henrici ad-dition algorithm for example would have been a third shorter if we could have90



used theorems about divisibility in integral domains and about greatest commondivisors.� Though theMizar system provides a proof script language capable of expressingalgebraic structures appropriately, reasoning about these structures sometimes isa bit large-scale. For example to prove equations in integral domains we had to doeach little step using explicitly the domain's axioms. To handle equational rea-soning there are well known better methods, for instance rewriting systems; for acouple of algebraic domains there even exist canonical rewrite systems ([LeC86]).It seems promising to extend Mizar by such procedural proof techniques (com-pare also [Har96]).� Finally we also would like to have a translator transforming theorems constructedby the veri�cation condition generator from the Scheme representation into theMizar proof script language as well as other technical tools making it morecomfortable to use the Mizar system.Besides the veri�cation method presented for generic algebraic algorithms there aretwo other facets of our work we consider worth mentioning:� De�ning nontrivial algebraic domains and proving properties about these do-mains is more than an unwelcome e�ort necessary to prove generic algebraicalgorithms correct. It also contributes to the �eld of formalized mathematics;namely to the Qed-Project ([Boy94], [Mat95]), which aims to construct a com-puter system representing important mathematical knowledge as well as the nec-essary mathematical proof techniques.� We also consider our work as a motivation for the use of literate programming([Knu84]) in the �eld of computer algebra. We believe that it is of considerableadvantage to combine development, presentation and veri�cation of algorithmsin one document leading to more transparency and con�dence in the correctnessof (generic algebraic) algorithms. We plan to provide the description of somemore example algorithms rigorously following this approach.Writing generic algebraic algorithms is a hard job: One has to look for abstractalgebraic domains suitable for the method one wants to implement; in addition usingthe constructed generic algorithms with particular instantiations again raises nontrivialalgebraic questions.Consequently, writing correct generic algebraic algorithms requires a careful wayof dealing with the underlying mathematical structures. We hope that this thesis isa �rst step to support a rigorous development of provable correct generic algebraicalgorithms.
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Appendix AAdditional Mizar Code forGeneric Brown/HenriciAdditionIn this section we present the Mizar code we left out in the text and additionallemmata necessary to prove the generic Brown/Henrici addition algorithm correct.Consequently the Mizar �les extracted from this document by StWeb are completeMizar articles that are accepted by the Mizar proof checker.We start with a description of the vocabulary �le GCD.VOC:"gcd.voc" 122 �RdividesRis_unitRis_associated_toRis_not_associated_toRare_canonical_wrtRcanonicalRare_normalized_wrtRis_multiplicativeOadd1Oadd2Omult1Omult2OgcdONFOClassOClassesVgcd-likeMgcdDomainMAmpSetMAmpleSet�The capitel letters preceding the entire name indicate the kind of the following symbol.For instance the letter O means that this symbol is (and must be) used for a function.96



M denotes mode symbols R predicate symbols and V attribute symbols. The di�erencebetween predicates and attributes is that a attribute can be attached to an alreadyexisting mode to de�ne a new one (like we did when de�ning mode gcdDoamin to begcd-like domRing in section 4.3).A.1 Lemmata about DivisibilityLet us start with lemmata about divisibility, namely about the predicates divides,is_unit, is_associated_to and the function /. Altogether we proved 23 lemmataincluding three further ones necessary for the veri�cation of the generic Euclideanalgorithm.htext proper 123i �theoremIDOM1:for a,b,c being Element of the carrier of I holdsa <> 0.I implies ((a*b = a*c implies b = c) &(b*a = c*a implies b = c))prooflet a,b,c be Element of the carrier of I;assume H0: a <> 0.I;K1: now assume H1: a*b = a*c;H2: 0.I = a*b+(-(a*b)) by VECTSP_2:1.= a*b+(-(a*c)) by H1.= a*b+a*(-c) by VECTSP_2:28.= a*(b+(-c)) by VECTSP_2:1.= a*(b - c) by VECTSP_1:12;H3: b - c = 0.I by H2,H0,VECTSP_2:15;H4: c = 0.I+c by VECTSP_2:1.= (b - c)+c by H3.= (b+(-c))+c by VECTSP_1:12.= b+(c+(-c)) by VECTSP_2:1.= b+0.I by VECTSP_2:1.= b by VECTSP_2:1;thus b = c by H4;end;thus thesis by K1;end;�De�nition de�ned by parts 16, 123.De�nition referenced in part 15a."gcd.miz" 124 �theoremL1a:for a,b,c,d being Element of the carrier of I holds(b divides a & d divides c) implies b*d divides a*cprooflet a,b,c,d be Element of the carrier of I;assume H1: b divides a & d divides c;consider x being Element of the carrier of I such thatH2: b*x = a by H1,Def1;consider y being Element of the carrier of I such thatH3: d*y = c by H1,Def1;H4: (b*d)*(y*x) = ((b*d)*y)*x by VECTSP_1:def 1697



.= (b*(d*y))*x by VECTSP_1:def 16.= (b*c)*x by H3.= c*(b*x) by VECTSP_1:def 16.= a*c by H2;thus thesis by H4,Def1;end;theoremL2:for a,b,c being Element of the carrier of I holdsa is_associated_to a &(a is_associated_to b implies b is_associated_to a) &((a is_associated_to b & b is_associated_to c)implies a is_associated_to c)prooflet A,B,C be Element of the carrier of I;H1: A*1.I = A by VECTSP_2:1;H2: A divides A by H1,Def1;H9: A is_associated_to A by H2,Def3;M1: nowassume H3: A is_associated_to B;H4: A divides B & B divides A by H3,Def3;thus A is_associated_to B impliesB is_associated_to A by H4,Def3;end; :: M1M2: nowassume H5: A is_associated_to B & B is_associated_to C;H6: A divides B & B divides A by H5,Def3;H7: B divides C & C divides B by H5,Def3;H8: A divides C & C divides A by H6,H7,L1;thus (A is_associated_to B & B is_associated_to C)implies A is_associated_to C by H8,Def3;end; ::M2thus thesis by H9,M1,M2;end;theoremL3:for a,b,c being Element of the carrier of I holdsa divides b implies c*a divides c*bprooflet A,B,C be Element of the carrier of I;assume H1: A divides B;consider D being Element of the carrier of I such thatH2: A*D = B by H1,Def1;H3: (C*A)*D = C*(A*D) by VECTSP_1:def 16.= C*B by H2;thus thesis by H3,Def1;end;theoremL6:for a,b being Element of the carrier of I holdsa divides a*b & b divides a*b by Def1;98



theoremL6a:for a,b,c being Element of the carrier of I holdsa divides b implies a divides b*cprooflet a,b,c be Element of the carrier of I;assume H0: a divides b;consider d being Element of the carrier of I such thatH1: a*d = b by H0,Def1;H2: a*(d*c) = (a*d)*c by VECTSP_1:def 16.= b*c by H1;H3: a divides b*c by H2,Def1;thus thesis by H3;end;theoremfor a,b being Element of the carrier of I holds(b divides a & b <> 0.I)implies (a/b = 0.I iff a = 0.I)prooflet a,b be Element of the carrier of I;assume H0: b divides a & b <> 0.I;K1: now assume H1: a/b = 0.I;consider d being Element of the carrier of I such thatH2: d = a/b;H2a: d = 0.I by H1,H2;H3: a = d*b by H2,H0,Def5.= 0.I*b by H2a.= 0.I by VECTSP_2:26;thus a/b = 0.I implies a = 0.I by H3;end; :: K1K2: now assume H1: a = 0.I;consider d being Element of the carrier of I such thatH2: d = a/b;H3: 0.I = a by H1.= d*b by H2,H0,Def5;H4: d = 0.I by H3,H0,VECTSP_2:15;thus a = 0.I implies a/b = 0.I by H2,H4;end; :: K2thus thesis by K1,K2;end;theoremL7:for a being Element of the carrier of I holdsa <> 0.I implies a/a = 1.Iprooflet A be Element of the carrier of I;assume H0: A <> 0.I;consider A1 being Element of the carrier of I such thatH1: A1 = A/A;H2: A divides A by L1;H3: A1*A = A by H0,H1,H2,Def5.= 1.I*A by VECTSP_2:1; 99



H5: A1 = 1.I by H3,H0,IDOM1;thus thesis by H1,H5;end;theoremfor a being Element of the carrier of I holds a/1.I = aprooflet a be Element of the carrier of I;consider A being Element of the carrier of I such thatH0: A = a/1.I;H1: 1.I <> 0.I by VECTSP_1: def 21;H2: 1.I*a = a by VECTSP_2:1;H3: 1.I divides a by H2,Def1;H4: A = A*1.I by VECTSP_2:1.= a by H0,H1,H3,Def5;thus thesis by H4,H0;end;theoremL8:for a,b,c being Element of the carrier of I holdsc <> 0.I implies(((c divides a*b & c divides a) implies (a*b)/c = (a/c)*b) &((c divides a*b & c divides b) implies (a*b)/c = a*(b/c)))prooflet A,B,C be Element of the carrier of I;assume H0: C <> 0.I;K1: nowassume H1: C divides A*B & C divides A;consider A1 being Element of the carrier of I such thatH2: A1 = A*B/C;H3: A1*C = A*B by H2,H1,H0,Def5;consider A2 being Element of the carrier of I such thatH4: A2 = A/C;H5: A2*C = A by H4,H1,H0,Def5;H6: A1*C = A*B by H3.= (A2*C)*B by H5.= A2*(C*B) by VECTSP_1:def 16.= (A2*B)*C by VECTSP_1:def 16;H7: A1 = A2*B by H0,H6,IDOM1;H8: (A*B)/C = (A/C)*B by H7,H2,H4;thus (C divides A*B & C divides A) implies(A*B)/C = (A/C)*B by H8;end; :: K1K2: nowassume H1: C divides A*B & C divides B;consider A1 being Element of the carrier of I such thatH2: A1 = (A*B)/C;H3: A1*C = A*B by H2,H1,H0,Def5;consider A2 being Element of the carrier of I such thatH4: A2 = B/C;H5: A2*C = B by H4,H1,H0,Def5;H6: A1*C = A*B by H3.= A*(A2*C) by H5.= (A*A2)*C by VECTSP_1:def 16;100



H7: A1 = A*A2 by H0,H6,IDOM1;H8: (A*B)/C = A*(B/C) by H7,H2,H4;thus (C divides A*B & C divides B) implies(A*B)/C = A*(B/C) by H8;end;thus thesis by K1,K2;end;theoremfor a,b,c being Element of the carrier of I holds(c <> 0.I &c divides a & c divides b & c divides a+b)implies (a/c)+(b/c) = (a+b)/cprooflet a,b,c be Element of the carrier of I;assume H0: c <> 0.I;assume H1: c divides a & c divides b & c divides a+b;consider d being Element of the carrier of I such thatH2: d = a/c;consider e being Element of the carrier of I such thatH3: e = b/c;H4: d*c = a by H2,H1,H0,Def5;H5: e*c = b by H3,H1,H0,Def5;H6: a+b = d*c+e*c by H4,H5.= (d+e)*c by VECTSP_2:1;H7: c divides c by L1;H8: c divides (d+e)*c by H6,H1;H9: (a+b)/c = ((d+e)*c)/c by H6.= (d+e)*(c/c) by H0,H7,H8,L8.= (d+e)*1.I by H0,L7.= d+e by VECTSP_2:1;thus thesis by H9,H2,H3;end;theoremfor a,b,c,d being Element of the carrier of I holds(b <> 0.I & d <> 0.I & b divides a & d divides c)implies (a/b)*(c/d) = (a*c)/(b*d)prooflet a,b,c,d be Element of the carrier of I;assume H0: b <> 0.I & d <> 0.I & b divides a & d divides c;consider x being Element of the carrier of I such thatH1: x = a/b;consider y being Element of the carrier of I such thatH2: y = c/d;consider z being Element of the carrier of I such thatH3: z = (a*c)/(b*d);H4: x*b = a by H0,H1,Def5;H5: y*d = c by H0,H2,Def5;H6: b*d divides a*c by H0,L1a;H7: b*d <> 0.I by H0,VECTSP_2:15;H8: z*(b*d) = a*c by H3,H7,H6,Def5.= (x*b)*(y*d) by H4,H5101



.= x*(b*(y*d)) by VECTSP_1:def 16.= x*((b*y)*d) by VECTSP_1:def 16.= x*(y*(b*d)) by VECTSP_1:def 16.= (x*y)*(b*d) by VECTSP_1:def 16;H9: z = x*y by H8,H7,IDOM1;thus thesis by H9,H1,H2,H3;end;theoremL9:for a,b,c being Element of the carrier of I holds(a <> 0.I & a*b divides a*c)implies b divides cprooflet A,B,C be Element of the carrier of I;assume H1: A <> 0.I & A*B divides A*C;consider D being Element of the carrier of I such thatH2: (A*B)*D = A*C by H1,Def1;H3: A*(B*D) = A*C by H2,VECTSP_1:def 16;H9: (A*(B*D))/A = (A/A)*(B*D)proofM1: A divides A*(B*D) by L6;M2: A divides A by L1;thus thesis by M1,M2,H1,L8;end;H10: (A*C)/A = (A/A)*CproofM1: A divides A*C by L6;M2: A divides A by L1;thus thesis by M1,M2,H1,L8;end;H11: B*D = 1.I*(B*D) by VECTSP_2:1.= (A/A)*(B*D) by L7,H1.= (A*(B*D))/A by H9.= (A*C)/A by H3.= (A/A)*C by H10.= 1.I*C by L7,H1.= C by VECTSP_2:1;thus thesis by H11,Def1;end;theoremL10:for a,b being Element of the carrier of I holds(a <> 0.I & a*b = a) implies b = 1.Iprooflet A,B be Element of the carrier of I;assume H1: A <> 0.I & A*B = A;consider A1 being Element of the carrier of I such thatH2: A1 = A/A;consider B1 being Element of the carrier of I such thatH3: B1 = (A*B)/A;H6: A1 = 1.I by H2,L7,H1;H7: (A*B)/A = (A/A)*Bproof 102



M1: A divides A*B by L6;thus thesis by M1,H1,L8;end;H8: B1 = (A*B)/A by H3.= (A/A)*B by H7.= A1*B by H2.= B by H6,VECTSP_2:1;H10: A1 = B1 by H1,H2,H3;thus thesis by H6,H10,H8;end;theoremL15:for a,b,c being Element of the carrier of I holds(c <> 0.I & c*a is_associated_to c*b)implies a is_associated_to bprooflet A,B,C be Element of the carrier of I;assume H0: C <> 0.I & C*A is_associated_to C*B;H1: C*A divides C*B by H0,Def3;H2: A divides B by H1,H0,L9;H3: C*B divides C*A by H0,Def3;H4: B divides A by H3,H0,L9;thus thesis by H2,H4,Def3;end;hexample lemma 20ci�File de�ned by parts 15a, 17ab, 18ab, 19abc, 20ab, 124, 134, 138, 142a, 143, 145a, 146.hlemmata for Brown/Henrici 131i �theoremL1:for a,b,c being Element of the carrier of I holds(a divides b & a divides c) implies a divides b+cprooflet a,b,c be Element of the carrier of I;assume H1: a divides b & a divides c;consider d being Element of the carrier of I such thatH2: b = a*d by H1,GCD:def 1;consider e being Element of the carrier of I such thatH3: c = a*e by H1,GCD:def 1;H4: a*(d+e) = a*d+a*e by VECTSP_2:1.= b+c by H2,H3;thus thesis by H4,GCD:def 1;end;theoremL3:for a,b,c being Element of the carrier of I holdsc <> 0.I implies((c divides a implies (a*b)/c = (a/c)*b) &(c divides b implies (a*b)/c = a*(b/c)))prooflet a,b,c be Element of the carrier of I;103



assume H0: c <> 0.I;K1: now assume H1: c divides a;M1: c divides a*b by H1,GCD:7;consider a1 being Element of the carrier of I such thatH2: a1 = (a*b)/c;H3: a1*c = a*b by H2,H0,M1,GCD:def 4;consider a2 being Element of the carrier of I such thatH4: a2 = a/c;H5: a2*c = a by H4,H1,H0,GCD:def 4;H6: a1*c = a*b by H3.= (a2*c)*b by H5.= a2*(c*b) by VECTSP_1:def 16.= (a2*b)*c by VECTSP_1:def 16;H7: a1 = a2*b by H0,H6,GCD:1;thus c divides a implies (a*b)/c = (a/c)*b by H7,H2,H4;end; :: K1K2: now assume H1: c divides b;M1: c divides a*b by H1,GCD:7;consider a1 being Element of the carrier of I such thatH2: a1 = (a*b)/c;H3: a1*c = a*b by H2,H0,M1,GCD:def 4;consider a2 being Element of the carrier of I such thatH4: a2 = b/c;H5: a2*c = b by H4,H1,H0,GCD:def 4;H6: a1*c = a*b by H3.= a*(a2*c) by H5.= (a*a2)*c by VECTSP_1:def 16;H7: a1 = (a*a2) by H0,H6,GCD:1;thus c divides b implies (a*b)/c = a*(b/c) by H7,H2,H4;end;thus thesis by K1,K2;end;theoremL2:for a,b,c being Element of the carrier of I holds(c <> 0.I & c divides a & c divides b)implies (a/c)+(b/c) = (a+b)/cprooflet a,b,c be Element of the carrier of I;assume H0: c <> 0.I & c divides a & c divides b;consider d being Element of the carrier of I such thatH2: d = a/c;consider e being Element of the carrier of I such thatH3: e = b/c;H4: d*c = a by H2,H0,GCD:def 4;H5: e*c = b by H3,H0,GCD:def 4;H6: a+b = (d*c)+(e*c) by H4,H5.= (d+e)*c by VECTSP_2:1;H7: c divides c by GCD:2;H8: c divides (d+e)*c by GCD:def 1;H9: (a+b)/c = ((d+e)*c)/c by H6.= (d+e)*(c/c) by H0,H7,H8,GCD:11.= (d+e)*(1.I) by H0,GCD:9104



.= d+e by VECTSP_2:1;thus thesis by H9,H2,H3;end;�De�nition referenced in part 164.The remaining lemma is not necessary for the correctness proof of the generic Brown/Henrici addition algorithm, but we used it for the one of the generic Euclidean algo-rithm. We put it in this section because it is also about divisibility.hlemma for Euclidean algorithm 133i �theoremL1:for I being domRingfor a,b,c being Element of the carrier of I holds((a divides b & a divides c) implies a divides b+c) &((a divides b & a divides c) implies a divides b-c)prooflet I be domRing;let a,b,c be Element of the carrier of I;M1: now assumeH1: a divides b & a divides c;consider d being Element of the carrier of I such thatH2: b = a*d by H1,GCD:def 1;consider e being Element of the carrier of I such thatH3: c = a*e by H1,GCD:def 1;H4: a*(d+e) = a*d+a*e by VECTSP_2:1.= b+c by H2,H3;thus (a divides b & a divides c) implies a divides b+cby H4,GCD:def 1;end; :: M1M2: now assumeH5: a divides b & a divides c;consider d being Element of the carrier of I such thatH6: b = a*d by H5,GCD:def 1;consider e being Element of the carrier of I such thatH7: c = a*e by H5,GCD:def 1;H8: a*(d-e) = a*d-a*e by VECTSP_2:31.= b-c by H6,H7;thus (a divides b & a divides c) implies a divides b-cby H8,GCD:def 1;end; :: M2thus thesis by M1,M2;end;�De�nition referenced in part 92b.A.2 Lemmata about Ample SetsThis section contains Mizar code for de�ning ample sets, multiplicative ample setsand normal forms modulo ample sets, as well as theorems proving some additionalproperties about these structures.Let us start with some easy properties about the Class and the Classes function:105



"gcd.miz" 134 �hDe�nition of association classes 60bitheoremCL1:for a,b being Element of the carrier of I holdsClass a \ Class b <> ; implies Class a = Class bprooflet a,b be Element of the carrier of I;assume H0: Class a \ Class b <> ;;H0a: Class a meets Class b by H0,BOOLE:119;consider Z being Any such thatH1: Z 2 Class a & Z 2 Class b by H0a,BOOLE:def 5;reconsider Z as Element of the carrier of I by H1;H4: Z is_associated_to a by H1,Defh1;H5: Z is_associated_to b by H1,Defh1;H6: c 2 Class a implies c 2 Class bproofassume H7: c 2 Class a;H8: c is_associated_to a by H7,Defh1;H9: a is_associated_to c by H8,L2;H10: Z is_associated_to c by H4,H9,L2;H11: b is_associated_to Z by H5,L2;H12: b is_associated_to c by H11,H10,L2;H13: c is_associated_to b by H12,L2;H14: c 2 Class b by H13,Defh1;thus thesis by H14;end;H15: c 2 Class b implies c 2 Class aproofassume H7: c 2 Class b;H16: c is_associated_to b by H7,Defh1;H17: b is_associated_to c by H16,L2;H18: Z is_associated_to c by H5,H17,L2;H19: a is_associated_to Z by H4,L2;H20: a is_associated_to c by H19,H18,L2;H21: c is_associated_to a by H20,L2;H22: c 2 Class a by H21,Defh1;thus thesis by H22;end;thus thesis by H6,H15,SUBSET_1:8;end;theoremCL2:for I being domRing holds Classes I is non emptyprooflet I be domRing;H1: Class (1.I) 2 Classes I by Defh2;thus thesis by H1;end;theoremCL3:for X being Subset of the carrier of I holdsX 2 Classes I implies X is non emptyproof 106



let X be Subset of the carrier of I;assume H0: X 2 Classes I;H1: ex a being Element of the carrier of I st X = Class a by H0,Defh2;thus thesis by H1;end;�File de�ned by parts 15a, 17ab, 18ab, 19abc, 20ab, 124, 134, 138, 142a, 143, 145a, 146.In the following we present the correctness proofs of the functions Class and Classes.Note that each correctness proof consists of an existence and a uniqueness proof.hcorrectness proof of Class 135i �existenceproofset M = { b where b is Element of the carrier of I:b is_associated_to a};K1: M is non empty Subset of the carrier of IproofK2: now let B be Any;K3: now assume L1: B 2 M;L2: ex B' being Element of the carrier of I stB = B' & B' is_associated_to a by L1;L3: B 2 the carrier of I by L2;thus B 2 M implies B 2 the carrier of I by L3;end;thus B 2 M implies B 2 the carrier of I by K3;end;L4: M c= the carrier of I by K2,TARSKI:def 3;L5: M is non emptyproofH1: a is_associated_to a by L2;H2: a 2 M by H1;thus thesis by H2;end;thus thesis by L4,L5;end;K4: now let A be Element of the carrier of I;H1: A 2 M implies A is_associated_to aproofassume M1: A 2 M;M2: ex A' being Element of the carrier of I stA = A' & A' is_associated_to a by M1;thus thesis by M2;end;thus A 2 M iff A is_associated_to a by H1;end;thus thesis by K1,K4;end;uniquenessprooflet M,N be non empty Subset of the carrier of I;assume H1: for A being Element of the carrier of I holdsA 2 M iff A is_associated_to a;assume H2: for A being Element of the carrier of I holds107



A 2 N iff A is_associated_to a;H3: for a being Element of the carrier of I holdsa 2 M iff a 2 Nprooflet A be Element of the carrier of I;K1: now assume M1: A 2 M;M2: A is_associated_to a by H1,M1;M3: A 2 N by M2,H2;thus A 2 M implies A 2 N by M3;end;K2: now assume M1: A 2 N;M2: A is_associated_to a by H2,M1;M3: A 2 M by M2,H1;thus A 2 N implies A 2 M by M3;end;thus thesis by K1,K2;end;thus thesis by H3,SUBSET_1:8;end;end;�De�nition referenced in part 60b.hcorrectness proof of Classes 137i �existence from SubFamEx;uniquenessprooflet F1,F2 be Subset-Family of the carrier of I;assume A: for A being Subset of the carrier of I holdsA 2 F1 iffex a being Element of the carrier of I st A = Class a;assume B: for A being Subset of the carrier of I holdsA 2 F2 iffex a being Element of the carrier of I st A = Class a;thus thesis from SubFamComp(A,B);end;end;�De�nition referenced in part 60b.Now we present to some additional properties of ample sets. The �rst theorem sum-marizes the basic properties of an ample set. The other ones prove useful statementsabout ample sets, we use in later Mizar proofs."gcd.miz" 138 �hDe�nition of AmpleSet 60a, . . . itheoremAMP:for Amp being AmpleSet of I holds1.I 2 Amp &(for a being Element of the carrier of I ex z being Element of Ampst z is_associated_to a) &(for x,y being Element of Amp holds x <> y implies108



x is_not_associated_to y)prooflet Amp be AmpleSet of I;H0: 1.I 2 Amp by Def8;H1: Amp is AmpSet of I by Def8;H2: (for a being Element of the carrier of I ex z being Element of Ampst z is_associated_to a) &(for x,y being Element of Amp holds x <> y impliesx is_not_associated_to y) by H1,Def8a;thus thesis by H0,H2;end;theoremAMP1:for x,y being Element of Amp holdsx is_associated_to y implies x = y by AMP;theoremAMP0:for Amp being AmpleSet of I holds0.I is Element of Ampprooflet Amp be AmpleSet of I;consider A being Element of Amp such thatH0: A is_associated_to 0.I by AMP;H1: 0.I divides A by H0,Def3;consider D being Element of the carrier of I such thatH2: 0.I*D = A by H1,Def1;H3: A = 0.I by H2,VECTSP_2:26;thus thesis by H3;end;�File de�ned by parts 15a, 17ab, 18ab, 19abc, 20ab, 124, 134, 138, 142a, 143, 145a, 146.We carry on with the existence proof of the mode AmpleSet. Remember that this isan ample set which contains the multiplicative identity of the corresponding integraldomain.hexistence proof of AmpleSet 139i �existenceproofH0: now hDe�ning AmpleSet 69ciH2: 1.I 2 A'proofM1: 1.I 2 {1.I} by ENUMSET1:4;thus thesis by M1,BOOLE:def 2;end;reconsider A' as non empty set by H2;H3: for x being Element of A' holds x = 1.I or x 2 Aprooflet y be Element of A';M3: now per cases by BOOLE:def 2;case A: y 2 {z where z is Element of A: z <> x};A1: ex zz being Element of A st y = zz & zz <> x by A;thus thesis by A1;case B: y 2 {1.I}; 109



thus thesis by B,ENUMSET1:3;end; :: casesthus thesis by M3;end;H4: A' is non empty Subset of the carrier of IproofM1: now let x be Any;M2: now assume M3: x 2 A';M4: x 2 the carrier of IproofM4a: now per cases by M3,H3;case A: x = 1.I;thus thesis by A;case B: x 2 A;thus thesis by B;end; :: casesthus thesis by M4a;end;thus x 2 A' implies x 2 the carrier of I by M4;end; :: M2thus x 2 A' implies x 2 the carrier of I by M2;end; :: M1thus thesis by M1,TARSKI:def 3;end;reconsider A' as non empty Subset of the carrier of I by H4;H5: for a being Element of the carrier of I ex z being Element of A'st z is_associated_to aprooflet a be Element of the carrier of I;M0: now per cases;case A: a is_associated_to 1.I;A1: 1.I is_associated_to a by A,L2;thus ex z being Element of A' st z is_associated_to aby A1,H2;case B: a is_not_associated_to 1.I;consider z being Element of A such thatB1: z is_associated_to a by Def8a;B3: z <> xproofassume M1: z = x;M2: z is_associated_to 1.I by M1,H1;M3: a is_associated_to z by B1,L2;M4: a is_associated_to 1.I by M3,M2,L2;thus thesis by M4,B;end;B4: z 2 {zz where zz is Element of A : zz <> x}by B3;B5: z 2 A' by B4,BOOLE:def 2;thus ex z being Element of A' st z is_associated_to aby B1,B5;end; :: casesthus thesis by M0;end;H6: for z,y being Element of A' holds110



z <> y implies z is_not_associated_to yprooflet z,y be Element of A';assume M0: z <> y;M1: now per cases;case A: z = 1.I & y = 1.I;thus thesis by A,M0;case B: z = 1.I & y <> 1.I;B1: y 2 A by B,H3;B2: not(y 2 {1.I}) by B,ENUMSET1:3;B4: y 2 {zz where zz is Element of A: zz <> x}by B2,BOOLE:def 2;B5a: ex zz being Element of A st y = zz & zz <> x by B4;B5: y <> x by B5a;B6: x is_associated_to z by B,H1;assume B7: z is_associated_to y;B8: x is_associated_to y by B6,B7,L2;B10: x is_not_associated_to y by Def8a,B5,B1;thus thesis by B10,B8;case C: z <> 1.I & y = 1.I;C1: z 2 A by C,H3;C2: not(z 2 {1.I}) by C,ENUMSET1:3;C4: z 2 {zz where zz is Element of A: zz <> x}by C2,BOOLE:def 2;C5a: ex zz being Element of A st z = zz & zz <> x by C4;C5: z <> x by C5a;C6: x is_associated_to y by C,H1;C6a: y is_associated_to x by C6,L2;assume C7: z is_associated_to y;C8: z is_associated_to x by C6a,C7,L2;C10: z is_not_associated_to x by C5,C1,Def8a;thus thesis by C10,C8;case D: z <> 1.I & y <> 1.I;D1: z 2 A by D,H3;D2: y 2 A by D,H3;thus thesis by M0,D1,D2,Def8a;end; :: casesthus thesis by M1;end;H7: A' is AmpSet of I by H5,H6,Def8a;thus thesis by H2,H7;end; :: H0thus thesis by H0;end;end;�De�nition referenced in part 69b.Now we present some further code concerning multiplicative ample sets, namely theproof of theorem AMP5 stating that multiplicative ample sets are also closed with respectto division. 111



"gcd.miz" 142a �hDe�nition of multiplicative AmpleSet 70a, . . . i�File de�ned by parts 15a, 17ab, 18ab, 19abc, 20ab, 124, 134, 138, 142a, 143, 145a, 146.hproof of AMP5 142bi �prooflet Amp be AmpleSet of I;assume H0: Amp is_multiplicative;let x,y be Element of Amp;assume H1: y divides x & y <> 0.I;M: now per cases;case A: x <> 0.I;consider d being Element of the carrier of I such thatH2: d = x/y;H2a: x = y*d by H2,H1,Def5;consider d' being Element of Amp such thatH3: d' is_associated_to d by AMP;H3a: d is_associated_to d' by H3,L2;consider u being Element of the carrier of I such thatH4: u is_unit & d*u = d' by H3a,L11;H5: u*x = u*(y*d) by H2a.= y*(d*u) by VECTSP_1:def 16.= y*d' by H4;H5a: y*d' 2 Amp by H0,Def25;H6: u*x 2 Amp by H5a,H5;H7: x is_associated_to u*xproofM1: x divides x by L1;M2: x divides u*x by M1,L6a;M3: u divides 1.I by H4,Def2;consider e being Element of the carrier of I such thatM4: u*e = 1.I by M3,Def1;M5: (u*x)*e = e*(u*x).= (e*u)*x by VECTSP_1:def 16.= 1.I*x by M4.= x by VECTSP_2:1;M6: u*x divides x by M5,Def1;thus thesis by M2,M6,Def3;end;H8: 1.I*x = x by VECTSP_2:1.= u*x by H7,H6,AMP1;H9: u = 1.I by H8,IDOM1,A;H10: d' = d*u by H4.= d*1.I by H9.= d by VECTSP_2:1;thus thesis by H10,H2;case B: x = 0.I;consider d being Element of the carrier of I such thatM0: d = x/y;M0a: x = y*d by M0,H1,Def5;M1: x*y = 0.I*y by B.= 0.I by VECTSP_2:26;M1a: x = 0.I by VECTSP_2:15,M1,H1;M2: d = 0.I by VECTSP_2:15,M1a,H1,M0a;112



M3: 0.I is Element of Amp by AMP0;thus thesis by M0,M3,M2;end; :: casesthus thesis by M;end;�De�nition referenced in part 70b.We conclude this section with some properties of the normal form modulo an ampleset. We also present the correctness proof according to the mode NF we left out at theend of section 4.2."gcd.miz" 143 �hDe�nition of Normal Form 71aitheoremNF1:for Amp being AmpleSet of I holdsNF(0.I,Amp) = 0.I & NF(1.I,Amp) = 1.Iprooflet Amp be AmpleSet of I;H0: 1.I is_associated_to 1.I by L2;H1: 1.I 2 Amp by Def8;H2: NF(1.I,Amp) = 1.I by H0,H1,Def20;H3: 0.I is_associated_to 0.I by L2;H4: 0.I is Element of Amp by AMP0;H5: NF(0.I,Amp) = 0.I by H3,H4,Def20;thus thesis by H2,H5;end;theoremfor Amp being AmpleSet of Ifor a being Element of the carrier of I holdsa 2 Amp iff a = NF(a,Amp)prooflet Amp be AmpleSet of I;let a be Element of the carrier of I;K1: now assume H0: a 2 Amp;H1: a is_associated_to a by L2;H2: a = NF(a,Amp) by H0,H1,Def20;thus a 2 Amp implies a = NF(a,Amp) by H2;end; :: K1thus thesis by K1,Def20;end;�File de�ned by parts 15a, 17ab, 18ab, 19abc, 20ab, 124, 134, 138, 142a, 143, 145a, 146.hcorrectness proof of normal form 144i �existenceproofK: now let Amp be AmpleSet of I;let x be Element of the carrier of I;consider z being Element of Amp such thatH0: z is_associated_to x by AMP;thus ex zz being Element of the carrier of I st113



zz 2 Amp & zz is_associated_to x by H0;end; :: Kthus thesis by K;end;uniquenessprooflet z1,z2 be Element of the carrier of I such thatH0: z1 2 Amp & z1 is_associated_to x &z2 2 Amp & z2 is_associated_to x;H0a: z1 is Element of Amp &z2 is Element of Amp by H0;H1: x is_associated_to z2 by H0,L2;H2: z1 is_associated_to z2 by H0,H1,L2;H3: z1 = z2 by H0a,H2,AMP1;thus thesis by H3;end;end;�De�nition referenced in part 71a.A.3 Lemmata about Gcd DomainsIn this section we give the Mizar proofs of the lemmata about the greatest commondivisor function we need to establish the theorem of Brown and Henrici presented insection 2.3. The de�nition of gcd domains can be found in section 4.3, the one of thegreatest common divisor function in section 2.3."gcd.miz" 145a �hDe�nition of gcdDomain 71b, . . . ireserve I for gcdDomain;�File de�ned by parts 15a, 17ab, 18ab, 19abc, 20ab, 124, 134, 138, 142a, 143, 145a, 146.Let us begin with the correctness | that is existence and uniqueness | proof of thegreatest common divisor function in arbitrary gcd domains.hcorrectness proof of gcd function 145bi �existenceproofconsider u being Element of the carrier of I such thatH1: u divides x &u divides y &(for zz being Element of the carrier of Ist (zz divides x & zz divides y)holds zz divides u) by Def7;consider z being Element of Amp such thatH2: z is_associated_to u by AMP;H3: z divides u by H2,Def3;H4: z divides x by H3,H1,L1;H5: z divides y by H3,H1,L1;H6: for zz being Element of the carrier of Ist (zz divides x & zz divides y) holds zz divides zprooflet zz be Element of the carrier of I;114



assume M1: zz divides x & zz divides y;M2: zz divides u by M1,H1;M3: u divides z by H2,Def3;M4: zz divides z by M2,M3,L1;thus thesis by M4;end;thus thesis by H4,H5,H6;end;uniquenessproofK1: now let z1 be Element of the carrier of I such thatH1: z1 2 Amp &z1 divides x &z1 divides y &(for z being Element of the carrier of Ist (z divides x & z divides y)holds z divides z1);let z2 be Element of the carrier of I such thatH2: z2 2 Amp &z2 divides x &z2 divides y &(for z being Element of the carrier of Ist (z divides x & z divides y)holds z divides z2);H3: z1 is_associated_to z2proofM1: z1 divides x & z1 divides y by H1;M2: z1 divides z2 by M1,H2;M3: z2 divides x & z2 divides y by H2;M4: z2 divides z1 by M3,H1;thus thesis by M2,M4,Def3;end;thus z1 = z2 by H1,H2,H3,AMP;end; :: K1thus thesis by K1;end;end;�De�nition referenced in part 24.What follows next are the above mentioned lemmata about the greatest common divisorfunction. We proved 13 lemmata | including the �ve theorems we already presentedin section 2.3."gcd.miz" 146 �hDe�nition of gcd function 24itheoremL0:for Amp being AmpleSet of Ifor a,b being Element of the carrier of I holdsgcd(a,b,Amp) divides a & gcd(a,b,Amp) divides b by Def4;theoremL4:for Amp being AmpleSet of I 115



for a,b,c being Element of the carrier of I holdsc divides gcd(a,b,Amp) implies (c divides a & c divides b)prooflet Amp be AmpleSet of I;let A,B,C be Element of the carrier of I;assume H1: C divides gcd(A,B,Amp);consider D being Element of the carrier of I such thatH2: C*D = gcd(A,B,Amp) by H1,Def1;H3: gcd(A,B,Amp) divides A by L0;consider E being Element of the carrier of I such thatH4: gcd(A,B,Amp)*E = A by H3,Def1;H5: C*(D*E) = (C*D)*E by VECTSP_1:def 16.= gcd(A,B,Amp)*E by H2.= A by H4;H6: C divides A by H5,Def1;H7: gcd(A,B,Amp) divides B by L0;consider E being Element of the carrier of I such thatH8: gcd(A,B,Amp)*E = B by H7,Def1;H9: C*(D*E) = (C*D)*E by VECTSP_1:def 16.= gcd(A,B,Amp)*E by H2.= B by H8;H10: C divides B by H9,Def1;thus thesis by H6,H10;end;theoremL13:for Amp being AmpleSet of Ifor a,b being Element of the carrier of I holdsgcd(a,b,Amp) = gcd(b,a,Amp)prooflet Amp be AmpleSet of I;let A,B be Element of the carrier of I;consider D being Element of the carrier of I such thatH1: D = gcd(A,B,Amp);H11: D 2 Amp by Def4,H1;H2: D divides B & D divides A by H1,L0;H3: for z being Element of the carrier of Ist (z divides B & z divides A)holds (z divides D) by H1,Def4;H4: D = gcd(B,A,Amp) by H11,H2,H3,Def4;thus gcd(A,B,Amp) = gcd(B,A,Amp) by H1,H4;end;theoremGCD1:for Amp being AmpleSet of Ifor a being Element of the carrier of I holdsgcd(a,0.I,Amp) = NF(a,Amp) &gcd(0.I,a,Amp) = NF(a,Amp)prooflet Amp be AmpleSet of I;let A be Element of the carrier of I;H0: NF(A,Amp)is_associated_to A by Def20;H1: NF(A,Amp) divides A by H0,Def3;H2: NF(A,Amp)*0.I = 0.I by VECTSP_2:26;116



H3: NF(A,Amp) divides 0.I by H2,Def1;H4: for z being Element of the carrier of Ist (z divides A & z divides 0.I)holds z divides NF(A,Amp)prooflet z be Element of the carrier of I;assume M0: z divides A & z divides 0.I;M1: A divides NF(A,Amp) by H0,Def3;thus thesis by M1,M0,L1;end;H5: NF(A,Amp) 2 Amp by Def20;H6: gcd(A,0.I,Amp) = NF(A,Amp) by H1,H3,H4,H5,Def4;thus thesis by H6,L13;end;theoremGCD0:for Amp being AmpleSet of I holdsgcd(0.I,0.I,Amp) = 0.Iprooflet Amp being AmpleSet of I;H2: gcd(0.I,0.I,Amp) = NF(0.I,Amp) by GCD1;H3: NF(0.I,Amp) = 0.I by NF1;thus thesis by H2,H3;end;theoremGCD2:for Amp being AmpleSet of Ifor a being Element of the carrier of I holdsgcd(a,1.I,Amp) = 1.I & gcd(1.I,a,Amp) = 1.Iprooflet Amp be AmpleSet of I;let A be Element of the carrier of I;H0: 1.I 2 Amp by Def8;H1: 1.I divides 1.I by L1;H2: 1.I*A = A by VECTSP_2:1;H3: 1.I divides A by H2,Def1;H4: for z being Element of the carrier of Ist (z divides A & z divides 1.I)holds z divides 1.I;H5: gcd(A,1.I,Amp) = 1.I by H0,H1,H3,H4,Def4;thus thesis by H5,L13;end;theoremL12:for Amp being AmpleSet of Ifor a,b being Element of the carrier of I holdsgcd(a,b,Amp) = 0.I iff (a = 0.I & b = 0.I)prooflet Amp be AmpleSet of I;let A,B be Element of the carrier of I;H0: (A = 0.I & B = 0.I) implies gcd(A,B,Amp) = 0.Iproofassume H0: A = (0.I) & B = (0.I);117



H3: gcd(A,B,Amp) = NF(A,Amp) by H0,GCD1;H4: NF(A,Amp) = (0.I) by H0,NF1;thus thesis by H4,H3;end;K: now assume H1: gcd(A,B,Amp) = (0.I);H2: (0.I) divides A & (0.I) divides B by H1,Def4;consider D being Element of the carrier of I such thatH3: 0.I*D = A by H2,Def1;H4: A = 0.I by H3,VECTSP_2:26;consider E being Element of the carrier of I such thatH5: 0.I*E = B by H2,Def1;H6: B = 0.I by H5,VECTSP_2:26;thus gcd(A,B,Amp) = 0.I implies (A = 0.I & B = 0.I)by H4,H6;end;thus thesis by H0,K;end;theoremL14:for Amp being AmpleSet of Ifor a,b,c being Element of the carrier of I holdsb is_associated_to c implies(gcd(a,b,Amp) is_associated_to gcd(a,c,Amp) &gcd(b,a,Amp) is_associated_to gcd(c,a,Amp))prooflet Amp be AmpleSet of I;let A,B,C be Element of the carrier of I;assume H1: B is_associated_to C;H2: B divides C by H1,Def3;H3: gcd(A,B,Amp) divides B & gcd(A,B,Amp) divides A by L0;H4: gcd(A,B,Amp) divides C by H2,H3,L1;H6: gcd(A,B,Amp) divides gcd(A,C,Amp) by H4,H3,Def4;H7: gcd(A,B,Amp) = gcd(B,A,Amp) by L13;H8: gcd(A,C,Amp) = gcd(C,A,Amp) by L13;H9: gcd(B,A,Amp) divides gcd(C,A,Amp) by H6,H7,H8;H10: C divides B by H1,Def3;H11: gcd(A,C,Amp) divides C by L0;H12: gcd(A,C,Amp) divides B by H10,H11,L1;H13: gcd(A,C,Amp) divides A by L0;H14: gcd(A,C,Amp) divides gcd(A,B,Amp) by H13,H12,Def4;H15: gcd(C,A,Amp) divides gcd(B,A,Amp) by H7,H8,H14;H16: gcd(A,B,Amp) is_associated_to gcd(A,C,Amp) by H6,H14,Def3;H17: gcd(B,A,Amp) is_associated_to gcd(C,A,Amp) by H9,H15,Def3;thus thesis by H16,H17;end;hgcd theorems 25ihBrown/Henrici theorem 23bi�File de�ned by parts 15a, 17ab, 18ab, 19abc, 20ab, 124, 134, 138, 142a, 143, 145a, 146.
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We conclude this section with the Mizar proofs of the remaining four theorems aboutthe greatest common divisor function that we gave in section 2.3. Note that the proofsdirectly correspond to the ones that were given in [Col74].hproof of theorem T0 151ai �prooflet Amp be AmpleSet of I;let A,B,C be Element of the carrier of I;consider D being Element of the carrier of I such thatH1: D = gcd(gcd(A,B,Amp),C,Amp);consider E being Element of the carrier of I such thatH2: E = gcd(A,gcd(B,C,Amp),Amp);H3: D divides gcd(A,B,Amp) & D divides C by H1,L0;H4: D divides A & D divides B & D divides C by H3,L4;H5: D divides A & D divides gcd(B,C,Amp) by H4,Def4;H6: D divides E by H2,H5,Def4;H7: E divides gcd(B,C,Amp) & E divides A by H2,L0;H8: E divides B & E divides C & E divides A by H7,L4;H9: E divides C & E divides gcd(A,B,Amp) by H8,Def4;H10: E divides D by H1,H9,Def4;H11: D is_associated_to E by H6,H10,Def3;H12: D is Element of Amp by H1,Def4;H13: E is Element of Amp by H2,Def4;H14: D = E by H11,H12,H13,AMP;thus thesis by H1,H2,H14;end;�De�nition referenced in part 25.hproof of theorem T1 151bi �prooflet Amp be AmpleSet of I;let A,B,C be Element of the carrier of I;M: now per cases;case A: C <> 0.I;consider D being Element of the carrier of I such thatH1: D = gcd(A,B,Amp);K: now per cases;case A1: D <> 0.I;consider E being Element of the carrier of I such thatH2: E = gcd(A*C,B*C,Amp);H3: D divides A & D divides B by H1,Def4;H4: C*D divides A*C & C*D divides B*C by H3,L3;H5: C*D divides gcd(A*C,B*C,Amp) by H4,Def4;H6: C*D divides E by H5,H2;consider F being Element of the carrier of I such thatH7: E = (C*D)*F by H6,Def1;H8: E divides A*C & E divides B*C by H2,L0;H10: (C*D)*F divides A*C & (C*D)*F divides B*C by H8,H7;H12: D*F divides A & D*F divides Bproofconsider G being Element of the carrier of I such thatM1: ((C*D)*F)*G = A*C by H10,Def1;119



M2: (C*(D*F))*G = ((C*D)*F)*G by VECTSP_1:def 16.= C*A by M1;M3: C*(D*F) divides C*A by M2,Def1;M4: D*F divides A by M3,L9,A;consider G being Element of the carrier of I such thatM5: ((C*D)*F)*G = B*C by H10,Def1;M6: (C*(D*F))*G = ((C*D)*F)*G by VECTSP_1:def 16.= C*B by M5;M7: C*(D*F) divides C*B by M6,Def1;M8: D*F divides B by M7,L9,A;thus thesis by M4,M8;end;H13: D*F divides gcd(A,B,Amp) by H12,Def4;H14: D*F divides D by H13,H1;H15: F divides 1.IproofM1: D = D*1.I by VECTSP_2:1;M2: D*F divides D*1.I by M1,H14;thus thesis by M2,L9,A1;end;H16: F is_unit by H15,Def2;H18: ex f being Element of the carrier of Ist (f is_unit & (C*D)*f = E) by H7,H16;H19: C*D is_associated_to E by H18,L11;H20: E is_associated_to C*D by H19,L2;thus gcd(A*C,B*C,Amp) is_associated_to C*gcd(A,B,Amp)by H20,H1,H2;case A2: D = 0.I;N1: gcd(A,B,Amp) = 0.I by A2,H1;N2: A = 0.I & B = 0.I by N1,L12;N3: C*gcd(A,B,Amp) = 0.I by N1,VECTSP_2:26;N4: gcd(A*C,B*C,Amp)= gcd(0.I*C,0.I*C,Amp) by N2.= gcd(0.I,0.I*C,Amp) by VECTSP_2:26.= gcd(0.I,0.I,Amp) by VECTSP_2:26.= 0.I by GCD0.= C*gcd(A,B,Amp) by N3;N5: gcd(A*C,B*C,Amp)*1.I= gcd(A*C,B*C,Amp) by VECTSP_2:1.= C*gcd(A,B,Amp) by N4;N6: gcd(A*C,B*C,Amp) divides C*gcd(A,B,Amp) by N5,Def1;N7: (C*gcd(A,B,Amp))*1.I= C*gcd(A,B,Amp) by VECTSP_2:1.= gcd(A*C,B*C,Amp) by N4;N8: C*gcd(A,B,Amp) divides gcd(A*C,B*C,Amp) by N7,Def1;thus gcd(A*C,B*C,Amp) is_associated_to C*gcd(A,B,Amp)by Def3,N6,N8;end; :: cases Kthus gcd(A*C,B*C,Amp) is_associated_to C*gcd(A,B,Amp) by K;case B: C = 0.I;H1: A*C = 0.I by B,VECTSP_2:26;H2: B*C = 0.I by B,VECTSP_2:26;H3: gcd(A*C,B*C,Amp)= gcd(0.I,0.I,Amp) by H1,H2120



.= 0.I by GCD0.= 0.I*gcd(A,B,Amp) by VECTSP_2:26.= C*gcd(A,B,Amp) by B;H4: gcd(A*C,B*C,Amp)*1.I= gcd(A*C,(B*C),Amp) by VECTSP_2:1.= C*gcd(A,B,Amp) by H3;H5: gcd(A*C,B*C,Amp) divides C*gcd(A,B,Amp) by H4,Def1;H6: (C*gcd(A,B,Amp))*1.I= C*gcd(A,B,Amp) by VECTSP_2:1.= gcd(A*C,B*C,Amp) by H3;H7: C*gcd(A,B,Amp) divides gcd(A*C,B*C,Amp) by H6,Def1;thus gcd(A*C,B*C,Amp) is_associated_to C*gcd(A,B,Amp)by H5,H7,Def3;end; :: cases Mthus thesis by M;end;�De�nition referenced in part 25.hproof of theorem T2 153i �prooflet Amp be AmpleSet of I;let A,B,C be Element of the carrier of I;assume H1: gcd(A,B,Amp) = 1.I;H2: gcd(A*C,B*C,Amp) is_associated_to C*gcd(A,B,Amp) by T1;H3: C*gcd(A,B,Amp) = C*1.I by H1.= C by VECTSP_2:1;H4: gcd(A*C,B*C,Amp) is_associated_to C by H2,H3;H5: C is_associated_to gcd(A*C,B*C,Amp) by H4,L2;H6: gcd(A,C,Amp) is_associated_to gcd(A,gcd(A*C,B*C,Amp),Amp)by H5,L14;H7a: gcd(A,gcd(A*C,B*C,Amp),Amp) =gcd(gcd(A,A*C,Amp),B*C,Amp) by T0;H7: gcd(A,gcd(A*C,B*C,Amp),Amp) is_associated_togcd(gcd(A,A*C,Amp),B*C,Amp) by H7a,L2;H8: gcd(A,C,Amp) is_associated_to gcd(gcd(A,A*C,Amp),B*C,Amp)by H6,H7,L2;H9: gcd(A,A*C,Amp) is_associated_to AproofM1: A = A*1.I & A is_associated_to A by L2,VECTSP_2:1;M2: A is_associated_to A*1.I by M1;M3: gcd(A,A*C,Amp) is_associated_to gcd(A*1.I,A*C,Amp) by M2,L14;M4: gcd(A*1.I,A*C,Amp) is_associated_to A*gcd(1.I,C,Amp) by T1;M5: A*gcd(1.I,C,Amp) = A*1.I by GCD2.= A by VECTSP_2:1;M6: gcd(A*1.I,A*C,Amp) is_associated_to A by M5,M4;thus thesis by M6,M3,L2;end;H10: gcd(gcd(A,A*C,Amp),B*C,Amp) is_associated_to gcd(A,B*C,Amp)by H9,L14;H11: gcd(A,C,Amp) is_associated_to gcd(A,B*C,Amp) by H8,H10,L2;H12: gcd(A,B*C,Amp) is_associated_to gcd(A,C,Amp) by H11,L2;H13: gcd(A,B*C,Amp) is Element of Amp by Def4;H14: gcd(A,C,Amp) is Element of Amp by Def4;H15: gcd(A,B*C,Amp) = gcd(A,C,Amp) by H12,H13,H14,AMP;121



thus thesis by H15;end;�De�nition referenced in part 25.hproof of theorem T4 154i �prooflet Amp be AmpleSet of I;let A,B,C be Element of the carrier of I;consider D being Element of the carrier of I such thatH1: D = gcd(A,C,Amp);H2: D divides A & D divides C by H1,Def4;H2b: D is Element of Amp by H1,Def4;consider E being Element of the carrier of I such thatH3: D*E = A by H2,Def1;consider F being Element of the carrier of I such thatH4: D*F = C by H2,Def1;H5: D divides A+B*CproofM1: D*(E+F*B) = D*E+D*(F*B) by VECTSP_2:1.= D*E+(D*F)*B by VECTSP_1:def 16.= A+B*C by H3,H4;thus thesis by M1,Def1;end;H6: for z being Element of the carrier of Ist (z divides A+B*C & z divides C)holds z divides Dprooflet Z be Element of the carrier of I;assume M1: Z divides A+B*C & Z divides C;M1a: Z divides C by M1;consider X being Element of the carrier of I such thatM2: Z*X = C by M1,Def1;consider Y being Element of the carrier of I such thatM3: Z*Y = A+B*C by M1,Def1;M4: Z*(Y+(-(B*X)))= Z*Y+Z*(-(B*X)) by VECTSP_2:1.= Z*Y+(-(Z*(X*B))) by VECTSP_2:28.= Z*Y+(-((Z*X)*B)) by VECTSP_1:def 16.= (A+B*C)+(-(C*B)) by M2,M3.= A+(B*C+(-(C*B))) by VECTSP_2:1.= A+0.I by VECTSP_2:1.= A by VECTSP_2:1;M5: Z divides A by M4,Def1;M6: Z divides D by M1a,M5,H1,Def4;thus thesis by M6;end;H7: D = gcd(A+B*C,C,Amp) by H2,H2b,H5,H6,Def4;thus thesis by H1,H7;end;�De�nition referenced in part 25.
122



A.4 Lemmata about FractionsWe start with the �le QF.VOC which intorduces new vocabulary items for fractions andtheir constructors."qf.voc" 156a �MFractionMFractionsR~Ris_normalized_wrtOnumOdenomOfract�The rest of this section contains some remaining proofs about fractions over integraldomains, as well as the de�nition of fraction multiplication with the correspondingtheorem concerning the multiplicative unity of fractions.hproof of fraction's constructor equation 156bi �prooflet I be domRing;let u be Fraction of I;consider a,b being Element of the carrier of I such thatH1: u = [a,b] & b <> 0.I by Def52;H2: fract(a,b) = [a,b] by Def54,H1.= u by H1;H3: a = u`1 by H1,MCART_1:def 1.= num(u) by Def55;H4: b = u`2 by H1,MCART_1:def 2.= denom(u) by Def53;thus thesis by H2,H3,H4;end;�De�nition referenced in part 79a.hproof of denom 156ci �prooflet I be domRing;let u be Fraction of I;H0: u`2 <> 0.I by N;thus thesis by H0,Def53;end;�De�nition referenced in part 79b.hproof of F1 157ai �prooflet I be domRing;let u be Fraction of I ;let a,b be Element of the carrier of I;assume H0: b <> 0.I;H1: fract(a,b) = u implies (a = num(u) & b = denom(u))proofassume M1: fract(a,b) = u; 123



M2: u =[a,b] by M1,Def54,H0;M3: num(u) = u`1 by Def55.= a by M2,MCART_1:def 1;M4: denom(u) = u`2 by Def53.= b by M2,MCART_1:def 2;thus thesis by M3,M4;end;H2: (a = num(u) & b = denom(u)) implies fract(a,b) = uproofassume M1: a = num(u) & b = denom(u);consider a',b' being Element of the carrier of I such thatM6: u = [a',b'] & b' <> 0.I by Def52;M3: a' = u`1 by M6,MCART_1:def 1.= a by M1,Def55;M4: b' = u`2 by M6,MCART_1:def 2.= b by M1,Def53;M5: u = [a,b] by M6,M3,M4;thus thesis by H0,Def54,M5;end;thus thesis by H1,H2;end;�De�nition referenced in part 80a.hproof of F2 157bi �prooflet I be domRing;let r,s be Fraction of I;let r1,r2,s1,s2 be Element of the carrier of I;assume H0: r1 = num(r) & r2 = denom(r) & s1 = num(s) & s2 = denom(s);H3: r+s = [r`1*s`2+s`1*r`2, r`2*s`2] by Def70.= [r`1*s2+s`1*r`2, r`2*s`2] by H0,Def53.= [r`1*s2+s`1*r`2, r`2*s2] by H0,Def53.= [r`1*s2+s`1*r`2, r2*s2] by H0,Def53.= [r`1*s2+s`1*r2, r2*s2] by H0,Def53.= [r1*s2+s`1*r2, r2*s2] by H0,Def55.= [r1*s2+s1*r2, r2*s2] by H0,Def55;H4: num(r+s) = (r+s)`1 & denom(r+s) = (r+s)`2 by Def53,Def55;thus thesis by H3,H4,MCART_1:def 1,MCART_1:def 2;end;�De�nition referenced in part 81b.hproof of fraction addition 158ai �prooflet I be domRing;let u,v be Fraction of I;H0: u+v = [u`1*v`2+v`1*u`2,u`2*v`2] by Def70.= [num(u)*v`2+v`1*u`2,u`2*v`2] by Def55.= [num(u)*v`2+num(v)*u`2,u`2*v`2] by Def55.= [num(u)*denom(v)+num(v)*u`2,u`2*v`2] by Def53.= [num(u)*denom(v)+num(v)*u`2,u`2*denom(v)] by Def53.= [num(u)*denom(v)+num(v)*denom(u),u`2*denom(v)] by Def53.= [num(u)*denom(v)+num(v)*denom(u),denom(u)*denom(v)] by Def53;H1: denom(u) <> 0.I & denom(v) <> 0.I by TT;124



H2: denom(u)*denom(v) <> 0.I by H1,VECTSP_2:15;thus thesis by H0,H2,Def54;end;�De�nition referenced in part 81a.What follows is the de�nition of fraction multiplication. Note that it is almost thesame as the corresponding de�nition for fraction addition."BrHenAdd.miz" 158b �definitionlet I be domRing;let u,v be Fraction of I;func u*v -> Fraction of I means :Def80:it = [u`1*v`1,u`2*v`2];existenceproofH1: u`2 <> 0.I & v`2 <> 0.I by N;H2: u`2*v`2 <> 0.I by H1,VECTSP_2:15;consider a being Element of the carrier of I such thatH6: a = u`1*v`1;consider b being Element of the carrier of I such thatH7: b = u`2*v`2;consider u being Element of [:the carrier of I,the carrier of I:]such that H3: u = [a,b];H5: ex a,b being Element of the carrier of I stu = [a,b] & b <> 0.I by H3,H2,H7;H4: u is Fraction of I by H5,Def52;thus thesis by H3,H4,H6,H7;end;uniqueness;end;theoremfor I being domRingfor u,v being Fraction of I holdsu*v = [num(u)*num(v),denom(u)* denom(v)]prooflet I be domRing;let u,v be Fraction of I;H0: u*v = [u`1*v`1,u`2*v`2] by Def80.= [num(u)*v`1,u`2*v`2] by Def55.= [num(u)*num(v),u`2*v`2] by Def55.= [num(u)*num(v),u`2*denom(v)] by Def53.= [num(u)*num(v),denom(u)*denom(v)] by Def53;thus thesis by H0;end;�File de�ned by parts 75ab, 76a, 77ab, 78, 79ab, 80ab, 81ab, 82ab, 83, 84ab, 85abc, 86ab, 87ab,88abc, 89, 90abc, 91, 158b, 159, 160, 165, 174.We conclude with stating and proving theorems about the additive and multiplicativeunity of fractions. The proofs are easy done by substituting the de�nition of 0.Q resp.1.Q in the de�nition of fraction addition resp. fraction multiplication.125



"BrHenAdd.miz" 159 �theoremfor I being domRingfor Q being Fractions of Ifor u being Fraction of I holdsu + 0.Q = u & 0.Q + u = uprooflet I be domRing;let Q be Fractions of I;let u be Fraction of I;H0: 0.I <> 1.I by VECTSP_1:31;H1: (0.Q)`1 = (fract(0.I,1.I))`1 by Def74.= [0.I,1.I]`1 by H0,Def54.= 0.I by MCART_1:def 1;H2: (0.Q)`2 = (fract(0.I,1.I))`2 by Def74.= [0.I,1.I]`2 by H0,Def54.= 1.I by MCART_1:def 2;consider a,b being Element of the carrier of I such thatH3: u = [a,b] & b <> 0.I by Def52;H4: a = u`1 & b = u`2 by H3,MCART_1:def 1,MCART_1:def 2;H5: u+0.Q = [u`1*(0.Q)`2+(0.Q)`1*u`2,u`2*(0.Q)`2] by Def70.= [u`1*(0.Q)`2+0.I*u`2,u`2*(0.Q)`2] by H1.= [u`1*1.I+0.I*u`2,u`2*1.I] by H2.= [u`1*1.I+0.I,u`2*1.I] by VECTSP_2:26.= [u`1*1.I,u`2*1.I] by VECTSP_2:1.= [u`1,u`2*1.I] by VECTSP_2:1.= [u`1,u`2] by VECTSP_2:1;H6: 0.Q+u = [(0.Q)`1*u`2+u`1*(0.Q)`2,(0.Q)`2*u`2] by Def70.= [0.I*u`2+u`1*(0.Q)`2,(0.Q)`2*u`2] by H1.= [0.I*u`2+u`1*1.I,1.I*u`2] by H2.= [0.I+u`1*1.I,1.I*u`2] by VECTSP_2:26.= [u`1*1.I,1.I*u`2] by VECTSP_2:1.= [u`1,u`2*1.I] by VECTSP_2:1.= [u`1,u`2] by VECTSP_2:1;thus thesis by H3,H4,H5,H6;end;�File de�ned by parts 75ab, 76a, 77ab, 78, 79ab, 80ab, 81ab, 82ab, 83, 84ab, 85abc, 86ab, 87ab,88abc, 89, 90abc, 91, 158b, 159, 160, 165, 174."BrHenAdd.miz" 160 �theoremfor I being domRingfor Q being Fractions of Ifor u being Fraction of I holdsu * 1.Q = u & 1.Q * u = uprooflet I be domRing;let Q be Fractions of I;let u be Fraction of I;H0: 0.I <> 1.I by VECTSP_1:31;H1: (1.Q)`1 = (fract(1.I,1.I))`1 by Def75.= [1.I,1.I]`1 by H0,Def54.= 1.I by MCART_1:def 1;H2: (1.Q)`2 = (fract(1.I,1.I))`2 by Def75126



.= [1.I,1.I]`2 by H0,Def54.= 1.I by MCART_1:def 2;consider a,b being Element of the carrier of I such thatH3: u = [a,b] & b <> 0.I by Def52;H4: a = u`1 & b = u`2 by H3,MCART_1:def 1,MCART_1:def 2;H5: u*1.Q = [u`1*(1.Q)`1,u`2*(1.Q)`2] by Def80.= [u`1*1.I,u`2*(1.Q)`2] by H1.= [u`1*1.I,u`2*1.I] by H2.= [u`1,u`2*1.I] by VECTSP_2:1.= [u`1,u`2] by VECTSP_2:1;H6: 1.Q*u = [(1.Q)`1*u`1,(1.Q)`2*u`2] by Def80.= [1.I*u`1,(1.Q)`2*u`2] by H1.= [1.I*u`1,1.I*u`2] by H2.= [u`1,u`2*1.I] by VECTSP_2:1.= [u`1,u`2] by VECTSP_2:1;thus thesis by H3,H4,H5,H6;end;�File de�ned by parts 75ab, 76a, 77ab, 78, 79ab, 80ab, 81ab, 82ab, 83, 84ab, 85abc, 86ab, 87ab,88abc, 89, 90abc, 91, 158b, 159, 160, 165, 174.A.5 Remaining Veri�cation ConditionsHere we list the veri�cation conditions for generic Brown/Henrici addition we left outin section 4.1. Note again that these theorems are automatically constructed by ourveri�cation condition generator.We start with the theorems directly connected to the output t of the generic Brown/Henrici addition algorithm."BrHenAdd-theorems.txt" 161 �(implies (and (is-normalized-wrt r Amp) (is-normalized-wrt s Amp)(= r 0) (= t s))(and (~ t (+ r s)) (is-normalized-wrt t Amp)))(implies (and (is-normalized-wrt r Amp) (is-normalized-wrt s Amp)(not (= r 0)) (= s 0) (= t r))(and (~ t (+ r s)) (is-normalized-wrt t Amp)))(implies (and (is-normalized-wrt r Amp) (is-normalized-wrt s Amp)(not (= r 0)) (not (= s 0)) (= r1 (num r)) (= r2 (denom r))(not (= r2 0)) (= s1 (num s)) (= s2 (denom s)) (not (= s2 0))(not (and (= r2 1) (= s2 1))) (= r2 1)(= t (fract (+ (* r1 s2) s1) s2)))(and (~ t (+ r s)) (is-normalized-wrt t Amp)))(implies (and (is-normalized-wrt r Amp) (is-normalized-wrt s Amp)(not (= r 0)) (not (= s 0)) (= r1 (num r)) (= r2 (denom r))(not (= r2 0)) (= s1 (num s)) (= s2 (denom s)) (not (= s2 0))(not (and (= r2 1) (= s2 1))) (not (= r2 1)) (= s2 1)(= t (fract (+ (* s1 r2) r1) r2)))(and (~ t (+ r s)) (is-normalized-wrt t Amp)))127



(implies (and (is-normalized-wrt r Amp) (is-normalized-wrt s Amp)(not (= r 0)) (not (= s 0)) (= r1 (num r)) (= r2 (denom r))(not (= r2 0)) (= s1 (num s)) (= s2 (denom s)) (not (= s2 0))(not (and (= r2 1) (= s2 1))) (not (= r2 1)) (not (= s2 1))(\in d Amp) (= d (gcd r2 s2)) (not (= d 1))(= r2' (/ r2 d)) (= s2' (/ s2 d)) (= t1 0) (= t 0)(= t1 (+ (* r1 s2') (* s1 r2'))) (= t2 (* r2 s2')))(and (~ t (+ r s)) (is-normalized-wrt t Amp)))(implies (and (is-normalized-wrt r Amp) (is-normalized-wrt s Amp)(not (= r 0)) (not (= s 0)) (= r1 (num r)) (= r2 (denom r))(not (= r2 0)) (= s1 (num s)) (= s2 (denom s)) (not (= s2 0))(not (and (= r2 1) (= s2 1))) (not (= r2 1)) (not (= s2 1))(\in d Amp) (= d (gcd r2 s2)) (not (= d 1)) (= r2' (/ r2 d))(= s2' (/ s2 d)) (= t1 (+ (* r1 s2') (* s1 r2')))(= t2 (* r2 s2')) (not (= t1 0)) (\in e Amp) (= e (gcd t1 d))(= t1' (/ t1 e)) (= t2' (/ t2 e)) (= t (fract t1' t2')))(and (~ t (+ r s)) (is-normalized-wrt t Amp)))�File de�ned by parts 59ab, 161, 162.The following theorems are due to the procedure calls of the Brown/Henrici algorithm,namely due to the fract and the / function. They state that these calls are correctwith respect to the input speci�cation of the corresponding subalgorithms."BrHenAdd-theorems.txt" 162 �(implies (and (is-normalized-wrt r Amp) (is-normalized-wrt s Amp)(not (= r 0)) (not (= s 0)) (= r1 (num r)) (= r2 (denom r))(not (= r2 0)) (= s1 (num s)) (= s2 (denom s)) (not (= s2 0))(= r2 1) (= s2 1))(not (= 1 0)))(implies (and (is-normalized-wrt r Amp) (is-normalized-wrt s Amp)(not (= r 0)) (not (= s 0)) (= r1 (num r)) (= r2 (denom r))(not (= r2 0)) (= s1 (num s)) (= s2 (denom s)) (not (= s2 0))(not (and (= r2 1) (= s2 1))) (not (= r2 1)) (not (= s2 1))(\in d Amp) (= d (gcd r2 s2)) (= d 1))(not (= (* r2 s2) 0)))(implies (and (is-normalized-wrt r Amp) (is-normalized-wrt s Amp)(not (= r 0)) (not (= s 0)) (= r1 (num r)) (= r2 (denom r))(not (= r2 0)) (= s1 (num s)) (= s2 (denom s)) (not (= s2 0))(not (and (= r2 1) (= s2 1))) (not (= r2 1)) (not (= s2 1))(\in d Amp) (= d (gcd r2 s2)) (not (= d 1)))(and (not (= d 0)) (d divides r2)))(implies (and (is-normalized-wrt r Amp) (is-normalized-wrt s Amp)(not (= r 0)) (not (= s 0)) (= r1 (num r)) (= r2 (denom r))(not (= r2 0)) (= s1 (num s)) (= s2 (denom s)) (not (= s2 0))(not (and (= r2 1) (= s2 1))) (not (= r2 1)) (not (= s2 1))(\in d Amp) (= d (gcd r2 s2)) (not (= d 1)) (= r2' (/ r2 d)))(and (not (= d 0)) (d divides s2)))128



(implies (and (is-normalized-wrt r Amp) (is-normalized-wrt s Amp)(not (= r 0)) (not (= s 0)) (= r1 (num r)) (= r2 (denom r))(not (= r2 0)) (= s1 (num s)) (= s2 (denom s)) (not (= s2 0))(not (and (= r2 1) (= s2 1))) (not (= r2 1)) (not (= s2 1))(\in d Amp) (= d (gcd r2 s2)) (not (= d 1)) (= r2' (/ r2 d))(= s2' (/ s2 d)) (= t1 (+ (* r1 s2') (* s1 r2')))(= t2 (* r2 s2')) (not (= t1 0)) (\in e Amp) (= e (gcd t1 d)))(and (not (= e 0)) (e divides t1)))�File de�ned by parts 59ab, 161, 162.For completion we also present the prototypes of the occurring subalgorithms, whichare necessary for the veri�cation condition generator to construct the above giventheorems for generic Brown/Henrici addition."prototypes.txt" 163 �(prototype(+ r s out t)(input (\in r I) (\in s I))(output (\in t I)(with (= t (+ r s)))))(prototype(* r s out t)(input (\in r I) (\in s I))(output (\in t I)(with (= t (* r s)))))(prototype(num r out r1)(input (\in r Q))(output (\in r1 I)(with (= r1 (num r))) ))(prototype(denom r out r2)(input (\in r Q))(output (\in r2 I)(with (= r2 (denom r)) (not(= r2 0)) )) )(prototype(fract r s out t)(input (\in r I) (\in s I)(with (not(= s 0)) ))(output (\in t Q) (with (= t (fract r s))) ))(prototype(/ r s out t)(input (\in r I) (\in s I)(with (not(= s 0)) (s divides r) ))(output (\in t I) (with (= t (/ r s))) ))�File de�ned by parts 42a, 163. 129



A.6 Proofs of the Remaining Veri�cation ConditionsFor completion we start with the necessary environment making the �le BrHenAdd.mizto a correct Mizar article accepted by the Mizar proof checker.hBrHenAdd environment 164i �environvocabularyCOORD,VECTSP_1,VECTSP_2,LINALG_1,REAL_1,GCD,QF;notationSTRUCT_0,RLVECT_1,MCART_1,VECTSP_1,DOMAIN_1,ZFMISC_1,VECTSP_2,GCD;constructorsGCD,DOMAIN_1,VECTSP_1,ALGSTR_2;theoremsTARSKI,MCART_1,VECTSP_1,VECTSP_2,GCD;definitionsSTRUCT_0;clustersSTRUCT_0,ZFMISC_1;beginreserve X,Y,Z for set;reserve I for domRing;reserve a,b,c,d for Element of the carrier of I;hlemmata for Brown/Henrici 131i�De�nition referenced in part 75a.Finally, here we present the Mizar proofs of the veri�cation conditions we did notprove in section 4.5. Note that these proofs follow the same scheme as the ones pre-sented in the text. We start with theorems concerning the output t of the algorithm.The main job is to show that the theorem of Brown and Henrici | if necessary atall | is applicable, thus proving that t again is normalized. Showing t ~ r + s isstraightforward."BrHenAdd.miz" 165 �theorem(Amp is_multiplicative &r is_normalized_wrt Amp & s is_normalized_wrt Amp &r = 0.Q & t = s)implies (t ~ r+s & t is_normalized_wrt Amp)proofM: now assumeH0: s is_normalized_wrt Amp & r = 0.Q & t = s;H1: 1.G <> 0.G by VECTSP_1:def 21;H2: r = fract(0.G,1.G) by H0,Def74;H4: 0.G = num(r) & 1.G = denom(r) by H2,H1,F1;H5: r`1 = 0.G by H4,Def55;H6: r`2 = 1.G by H4,Def53;H3: r+s = [r`1*s`2+s`1*r`2, r`2*s`2] by Def70130



.= [0.G*s`2+s`1*r`2, r`2*s`2] by H5.= [0.G*s`2+s`1*1.G, 1.G*s`2] by H6.= [0.G+s`1*1.G, 1.G*s`2] by VECTSP_2:26.= [s`1*1.G, 1.G*s`2] by VECTSP_2:1.= [s`1, 1.G*s`2] by VECTSP_2:1.= [s`1, s`2] by VECTSP_2:1;H4: num(r+s) = (r+s)`1 by Def55.= s`1 by H3,MCART_1:def 1;H5: denom(r+s) = (r+s)`2 by Def53.= s`2 by H3,MCART_1:def 2;H6: num(t)*denom(r+s) = s`1*denom(r+s) by H0,Def55.= s`1*s`2 by H5.= num(r+s)* s`2 by H4.= num(r+s)*denom(t) by H0,Def53;H7: t ~ (r+s) by H6,Def76;thus thesis by H7;end; :: Mthus thesis by M;end;theorem(Amp is_multiplicative &r is_normalized_wrt Amp & s is_normalized_wrt Amp &not(r = 0.Q) & s = 0.Q & t = r)implies (t ~ r+s & t is_normalized_wrt Amp)proofM: now assumeH0: r is_normalized_wrt Amp & s = 0.Q & t = r;H1: 1.G <> 0.G by VECTSP_1:def 21;H2: s = fract(0.G,1.G) by H0,Def74;H4: 0.G = num(s) & 1.G = denom(s) by H2,H1,F1;H5: s`1 = 0.G by H4,Def55;H6: s`2 = 1.G by H4,Def53;H3: r+s = [r`1*s`2+s`1*r`2, r`2*s`2] by Def70.= [r`1*s`2+0.G*r`2, r`2*s`2] by H5.= [r`1*1.G+0.G*r`2, r`2*1.G] by H6.= [r`1*1.G+0.G, r`2*1.G] by VECTSP_2:26.= [r`1*1.G, r`2*1.G] by VECTSP_2:1.= [r`1, r`2*1.G] by VECTSP_2:1.= [r`1, r`2] by VECTSP_2:1;H4: num(r+s) = (r+s)`1 by Def55.= r`1 by H3,MCART_1:def 1;H5: denom(r+s) = (r+s)`2 by Def53.= r`2 by H3,MCART_1:def 2;H6: num(t)*denom(r+s) = r`1*denom(r+s) by H0,Def55.= r`1*r`2 by H5.= num(r+s)* r`2 by H4.= num(r+s)*denom(t) by H0,Def53;H7: t ~ (r+s) by H6,Def76;thus thesis by H7;end; :: Mthus thesis by M;end; 131



theorem(Amp is_multiplicative &r is_normalized_wrt Amp & s is_normalized_wrt Amp &not(r = 0.Q) & not(s = 0.Q) &r1 = num(r) & r2 = denom(r) & r2 <> 0.G &s1 = num(s) & s2 = denom(s) & s2 <> 0.G &not(r2 = 1.G & s2 = 1.G) & r2 = 1.G &t = fract(r1*s2+s1,s2))implies (t ~ r+s & t is_normalized_wrt Amp)proofM: now assumeH0: s is_normalized_wrt Amp & r1 = num(r) & r2 = denom(r) &s1 = num(s) & s2 = denom(s) & s2 <> 0.G &r2 = 1.G & t = fract(r1*s2+s1,s2);H1b: s2 2 Amp by H0,Def73;H1: denom(t) = s2 by H0,F1;H2: num(t) = r1*s2+s1 by H0,F1;H3: denom(t) 2 Amp by H1b,H1;H4: gcd(r1*s2+s1,s2,Amp)= gcd(s1,s2,Amp) by GCD:39.= 1.G by H0,Def73;H5: t is_normalized_wrt Amp by H4,H3,H2,H1,Def73;H7: num(r+s) = r1*s2+s1*r2 by H0,F2.= r1*s2+s1*1.G by H0.= r1*s2+s1 by VECTSP_2:1;H8: denom(r+s) = r2*s2 by H0,F2.= 1.G*s2 by H0.= s2 by VECTSP_2:1;H9: num(t)*denom(r+s) = (r1*s2+s1)*denom(r+s) by H2.= (r1*s2+s1)*s2 by H8.= num(r+s)*s2 by H7.= num(r+s)*denom(t) by H1;H10: t ~ (r+s) by H9,Def76;thus thesis by H10,H5;end; :: Mthus thesis by M;end;theorem(Amp is_multiplicative &r is_normalized_wrt Amp & s is_normalized_wrt Amp &not(r = 0.Q) & not(s = 0.Q) &r1 = num(r) & r2 = denom(r) & r2 <> 0.G &s1 = num(s) & s2 = denom(s) & s2 <> 0.G &not(r2 = 1.G & s2 = 1.G) & r2 <> 1.G & s2 = 1.G &t = fract(s1*r2+r1,r2))implies (t ~ r+s & t is_normalized_wrt Amp)proofM: now assumeH0: r is_normalized_wrt Amp & r1 = num(r) & r2 = denom(r) &r2 <> 0.G & s1 = num(s) & s2 = denom(s) &132



s2 = 1.G & t = fract(s1*r2+r1, r2);H1b: r2 2 Amp by H0,Def73;H1: denom(t) = r2 by H0,F1;H2: num(t) = s1*r2+r1 by H0,F1;H3: denom(t) 2 Amp by H1b,H1;H4: gcd(s1*r2+r1,r2,Amp)= gcd(r1,r2,Amp) by GCD:39.= 1.G by H0,Def73;H5: t is_normalized_wrt Amp by H4,H3,H2,H1,Def73;H7: num(r+s) = r1*s2+s1*r2 by H0,F2.= r1*1.G+s1*r2 by H0.= r1+s1*r2 by VECTSP_2:1;H8: denom(r+s) = r2*s2 by H0,F2.= r2*1.G by H0.= r2 by VECTSP_2:1;H9: num(t)*denom(r+s) = (s1*r2+r1)*denom(r+s) by H2.= (s1*r2+r1)*r2 by H8.= num(r+s)*r2 by H7.= num(r+s)*denom(t) by H1;H10: t ~ (r+s) by H9,Def76;thus thesis by H10,H5;end; :: Mthus thesis by M;end;theorem(Amp is_multiplicative &r is_normalized_wrt Amp & s is_normalized_wrt Amp &not(r = 0.Q) & not(s = 0.Q) &r1 = num(r) & r2 = denom(r) & r2 <> 0.G &s1 = num(s) & s2 = denom(s) & s2 <> 0.G &not(r2 = 1.G & s2 = 1.G) & r2 <> 1.G & s2 <> 1.G &d 2 Amp & d = gcd(r2,s2,Amp) & d <> 1.G &r2' = r2/d & s2' = s2/d &t1 = r1*s2'+s1*r2' & t2 = r2*s2' & t1 = 0.G & t = 0.Q)implies (t ~ r+s & t is_normalized_wrt Amp)proofM: now assumeH0: r1 = num(r) & r2 = denom(r) & r2 <> 0.G &s1 = num(s) & s2 = denom(s) & s2 <> 0.G &d = gcd(r2,s2,Amp) & d <> 1.G &r2' = r2/d & s2' = s2/d &t1 = r1*s2'+s1*r2' & t2 = r2*s2' &t1 = 0.G & t = 0.Q;H2a: 1.G <> 0.G by VECTSP_1:def 21;H2: t = fract(0.G,1.G) by H0,Def74;H4: 0.G = num(t) & 1.G = denom(t) by H2,H2a,F1;H3: denom(t) 2 Amp by H4,GCD:21;H1: gcd(num(t),denom(t),Amp) = 1.G by H4,GCD:32;H7: t is_normalized_wrt Amp by H1,H3,Def73;H9: gcd(r2,s2,Amp) <> 0.G by H0,GCD:33;133



H10a: gcd(r2,s2,Amp) divides r2 by GCD:27;H10: gcd(r2,s2,Amp) divides s1*r2 by H10a,GCD:7;H11a: gcd(r2,s2,Amp) divides s2 by GCD:27;H11: gcd(r2,s2,Amp) divides r1*s2 by GCD:7,H11a;H13: gcd(r2,s2,Amp) divides r1*s2+s1*r2 by H10,H11,L1;H8: r1*s2+s1*r2 = 0.GproofM3: 0.G= r1*(s2/gcd(r2,s2,Amp))+s1*(r2/gcd(r2,s2,Amp)) by H0.= (r1*s2)/gcd(r2,s2,Amp)+s1*(r2/gcd(r2,s2,Amp)) by H9,H11a,L3.= (r1*s2)/gcd(r2,s2,Amp)+(s1*r2)/gcd(r2,s2,Amp) by H9,H10a,L3.= (r1*s2+s1*r2)/gcd(r2,s2,Amp) by H9,H11,H10,L2;thus thesis by H13,H9,M3,GCD:8;end;H14: num(r+s) = 0.G by H8,H0,F2;H16: num(t)*denom(r+s) = 0.G*denom(r+s) by H4.= 0.G by VECTSP_2:26.= 0.G*1.G by VECTSP_2:26.= num(r+s)*1.G by H14.= num(r+s)*denom(t) by H4;H17: t ~ (r+s) by H16,Def76;thus thesis by H17,H7;end; :: Mthus thesis by M;end;theorem(Amp is_multiplicative &r is_normalized_wrt Amp & s is_normalized_wrt Amp &not(r = 0.Q) & not(s = 0.Q) &r1 = num(r) & r2 = denom(r) & r2 <> 0.G &s1 = num(s) & s2 = denom(s) & s2 <> 0.G &not(r2 = 1.G & s2 = 1.G) & r2 <> 1.G & s2 <> 1.G &d 2 Amp & d = gcd(r2,s2,Amp) & d <> 1.G &r2' = r2/d & s2' = s2/d &t1 = r1*s2'+s1*r2' & t2 = r2*s2' &t1 <> 0.G & e 2 Amp & e = gcd(t1,d,Amp) &t1' = t1/e & t2' = t2/e & t = fract(t1',t2'))implies (t ~ r+s & t is_normalized_wrt Amp)proofassume H0: Amp is_multiplicative &r is_normalized_wrt Amp & s is_normalized_wrt Amp &not(r = 0.Q) & not(s = 0.Q) &r1 = num(r) & r2 = denom(r) & r2 <> 0.G &s1 = num(s) & s2 = denom(s) & s2 <> 0.G &not(r2 = 1.G & s2 = 1.G) & r2 <> 1.G & s2 <> 1.G &d 2 Amp & d = gcd(r2,s2,Amp) & d <> 1.G &r2' = r2/d & s2' = s2/d &t1 = r1*s2'+s1*r2' & t2 = r2*s2' &t1 <> 0.G & e 2 Amp & e = gcd(t1,d,Amp) &t1' = t1/e & t2' = t2/e & t = fract(t1',t2');H1: t2' <> 0.G by H0,BH14;H2: gcd(r1,r2,Amp) = 1.G & gcd(s1,s2,Amp) = 1.G by H0,Def73;134



H4: t1' = num(t) & t2' = denom(t) by H0,H1,F1;H5: num(t) = t1/gcd(t1,d,Amp) by H0,H4.= t1/gcd(r1*s2'+s1*r2',gcd(r2,s2,Amp),Amp) by H0.= t1/gcd(r1*(s2/gcd(r2,s2,Amp))+s1*(r2/gcd(r2,s2,Amp)),gcd(r2,s2,Amp),Amp) by H0.= (r1*(s2/gcd(r2,s2,Amp))+s1*(r2/gcd(r2,s2,Amp))) /gcd(r1*(s2/gcd(r2,s2,Amp))+s1*(r2/gcd(r2,s2,Amp)),gcd(r2,s2,Amp),Amp) by H0;H6: denom(t) = t2/gcd(t1,d,Amp) by H0,H4.= t2/gcd(r1*s2'+s1*r2',gcd(r2,s2,Amp),Amp) by H0.= t2/gcd(r1*(s2/gcd(r2,s2,Amp))+s1*(r2/gcd(r2,s2,Amp)),gcd(r2,s2,Amp),Amp) by H0.= (r2*(s2/gcd(r2,s2,Amp))) /gcd(r1*(s2/gcd(r2,s2,Amp))+s1*(r2/gcd(r2,s2,Amp)),gcd(r2,s2,Amp),Amp) by H0;H7: gcd(r2,s2,Amp) <> 0.G by H0,GCD:33;H8: gcd(r1*(s2/gcd(r2,s2,Amp))+s1*(r2/gcd(r2,s2,Amp)),gcd(r2,s2,Amp),Amp) <> 0.G by H7,GCD:33;H9: gcd(r1*(s2/gcd(r2,s2,Amp))+s1*(r2/gcd(r2,s2,Amp)),r2*(s2/gcd(r2,s2,Amp)),Amp)= gcd(r1*(s2/gcd(r2,s2,Amp))+s1*(r2/gcd(r2,s2,Amp)),gcd(r2,s2,Amp),Amp) by H0,H2,GCD:40;H10: gcd(num(t),denom(t),Amp) = 1.G by H5,H6,H8,H9,GCD:38;H11: r2 2 Amp & s2 2 Amp by H0,Def73;reconsider r2,s2 as Element of Amp by H11;H12: gcd(r2,s2,Amp) 2 Amp by GCD:def 12;H13: gcd(r2,s2,Amp) divides s2 by GCD:def 12;H18: gcd(r2,s2,Amp) <> 0.G by H0,GCD:33;reconsider z1 = gcd(r2,s2,Amp) as Element of Amp by H12;H14: s2/z1 2 Amp by H0,H13,H18,GCD:24;reconsider z2 = s2/gcd(r2,s2,Amp) as Element of Amp by H14;H15: r2*z2 2 Amp by H0,GCD:def 9;reconsider z3 = r2*(s2/gcd(r2,s2,Amp)) as Element of Amp by H15;reconsider z4 = gcd(r1*(s2/gcd(r2,s2,Amp))+s1*(r2/gcd(r2,s2,Amp)),gcd(r2,s2,Amp),Amp) as Element of Amp by GCD:def 12;H16: z4 <> 0.G by H18,GCD:33;H23: gcd(r2,s2,Amp) divides r2 by GCD:def 12;H17: z4 divides z3proofM1: z4 divides gcd(r2,s2,Amp) by GCD:def 12;M3: z4 divides r2 by M1,H23,GCD:2;thus thesis by M3,GCD:7;end;H19: z3/z4 2 Amp by H0,H16,H17,GCD:24;H20: denom(t) 2 Amp by H19,H6;H21: t is_normalized_wrt Amp by H20,H10,Def73;H24: gcd(r2,s2,Amp) divides r1*s2 by H13,GCD:7;H27: gcd(r2,s2,Amp) divides s1*r2 by H23,GCD:7;H28: gcd(r2,s2,Amp) divides ((r1*s2)*r2) by H24,GCD:7;H29: gcd(r2,s2,Amp) divides ((s1*r2)*r2) by H27,GCD:7;H32: ((r1*(s2/gcd(r2,s2,Amp))) +(s1*(r2/gcd(r2,s2,Amp))))*(r2*s2)135



= ((r1*(s2/gcd(r2,s2,Amp)))*(r2*s2)) +((s1*(r2/gcd(r2,s2,Amp)))*(r2*s2)) by VECTSP_2:1.= (((r1*s2)/gcd(r2,s2,Amp))*(r2*s2)) +((s1*(r2/gcd(r2,s2,Amp)))*(r2*s2)) by H18,H13,L3.= (((r1*s2)/gcd(r2,s2,Amp))*(r2*s2)) +(((s1*r2)/gcd(r2,s2,Amp))*(r2*s2)) by H18,H23,L3.= ((((r1*s2)/gcd(r2,s2,Amp))*r2)*s2) +(((s1*r2)/gcd(r2,s2,Amp))*(r2*s2)) by VECTSP_1:def 16.= ((((r1*s2)/gcd(r2,s2,Amp))*r2)*s2) +((((s1*r2)/gcd(r2,s2,Amp))*r2)*s2) by VECTSP_1:def 16.= ((((r1*s2)*r2)/gcd(r2,s2,Amp))*s2) +((((s1*r2)/gcd(r2,s2,Amp))*r2)*s2) by H18,H24,L3.= ((((r1*s2)*r2)/gcd(r2,s2,Amp))*s2) +((((s1*r2)*r2)/gcd(r2,s2,Amp))*s2) by H18,H27,L3.= ((((r1*s2)*r2)*s2)/gcd(r2,s2,Amp)) +((((s1*r2)*r2)/gcd(r2,s2,Amp))*s2) by H18,H28,L3.= ((((r1*s2)*r2)*s2)/gcd(r2,s2,Amp)) +((((s1*r2)*r2)*s2)/gcd(r2,s2,Amp)) by H18,H29,L3;H33a: gcd(r2,s2,Amp) divides (r2*s2) by H23,GCD:7;H33: gcd(r2,s2,Amp) divides ((r2*s2)*r1) by H33a,GCD:7;H34: gcd(r2,s2,Amp) divides ((r2*s2)*s1) by H33a,GCD:7;H37: (r2*(s2/gcd(r2,s2,Amp))) *((r1*s2)+(s1*r2))= ((r2*(s2/gcd(r2,s2,Amp)))*(r1*s2)) +((r2*(s2/gcd(r2,s2,Amp)))*(s1*r2)) by VECTSP_2:1.= (((r2*(s2/gcd(r2,s2,Amp)))*r1)*s2) +((r2*(s2/gcd(r2,s2,Amp)))*(s1*r2)) by VECTSP_1:def 16.= (((r2*(s2/gcd(r2,s2,Amp)))*r1)*s2) +(((r2*(s2/gcd(r2,s2,Amp)))*s1)*r2) by VECTSP_1:def 16.= ((((r2*s2)/gcd(r2,s2,Amp))*r1)*s2) +(((r2*(s2/gcd(r2,s2,Amp)))*s1)*r2) by H18,H13,L3.= ((((r2*s2)/gcd(r2,s2,Amp))*r1)*s2) +((((r2*s2)/gcd(r2,s2,Amp))*s1)*r2) by H18,H13,L3.= ((((r2*s2)*r1)/gcd(r2,s2,Amp))*s2) +((((r2*s2)/gcd(r2,s2,Amp))*s1)*r2) by H18,H33a,L3.= ((((r2*s2)*r1)/gcd(r2,s2,Amp))*s2) +((((r2*s2)*s1)/gcd(r2,s2,Amp))*r2) by H18,H33a,L3.= ((((r2*s2)*r1)*s2)/gcd(r2,s2,Amp)) +((((r2*s2)*s1)/gcd(r2,s2,Amp))*r2) by H18,H33,L3.= ((((r2*s2)*r1)*s2)/gcd(r2,s2,Amp)) +((((r2*s2)*s1)*r2)/gcd(r2,s2,Amp)) by H18,H34,L3.= ((((r1*s2)*r2)*s2)/gcd(r2,s2,Amp)) +((((r2*s2)*s1)*r2)/gcd(r2,s2,Amp)) by VECTSP_1:def 16.= ((((r1*s2)*r2)*s2)/gcd(r2,s2,Amp)) +((s1*((r2*s2)*r2))/gcd(r2,s2,Amp)) by VECTSP_1:def 16.= ((((r1*s2)*r2)*s2)/gcd(r2,s2,Amp)) +((s1*((r2*r2)*s2))/gcd(r2,s2,Amp)) by VECTSP_1:def 16.= ((((r1*s2)*r2)*s2)/gcd(r2,s2,Amp)) +(((s1*(r2*r2))*s2)/gcd(r2,s2,Amp)) by VECTSP_1:def 16.= ((((r1*s2)*r2)*s2)/gcd(r2,s2,Amp)) +((((s1*r2)*r2)*s2)/gcd(r2,s2,Amp)) by VECTSP_1:def 16;H38: ((r1*(s2/gcd(r2,s2,Amp))) +(s1*(r2/gcd(r2,s2,Amp))))*(r2*s2)136



= (r2*(s2/gcd(r2,s2,Amp)))*((r1*s2)+(s1*r2)) by H32,H37;H39: gcd((r1*(s2/gcd(r2,s2,Amp)))+(s1*(r2/gcd(r2,s2,Amp))),gcd(r2,s2,Amp),Amp)<> (0.G) by GCD:33,H18;H40: gcd((r1*(s2/gcd(r2,s2,Amp)))+(s1*(r2/gcd(r2,s2,Amp))),gcd(r2,s2,Amp),Amp) divides((r1*(s2/gcd(r2,s2,Amp)))+(s1*(r2/gcd(r2,s2,Amp))))by GCD:def 12;H42: gcd((r1*(s2/gcd(r2,s2,Amp)))+(s1*(r2/gcd(r2,s2,Amp))),gcd(r2,s2,Amp),Amp)divides gcd(r2,s2,Amp) by GCD:def 12;H43: gcd((r1*(s2/gcd(r2,s2,Amp)))+(s1*(r2/gcd(r2,s2,Amp))),gcd(r2,s2,Amp),Amp)divides r2 by H23,H42,GCD:2;H44: gcd((r1*(s2/gcd(r2,s2,Amp)))+(s1*(r2/gcd(r2,s2,Amp))),gcd(r2,s2,Amp),Amp)divides (r2*(s2/gcd(r2,s2,Amp))) by H43,GCD:7;H46: (((r1*(s2/gcd(r2,s2,Amp)))+(s1*(r2/gcd(r2,s2,Amp)))) /gcd((r1*(s2/gcd(r2,s2,Amp)))+(s1*(r2/gcd(r2,s2,Amp))),gcd(r2,s2,Amp),Amp))*(r2*s2)= (((r1*(s2/gcd(r2,s2,Amp)))+(s1*(r2/gcd(r2,s2,Amp)))) *(r2*s2)) /gcd((r1*(s2/gcd(r2,s2,Amp)))+(s1*(r2/gcd(r2,s2,Amp))),gcd(r2,s2,Amp),Amp) by H39,H40,L3.= ((r2*(s2/gcd(r2,s2,Amp)))*((r1*s2)+(s1*r2))) /gcd((r1*(s2/gcd(r2,s2,Amp)))+(s1*(r2/gcd(r2,s2,Amp))),gcd(r2,s2,Amp),Amp) by H38.= ((r2*(s2/gcd(r2,s2,Amp))) /gcd((r1*(s2/gcd(r2,s2,Amp)))+(s1*(r2/gcd(r2,s2,Amp))),gcd(r2,s2,Amp),Amp))*((r1*s2)+(s1*r2)) by H39,H44,L3;H49: num(t)*denom(r+s)= num(t)*(r2*s2) by H0,F2.= (((r1*(s2/gcd(r2,s2,Amp)))+(s1*(r2/gcd(r2,s2,Amp)))) /gcd((r1*(s2/gcd(r2,s2,Amp)))+(s1*(r2/gcd(r2,s2,Amp))),gcd(r2,s2,Amp),Amp))*(r2*s2) by H5.= ((r2*(s2/gcd(r2,s2,Amp))) /gcd((r1*(s2/gcd(r2,s2,Amp)))+(s1*(r2/gcd(r2,s2,Amp))),gcd(r2,s2,Amp),Amp))*((r1*s2)+(s1*r2)) by H46.= denom(t)*((r1*s2)+(s1*r2)) by H6.= denom(t)*num(r+s) by H0,F2;H50: t ~ (r+s) by H49,Def76;thus thesis by H21,H50;end;�File de�ned by parts 75ab, 76a, 77ab, 78, 79ab, 80ab, 81ab, 82ab, 83, 84ab, 85abc, 86ab, 87ab,88abc, 89, 90abc, 91, 158b, 159, 160, 165, 174.We conclude with the remaining theorems concerning correctness of the occurringprocedure calls, namely of the subalgorithms / and fract. Note that all proofs are137



done by simply referencing a suitable theorem."BrHenAdd.miz" 174 �theorem(Amp is_multiplicative &r is_normalized_wrt Amp & s is_normalized_wrt Amp &not(r = 0.Q) & not(s = 0.Q) &r1 = num(r) & r2 = denom(r) & r2 = 0.G &s1 = num(s) & s2 = denom(s) & s2 = 0.G &r2 = 1.G & s2 = 1.G)implies not(1.Q = 0.Q) by VECTSP_1:def 21;theorem(Amp is_multiplicative &r is_normalized_wrt Amp & s is_normalized_wrt Amp &not(r = 0.Q) & not(s = 0.Q) &r1 = num(r) & r2 = denom(r) & r2 <> 0.G &s1 = num(s) & s2 = denom(s) & s2 <> 0.G &not(r2 = 1.G & s2 = 1.G) & r2 <> 1.G & s2 <> 1.G &d 2 Amp & d = gcd(r2,s2,Amp) & d = 1.G)implies r2*s2 <> 0.G by VECTSP_2:15;theorem(Amp is_multiplicative &r is_normalized_wrt Amp & s is_normalized_wrt Amp &not(r = 0.Q) & not(s = 0.Q) &r1 = num(r) & r2 = denom(r) & r2 <> 0.G &s1 = num(s) & s2 = denom(s) & s2 <> 0.G &not(r2 = 1.G & s2 = 1.G) & r2 <> 1.G & s2 <> 1.G &d 2 Amp & d = gcd(r2,s2,Amp) & d <> 1.G)implies (d <> 0.G & d divides r2) by GCD:def 12,GCD:33;theorem(Amp is_multiplicative &r is_normalized_wrt Amp & s is_normalized_wrt Amp &not(r = 0.Q) & not(s = 0.Q) &r1 = num(r) & r2 = denom(r) & r2 <> 0.G &s1 = num(s) & s2 = denom(s) & s2 <> 0.G &not(r2 = 1.G & s2 = 1.G) & r2 <> 1.G & s2 <> 1.G &d 2 Amp & d = gcd(r2,s2,Amp) & d <> 1.G & r2' = r2/d)implies (d <> 0.G & d divides s2) by GCD:def 12,GCD:33;theorem(Amp is_multiplicative &r is_normalized_wrt Amp & s is_normalized_wrt Amp &not(r = 0.Q) & not(s = 0.Q) &r1 = num(r) & r2 = denom(r) & r2 <> 0.G &s1 = num(s) & s2 = denom(s) & s2 <> 0.G &not(r2 = 1.G & s2 = 1.G) & r2 <> 1.G & s2 <> 1.G &d 2 Amp & d = gcd(r2,s2,Amp) & d <> 1.G &r2' = r2/d & s2' = s2/d &t1 = r1*s2'+s1*r2' & t2 = r2*s2' &t1 <> 0.G & e 2 Amp & e = gcd(t1,d,Amp))implies (e <> 0.G & e divides t1) by GCD:def 12,GCD:33;138



�File de�ned by parts 75ab, 76a, 77ab, 78, 79ab, 80ab, 81ab, 82ab, 83, 84ab, 85abc, 86ab, 87ab,88abc, 89, 90abc, 91, 158b, 159, 160, 165, 174.
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Appendix BAdditional Scheme CodeThis chapter contains further Scheme code of the veri�cation condition generator wedid not include in the description in chapter three. Note that listing the code hereenables the extraction of the generator's complete source code from this documentusing StWeb.B.1 Some Further Main FunctionsWe start with some of the more important procedures the generator uses. Procedureinsert-pred-before is a direct counterpart of insert-pred-after we presented insection 3.3. We use it to annotate sequences."annotations.scm" 177 �(define (insert-pred-before symbol)(lambda (prog . theme)(if (equal? symbol 'all)(if (empty? prog)prog(if (equal? (car prog) 'begin)(let ((rest((insert-pred-before 'all) (cddr prog))))(append (list 'begin (cadr prog))rest))(let ((rest((insert-pred-before 'all) (cdr prog))))(begin(set! prednr (+ prednr 1))(append (list prednr (car prog))rest))) ))(do ((format (get formats (get-key prog))(cdr format))(pr prog (cdr prog))(ergprog '() (append ergprog (list (car pr)) )))((equal? (car format) symbol)(begin(set! prednr (+ prednr 1))(append ergprog (list prednr pr))))140



(if (empty? format)(error 'insert-pred-before: symbol 'does 'not'appear 'in 'format 'of prog)) )) ))�File de�ned by parts 45a, 46b, 48b, 49a, 177.Procedure is-invariant? is due to our rule concerning procedure calls: Together withprocedure is-free it tests whether the given variables occur in the given formula."guesses.scm" 178 �(define (is-invariant? formula vars)(cond ((empty? vars) #t)((is-free (car vars) formula) #f)(else(is-invariant? formula (cdr vars))) ))(define (is-free obj formula)(define (is-free-h obj formula)(cond ((empty? formula) #f)((equal? formula obj) #t)((and (not(list? formula))(not(member formula logicals-list))(not(equal? formula obj))) #f)((list? formula)(or (is-free-h obj (car formula))(is-free-h obj (cdr formula))))(else #f) ))(let ((form (expand formula)))(if (equal? form '?) #t(is-free-h obj form))))�File de�ned by parts 55ab, 56ac, 178.Procedure construct is used in every stage of the generator. It gets an abstract schemeand another object | an algorithm, an annotated algorithm or a formula | as input.Out of the abstract scheme it builds the result by �lling in certain parts of the schemewith the corresponding parts of the given object.Because of its widespread use we describe this procedure in more detail: An abstractscheme consists of keywords. Some keywords | like 'proc, 'inv or the keywordscontained in the vocabulary list voc-list | allow an immediate result. Keywordscontained in symbol-list| action for instance | are replaced by using the formatde�nition of the given object: Procedure look-up computes the object's statementcorresponding to the given keyword. The third category of keywords consists of proce-dures contained in construct-list| for example inputspec or outputparam. Theseprocedures are simply evaluated giving the desired result.We use procedure construct for instance to compute current Hoare triples out of theabstract ones given by the activities.
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"utilities.scm" 179 �(define (construct obj scheme)(cond ((equal? scheme 'proc) obj)((or (empty? scheme) (is-prednr? scheme)(member scheme key-list) (member scheme voc-list)(member scheme proc-list) (member scheme var-list)(member scheme logicals-list)) scheme)((equal? scheme 'pre) (car obj))((or (equal? scheme 'post)(equal? scheme 'intermed))(caddr obj))((equal? scheme 'inv) (caddr (cadr obj)))((equal? scheme 'first) (cadr obj))((member scheme symbol-list) (lookup scheme obj))((member scheme construct-list)(apply (eval (list scheme)) (list obj)))((and (list? scheme)(member (car scheme) construct-list))(apply (eval scheme) (list obj)))((list? scheme)(cons (construct obj (car scheme))(construct obj (cdr scheme))))(else (error 'procedure 'construct:scheme 'is 'unknown))))�File de�ned by parts 179, 180ab, 181, 183c, 194ab, 195, 196ab, 197, 198.Procedure lookup gets a symbol and a program as input. It takes the format de�nitionof the given program and checks, whether the symbol appears within it. If the symbolis found, lookup returns the corresponding part of the program."utilities.scm" 180a �(define (lookup symbol prog)(define (lookup-h symbol prog format)(do ((pr (if (is-annotated? prog) (cadr prog) prog)(if (and (not(empty? (cdr pr)))(number? (cadr pr))(not(empty? (cddr pr))))(cddr pr) (cdr pr)))(form format (cdr form)))((or (equal? (car form) symbol)(empty? (cdr form)))(if (equal? (car form) symbol)(car pr) #f)) ))(let ((format (get formats (get-key prog)) ))(if (equal? (car format) (get-key prog))(let ((result (lookup-h symbol prog format)))(if result result(error 'procedure 'lookup: symbol'does 'not 'appear 'in(get formats (get-key prog)))))(do ((form format (cdr form)))((fits? prog (car form))(let ((result (lookup-h symbol prog (car form))))(if result result(error 'procedure 'lookup: symbol 'does142



'not 'appear 'in (car form)) )))(if (empty? (cdr form))(error 'procedure 'lookup: symbol'does 'not 'appear 'in(get formats (get-key prog))) )))))�File de�ned by parts 179, 180ab, 181, 183c, 194ab, 195, 196ab, 197, 198.Procedure get-actual looks for the format de�nition �tting to the given program.Note that for instance the if-statement has more than one possible format."utilities.scm" 180b �(define (get-actual formats prog)(let ((format (get formats (get-key prog))))(if (list? (car format))(do ((forms format (cdr forms)))((equal? (length (car forms)) (length prog))(car forms))(if (empty? forms)(error 'procedure 'get-actual:'no 'format 'for prog)))format)))�File de�ned by parts 179, 180ab, 181, 183c, 194ab, 195, 196ab, 197, 198.To handle procedure calls we have to substitute formal parameters by actual parame-ters. In addition we need substitution for some rules of the Hoare calculus, for instancefor the assignment-rule. We decided to separate stating that a substitution has to takeplace and actually executing a substitution. This allows the constructed abstract the-orems to include terms like (subst 0 (x y) (u v)) where 0 is an abstract predicate,hence to get a complete list of veri�cation conditions independent of whether speci�cpredicates can be constructed for the current algorithm.Consequently, we get a procedure subst and a procedure do-subst | which doesnothing more than executing substitutions in a given formula by applying proceduresubst."utilities.scm" 181 �(define (do-subst formula)(cond ((or (empty? formula)(not(list? formula))) formula)((and (list? formula)(equal? (car formula) 'subst))(apply subst (do-subst (cdr formula))))(else (cons (do-subst (car formula))(do-subst (cdr formula)))) ))(define (subst formula vars terms)(define (subst-h formula var term)(cond((or (null? formula) (and (not(list? formula))143



(not(equal? formula var)))) formula)((equal? formula var) term);; the following allows using function calls like (set! x (f y)).((and (list? formula) (equal? (car formula) '=)(list? (caddr formula)) (not(list? (cadr formula)))(member (caaddr formula) proc-list)(not(member (caaddr formula) operator-list)))(let ((form(get-outputspec(get-prototype (caaddr formula) spec-list))))(if (member* (caaddr formula) form)(cons '= (subst-h (cdr formula) var term))(subst-h(subst (get-outputspec(get-prototype (caaddr formula) spec-list))(append (input-vars (caaddr formula))(output-vars (caaddr formula)))(append (cdaddr formula)(list (cadr formula))))var term))))((and (list? formula)(member (car formula) proc-list)(not(member (car formula) operator-list)))(let ((form(get-outputspec(get-prototype (car formula) spec-list))))(if (member* (car formula) form)(cons (car formula)(subst-h (cdr formula) var term))(subst-h (subst (get-outputspec(get-prototype (car formula) spec-list))(append (input-vars (car formula))(output-vars (car formula)))(cdr formula))var term))))(else (cons (subst-h (car formula) var term)(subst-h (cdr formula) var term)))))(let ((form (simple formula)))(if (list? vars)(if (and (list? terms) (equal? (length vars) (length terms)))(let ((res (subst-h form (car vars) (car terms))))(if (empty? (cdr vars)) res(subst res (cdr vars) (cdr terms))))(error 'subst: vars 'and terms 'are 'not 'correct'for form))(subst-h formula vars terms))))�File de�ned by parts 179, 180ab, 181, 183c, 194ab, 195, 196ab, 197, 198.We conclude this section with the procedures concerning the format check. Note thatannotated algorithms' format is not checked once again, because we assume that an-notated algorithms are due to the �rst stage of the generator and hence already havebeen checked for correct format. 144



hget key of prog 183ai �(if (empty? prog)(error 'procedure 'get-key: prog 'has 'no 'key)(let ((key (get-key prog)))�De�nition referenced in part 39b.hcheck format of prog 183bi �(check-format prog (get formats key))�De�nition referenced in part 39b."utilities.scm" 183c �(define (check-format prog format)(define (check-format-h prog format)(cond ((and (not(equal? (length prog) (length format)))(not(member '* format))) #f)((or (empty? prog)(equal? format '(* *))(equal? format '(*))) #t)((equal? (car format) (car prog))(check-format-h (cdr prog) (cdr format)))((or (member (car format) symbol-list)(member (car prog) proc-list))(check-format-h (cdr prog) (cdr format)))(else #f) ))(cond ((is-annotated? prog) #t)((list? (car prog)) #t)((empty? format)(error 'procedure 'check-format:prog 'has 'wrong 'format))((equal? (car format) (get-key prog))(if (not (check-format-h prog format))(error 'procedure 'check-format:prog 'has 'wrong 'format)))(else (if (not (check-format-h prog (car format)))(check-format prog (cdr format)))) ))�File de�ned by parts 179, 180ab, 181, 183c, 194ab, 195, 196ab, 197, 198.B.2 Table InitializationIn this section we present the necessary initialization of tables. This includes thedi�erent kinds of activities as well as some lists of necessary keywords. We start withde�ning access functions due to the alist-package of the SLib.
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"initialize-tables.scm" 184a �(define put (alist-associator equal?))(define remove (alist-remover equal?))(define (get table key)(let ((result ((alist-inquirer equal?) table key)))(if result result(error 'procedure 'get: key 'has 'no 'entry))))(define (insert-newconstruct name format annotation . generation)(set! formats (put formats name format))(set! annotations (put annotations name annotation))(if (not(empty? generation))(set! generations (put generations name (car generation))))(set! key-list (cons name key-list)))�File de�ned by parts 35c, 184ab, 185ab, 186b.The following lists include keywords concerning activities representing Hoare rules,logical operations, procedure calls as well as keywords due to the input/output speci-�cations of our example algorithms.1"initialize-tables.scm" 184b �(set! key-list'(subst proc is-invariant-for is-free?))(set! logicals-list'(true false not and or implies))(set! symbol-list'(condition action action1 action2 var term))(set! construct-list'(inputspec outputspec formalparam actualparam outputparam))(set! operator-list'(+ *))(set! voc-list'(= ~ \in is_normalized_wrt delta < is_associated_todivides gcd Amp))�File de�ned by parts 35c, 184ab, 185ab, 186b.Now rules for annotating algorithms and generating theorems are inserted. Most ofthese rules have already been presented in chapter three."initialize-tables.scm" 185a �hinsert rules 36c, . . . ihwhile rule 54bihassignment rule 53ihprocedure call rule 54cihreturn rule 54ai(set! guesses (put guesses 'begin '((rec 'all))))(set! guesses (put guesses 'return 'none))�File de�ned by parts 35c, 184ab, 185ab, 186b.The following lists are automatically constructed out of the �le prototypes.txt,namely a list of the speci�cations of available subalgorithms, a list of occurring subal-gorithm's names and a list of the occurring variable's identi�ers.1This keywords could also have been constructed out of the input �les; compare for instance theconstruction of the list of variables below. 146



"initialize-tables.scm" 185b �(set! spec-list '())(let ((current-input-port (open-input-file "prototypes.txt")))(do ((obj (read current-input-port)(read current-input-port)))((eof-object? obj) (close-input-port current-input-port))(set! spec-list (append spec-list (list obj))) ))hmake proc-list 185cihread variables 186ai�File de�ned by parts 35c, 184ab, 185ab, 186b.hmake proc-list 185ci �(set! proc-list '(g))(do ((sp-list spec-list (cdr sp-list)))((empty? sp-list) proc-list)(set! proc-list(cons (oper (car sp-list))proc-list)))�De�nition referenced in part 185b.hread variables 186ai �(set! var-list '())(do ((specs spec-list (cdr specs)))((empty? specs) #t)(let ((lst (append(cdr (get-headline (car specs)))(get-internal-vars (car specs)))))(do ((spec lst (cdr spec)))((empty? spec) #t)(if (and (not(equal? (car spec) 'out))(not(member (car spec) var-list)))(set! var-list (cons (car spec) var-list))) )))�De�nition referenced in part 185b.We conclude with the initialization the necessary array for holding the predicates.Note that the natural numbers we introduced in the �rst stage of the generator whenannotating an algorithm serve as the index for the corresponding speci�c predicate.We use the array-package of the SLib."initialize-tables.scm" 186b �(require 'array)(set! predicate-list 'dummy)(set! get-pred 'dummy)(set! put-pred 'dummy)(define (initialize-predlist n)(begin(set! predicate-list (make-array '* n))(set! get-pred 147



(lambda (index)(array-ref predicate-list index)))(set! put-pred(lambda (index object)(array-set! predicate-list object index)))(do ((nr 0 (+ nr 1)))((= nr n) #t)(put-pred nr '?)) ))�File de�ned by parts 35c, 184ab, 185ab, 186b.B.3 Handling PrototypesIn this section we present access functions for prototypes. They all are easy realizedusing hardly more than car and cdr."prototypes.scm" 187 �(define (get-prototype operator spec-list)(cond ((empty? spec-list)(error 'Unknown 'operator: operator))((equal? (caadar spec-list) operator)(car spec-list))(else(get-prototype operator (cdr spec-list)))))(define (get-headline prototype)(cadr prototype))(define (get-whole-input-spec prototype)(if (equal? (caaddr prototype) 'internal)(cdaddr (cdr prototype))(cdaddr prototype)))(define (get-whole-output-spec prototype)(if (equal? (caaddr prototype) 'internal)(cdar (cddddr prototype))(cdr (cadddr prototype))))(define (get-internal-vars prototype)(if (equal? (caaddr prototype) 'internal)(do ((lst (cdaddr prototype) (cdr lst))(res '() (append res (list (cadar lst)))))((empty? lst) res))'(out)))(define (get-internals prototype)(if (equal? (caaddr prototype) 'internal)(caddr prototype)(error 'procedure (caadr prototype) 'has 'no 'internals.)))(define (get-inputspec prototype)(let ((input-spec (get-whole-input-spec prototype)))(if (equal? (car (last-el input-spec)) 'with)(if (> (length (cdr (last-el input-spec))) 1)148



(cons 'and (cdr (last-el input-spec)))(cadr (last-el input-spec)))'true)))(define (get-outputspec prototype)(let ((output-spec (get-whole-output-spec prototype)))(if (equal? (car (last-el output-spec)) 'with)(if (> (length (cdr (last-el output-spec))) 1)(cons 'and (cdr (last-el output-spec)))(cadr (last-el output-spec)))'true)))�File de�ned by parts 187, 188, 189, 190a.The following procedures allow us to compute the speci�cation of a given algorithm.Note that in absence of the argument annotated-prog the result is not the speci�cationof a subalgorithm, but the one of the originally algorithm given by the input �le."prototypes.scm" 188 �(define (inputspec . annotated-prog)(lambda (proc)(if (empty? annotated-prog)(get-inputspec program-spec)(get-inputspec(get-prototype (oper proc) spec-list)))))(define (outputspec . annotated-prog)(lambda (proc)(if (empty? annotated-prog)(get-outputspec program-spec)(get-outputspec(get-prototype (oper proc) spec-list)))))(define (internals annotated-prog)(get-internals(get-prototype (oper annotated-prog) spec-list)))(define (head annotated-prog)(head-line (oper annotated-prog)))(define (inputparam annotated-prog)(input-vars (oper annotated-prog)))(define (outputparam annotated-prog)(output-vars (oper annotated-prog)))�File de�ned by parts 187, 188, 189, 190a.We conclude this section with some procedures concerning formal and actual para-meters of given subalgorithms. Note that the �rst group of algorithms gets an anno-tated algorithm as input, whereas the second group only gets an algorithm name."prototypes.scm" 189 � 149



(define (actualout proc)(lambda (annotated-prog)(if (and (list? (cadr annotated-prog))(equal? (caadr annotated-prog) 'call))(let ((vars ((actualparam 'proc) annotated-prog))(formout (output-vars (oper annotated-prog))))(do ((res vars (cdr res)))((= (length res) (length formout)) res)))(list (cadadr annotated-prog))) ))(define (actualparam proc)(lambda (annotated-prog)(if (and (list? (cadr annotated-prog))(equal? (caadr annotated-prog) 'call))(cddadr annotated-prog)(append (cdaddr (cadr annotated-prog))(list (cadadr annotated-prog))))))(define (formalparam proc)(lambda (annotated-prog)(append (input-vars (oper annotated-prog))(output-vars (oper annotated-prog)))))�File de�ned by parts 187, 188, 189, 190a."prototypes.scm" 190a �(define (headline operator)(cadr (get-prototype operator spec-list)))(define (input-vars operator)(let ((prototype (get-prototype operator spec-list)))(do ((var-list (cdadr prototype) (cdr var-list))(input-v '() (append input-v (list (car var-list))) ))((equal? (car var-list) 'out) input-v))))(define (output-vars operator)(let ((prototype (get-prototype operator spec-list)))(do ((var-list (cdadr prototype) (cdr var-list)))((equal? (car var-list) 'out) (cdr var-list)))))�File de�ned by parts 187, 188, 189, 190a.B.4 Input and OutputThis section contains Scheme code due to reading the input �les as well as writing intothe output �les. We only use the standard input and output procedures of Scheme(see for example [CL91]) using ports.We start with the Scheme code for reading the input �le. The following assigns thegiven program to proglist.
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hread input file 190bi �(let ((current-input-port (open-input-file inputfile)))(let ((obj (read current-input-port)))(if (not(is-prototype? obj))(set! proglist (append proglist (list obj)))))(do ((obj (read current-input-port)(read current-input-port)))((eof-object? obj) (close-input-port current-input-port))(set! proglist (append proglist (list obj))) ))�De�nition referenced in parts 48b, 52a, 56ac.The next piece of code handles the prototype given by the input �le: First, the speci-�cation is assigned to program-spec. Then the subalgorithm list (proc-list), thespeci�cation list (spec-list) and the list of variables (var-list) are updated.hread program specs 190ci �(let ((current-input-port (open-input-file inputfile)))(set! program-spec (read current-input-port))(set! proc-list (cons (oper program-spec) proc-list))(set! spec-list (cons program-spec spec-list))(let ((vars (append (cdr (get-headline program-spec))(get-internal-vars program-spec))))(do ((var vars (cdr var)))((empty? var) #t)(if (and (not(equal? (car var) 'out))(not(member (car var) var-list)))(set! var-list (cons (car var) var-list))) ))(close-input-port current-input-port))�De�nition referenced in part 48b.The rest of this section contains the Scheme code concerning writing into the output�les.hopen output file 191ai �(let ((current-output-port (open-output-file outputfile)))�De�nition referenced in parts 49a, 52a, 56c, 192b.hwrite block 191bi �(write block current-output-port)�De�nition referenced in part 49b.hclose output file 191ci �(close-output-port current-output-port)�De�nition referenced in parts 49b, 56c, 192b.The following writes the constructed abstract theorems into the output �le. Note thatside conditions are not checked for correctness, but only listed in the output �le.151



hwrite+close output file 192ai �(do ((theorems (reverse theorem-list) (cdr theorems)))((empty? theorems) )(begin (write (car theorems) current-output-port)(newline current-output-port)(newline current-output-port)))(newline current-output-port)(newline current-output-port)(newline current-output-port)(do ((side-conds (reverse side-cond-list) (cdr side-conds)))((empty? side-conds) (close-output-port current-output-port))(begin (write (car side-conds) current-output-port)(newline current-output-port)(newline current-output-port)))�De�nition referenced in part 52b.During writing the constructed speci�c theorems into the output �le, we do two furtherthings: We simplify the given theorems using procedure simple and we check whetherthe computed side conditions hold; this concerns theorems starting with the phrase'is-invariant-for.hwrite theorems 192bi �hopen output �le 191ai(do ((nr 0 (+ nr 1)))((= nr (+ prednr 1)) (newline current-output-port))(begin(write (get-pred nr) current-output-port)(newline current-output-port)(newline current-output-port)))(newline current-output-port)(newline current-output-port)(do ((theorems proglist (cdr theorems)))((empty? theorems) hclose output �le 191ci )(let ((form (expand (car theorems))))(cond ((equal? (caar theorems) 'implies)(begin(if (equal? form '?)(write (car theorems) current-output-port)(write (simple (do-subst form))current-output-port))(newline current-output-port)(newline current-output-port)))((equal? (caar theorems) 'is-invariant-for)(begin(if (equal? form '?)(write (car theorems) current-output-port)(if (not(is-invariant?(cadr form) (caddr form)))(write (list 'not form '!)current-output-port)))(newline current-output-port)(newline current-output-port)))(else(error 'unknown 'kind 'of 'theorem:152



(car form))) ))) )�De�nition referenced in part 56a.We also compute a missing-list: It holds the numbers of the abstract predicates leftwithout a speci�c counterpart.hguesses message 193ai �(set! missing-list '())(do ((nr 0 (+ nr 1)))((equal? nr prednr) (if (not(empty? missing-list))(begin(display "predicate(s) ")(write (reverse missing-list))(display " fail!") (newline))))(if (equal? (get-pred nr) '?)(set! missing-list (cons nr missing-list)) ))�De�nition referenced in part 56b.The following piece of code is to read over the computed predicates during the call ofmake-trivial-theorems.hhandle predicates 193bi �(do ((nr 0 (+ nr 1)))((= nr (+ prednr 1)) (newline current-output-port))(set! proglist (cdr proglist)))�De�nition referenced in part 56c.B.5 Additional FunctionsWe conclude with some technical procedures completing our veri�cation condition gene-rator. Note again that the use of StWeb allows extracting the source code of thegenerator out of this document."utilities.scm" 194a �(define (empty? prog)(null? prog))(define (oper obj)(cond ((is-annotated? obj)(if (and (list? (cadr obj))(equal? (caadr obj) 'call))(cadadr obj)(caaddr (cadr obj))))((is-prototype? obj) (caadr obj))(else (error 'procedure 'oper: obj 'is 'unknown))))(define (is-prototype? obj)(and (list? obj) (equal? (car obj) 'prototype)))153



(define (is-annotated? prog)(or (and (number? (car prog)) (not(empty? (cdr prog))))(and (list? (car prog))(member (caar prog) logicals-list))))(define (is-not-already-specific obj)(and (number? obj) (equal? (get-pred obj) '?)))�File de�ned by parts 179, 180ab, 181, 183c, 194ab, 195, 196ab, 197, 198."utilities.scm" 194b �(define (get-key prog)(if (is-annotated? prog)(get-key (cadr prog))(if (list? (car prog))(caar prog) (car prog))))(define (is-prednr? obj)(or (number? obj) (equal? obj '?)))(define (without-last lst)(cond ((or (not(list? lst)) (empty? lst))(error 'procedure 'cdr-without-last 'needs 'nonempty 'lst))((empty? (cddr lst)) (list (car lst)))(else (cons (car lst) (without-last (cdr lst)) )) ))(define (last-el lst)(cond ((empty? lst)(error 'procedure 'last-el 'needs 'non 'empty 'list))((empty? (cdr lst)) (car lst))(else (last-el (cdr lst)))))(define (member* obj list)(cond ((or (empty? list)(and (not(list? list))(not(equal? obj list)))) #f)((equal? obj list) #t)((member obj list) #t)(else (or (member* obj (car list))(member* obj (cdr list))))))(define (is-sequence-without-begin? obj)(and (list? obj) (not(member (car obj) logicals-list))))�File de�ned by parts 179, 180ab, 181, 183c, 194ab, 195, 196ab, 197, 198."utilities.scm" 195 �(define (fits? prog format)(if (or (equal? (get-key prog) 'if)(equal? (get-key prog) 'return))(if (is-annotated? prog)(equal? (length (cadr prog)) (length format))154



(equal? (length prog) (length format)))#t))(define (actual? activity prog)(if (equal? (get-key prog) 'if)(if (is-annotated? prog)(if (or (> (length (cadr prog)) 3)(equal? (car activity) 'set-predicate)) #t(equal? (cadr (cadadr activity)) 'action1))(if (> (length prog) 3) #t(equal? (eval (cadr activity)) 'action1)))#t))�File de�ned by parts 179, 180ab, 181, 183c, 194ab, 195, 196ab, 197, 198.We carry on with two further procedures concerning the check whether a variable isfree in a given object."utilities.scm" 196a �(define (is-not-free obj formula)(not (is-free obj formula)))(define (is-included obj annotated-prog)(or (member (list obj) (caddr (cadr annotated-prog)))(do ((lst (caddr (cadr annotated-prog)) (cdr lst)))((or (empty? lst)(and (list? (car lst))(equal? (caar lst) obj)))(not(empty? lst))))))�File de�ned by parts 179, 180ab, 181, 183c, 194ab, 195, 196ab, 197, 198.What follows are the procedures that realize the test whether a given theorem is trivial.We included tests for implication, negation and equality."utilities.scm" 196b �(define (is-trivial theorem)(cond ((equal? theorem 'true) #t)((equal? theorem 'false) #f)((not(list? theorem)) #f)(else(let ((key (get-key theorem)))(cond((equal? key 'implies) (is-trivial-imply? theorem))((equal? key '=) (equal? (cadr theorem) (caddr theorem)))((equal? key 'and) (is-trivial-and? theorem))(else #f))) )))(define (is-trivial-and? theorem)(if (empty? theorem) #t(do ((args (cdr theorem) (cdr args))(res #t (if (is-trivial (car args)) res #f)))155



((empty? args) res))))(define (is-trivial-imply? theorem)(let ((ass (cadr theorem))(concl (caddr theorem)))(cond ((or (empty? concl) (equal? ass concl)(equal? ass 'false) (equal? concl 'true)) #t)((not(list? concl))(or (equal? ass concl) (is-trivial concl)(and (list? ass) (member concl ass))))((and (list? concl)(or (member (car concl) logicals-list)(member (car concl) voc-list)(member (car concl) operator-list)))(if (equal? (car concl) 'and)(if (empty? (cdr concl)) #t(let ((res (is-trivial-imply?(list 'implies ass (cadr concl)))))(if res(is-trivial-imply?(list 'implies ass (cons 'and (cddr concl))))#f)))(or (equal? ass concl) (is-trivial concl)(and (list? ass) (member concl ass)))))(else(and (is-trivial-imply?(list 'implies ass (car concl)))(is-trivial-imply?(list 'implies ass (cdr concl))))) )))�File de�ned by parts 179, 180ab, 181, 183c, 194ab, 195, 196ab, 197, 198.Procedure simple transforms a constructed theorem into a more readable form. Togive an example, (not(not A)) is replaced by A."utilities.scm" 197 �(define (simple theorem)(if (not(list? theorem)) theorem(let ((key (get-key theorem)))(cond ((equal? key 'not)(if (and (list? (cadr theorem))(equal? (caadr theorem) 'not))(simple (cadadr theorem))(list 'not (simple (cadr theorem)))))((equal? key 'implies)(cond ((equal? (simple (cadr theorem)) 'true)(simple (caddr theorem)))((equal? (simple (cadr theorem)) 'false)'true)((equal? (simple (caddr theorem)) 'true)'true)((equal? (simple (caddr theorem)) 'false)(simple (list 'not (cadr theorem))))156



(else(list 'implies (simple (cadr theorem))(simple (caddr theorem))))))((equal? key 'and)(do ((args (cdr theorem) (cdr args))(res (list 'and)(let ((arg (simple (car args))))(cond ((equal? arg 'true) res)((equal? arg 'false)(list 'false))((and (list? arg)(equal? (get-key arg) 'and))(append res (cdr arg)))(else (append res (list arg)))) )))((empty? args) (if (member 'false res) 'false(if (= (length res) 2)(cadr res)res))) ))(else theorem)))))�File de�ned by parts 179, 180ab, 181, 183c, 194ab, 195, 196ab, 197, 198.Procedure expand gets a formula as input. This formula may still contain abstractpredicates. The procedure replaces these predicates by using the already mentionedarray that holds the computed conjectures for the abstract predicates."utilities.scm" 198 �(define (expand formula)(define (expand-h formula)(cond ((or (empty? formula) (member formula key-list)(member formula logicals-list) (member formula voc-list)(member formula proc-list) (member formula var-list))formula)((and (list? formula)(member (car formula) operator-list))(list (car formula)(expand-h (cadr formula))(expand-h (caddr formula))))((and (list? formula)(equal? (car formula) '=)(not(list? (caddr formula)))) formula);; the following allows function calls like (set! x (f y)).((and (list? formula)(equal? (car formula) '=)(not(list? (cadr formula)))(list? (caddr formula))(member (caaddr formula) proc-list)(not(member (caaddr formula) operator-list)))(subst (get-outputspec(get-prototype (caaddr formula) spec-list))157



(append (input-vars (caaddr formula))(output-vars (caaddr formula)))(append (cdaddr formula)(list (cadr formula)))))((and (list? formula) (equal? (car formula) 'subst))(cons 'subst(cons (expand-h (cadr formula))(cddr formula))))((is-prednr? formula)(if (equal? (get-pred formula) '?) '?(expand-h (get-pred formula))))((list? formula)(cons (expand-h (car formula))(expand-h (cdr formula))))(else (error 'procedure 'expand: formula 'is 'unknown))))(let ((form (expand-h formula)))(if (member* '? form) '?(simple form))))�File de�ned by parts 179, 180ab, 181, 183c, 194ab, 195, 196ab, 197, 198.
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Appendix CIndicesC.1 Files"annotations.scm" De�ned by parts 45a, 46b, 48b, 49a, 177."BrHenAdd-theorems.txt" De�ned by parts 59ab, 161, 162."BrHenAdd.miz" De�ned by parts 75ab, 76a, 77ab, 78, 79ab, 80ab, 81ab, 82ab, 83, 84ab, 85abc,86ab, 87ab, 88abc, 89, 90abc, 91, 158b, 159, 160, 165, 174."BrHenAdd.sth" De�ned by parts 8ab."eucl-annotations.txt" De�ned by part 42b."eucl-pretheorems.txt" De�ned by part 43."eucl-procedure.txt" De�ned by parts 41bc."eucl-theorems.txt" De�ned by part 44."eucl.miz" De�ned by parts 92b, 93, 94, 96abc, 97abc, 98abcd, 99abc."eucl.sth" De�ned by parts 5, 6ab."eucl.voc" De�ned by part 92a."gcd.miz" De�ned by parts 15a, 17ab, 18ab, 19abc, 20ab, 124, 134, 138, 142a, 143, 145a, 146."gcd.voc" De�ned by part 122."guesses.scm" De�ned by parts 55ab, 56ac, 178."initialize-tables.scm" De�ned by parts 35c, 184ab, 185ab, 186b."kernel.scm" De�ned by parts 35ab, 39b, 40ab."prototypes.scm" De�ned by parts 187, 188, 189, 190a."prototypes.txt" De�ned by parts 42a, 163."qf.voc" De�ned by part 156a."theorems.scm" De�ned by parts 50ac, 51c, 52a."utilities.scm" De�ned by parts 179, 180ab, 181, 183c, 194ab, 195, 196ab, 197, 198.C.2 MacroshBrHenAdd environment 164i Referenced in part 75a.hBrown/Henrici theorem 23bi Referenced in part 146.hDe�ning AmpleSet 69ci Referenced in part 139.hDe�nition of AmpleSet 60a, 69bi Referenced in part 138.hDe�nition of Normal Form 71ai Referenced in part 143.hDe�nition of association classes 60bi Referenced in part 134.hDe�nition of gcd function 24i Referenced in part 146.hDe�nition of gcdDomain 71bci Referenced in part 145a.hDe�nition of multiplicative AmpleSet 70abi Referenced in part 142a.hEuclidean domain is gcd domain 103abi Referenced in part 96b.159



hann-rec all 47ai Referenced in part 46b.hann-rec special 47bi Referenced in part 46b.hannotate main loop 49bi Referenced in part 49a.hassignment rule 53i Referenced in part 185a.hcases of theorem L11, if 22ai Referenced in part 21b.hcheck format of prog 183bi Referenced in part 39b.hcheck other formats 48ai Referenced in part 47b.hclose output �le 191ci Referenced in parts 49b, 56c, 192b.hcorrectness proof of Classes 137i Referenced in part 60b.hcorrectness proof of Class 135i Referenced in part 60b.hcorrectness proof of gcd function 145bi Referenced in part 24.hcorrectness proof of normal form 144i Referenced in part 71a.henvironment 15bi Referenced in part 15a.hexample lemma 20ci Referenced in part 124.hexistence proof for Euclidean domains 95abi Referenced in part 94.hexistence proof of AmpSet 61, 62abc, 63abi Referenced in part 60a.hexistence proof of AmpleSet 139i Referenced in part 69b.hexistence proof of fractions 76bi Referenced in part 76a.hexistence proof of gcdDomain 72ai Referenced in part 71c.hfunction call 50bi Referenced in part 50a.hgcd theorems 25i Referenced in part 146.hgen-rec all 51ai Referenced in part 50c.hgen-rec special 51bi Referenced in part 50c.hget key of prog 183ai Referenced in part 39b.hguesses message 193ai Referenced in part 56b.hhandle predicates 193bi Referenced in part 56c.hinsert rules 36c, 38b, 39a, 41ai Referenced in part 185a.hinsert-pred-after all 45bi Referenced in part 45a.hinsert-pred-after special 46ai Referenced in part 45a.hlemma for Euclidean algorithm 133i Referenced in part 92b.hlemmata for Brown/Henrici 131i Referenced in part 164.hmake proc-list 185ci Referenced in part 185b.hmake-guesses main loop 56bi Referenced in part 56a.hmake-theorems main loop 52bi Referenced in part 52a.hopen output �le 191ai Referenced in parts 49a, 52a, 56c, 192b.hprocedure call generations 38ai Referenced in part 38b.hprocedure call rule 54ci Referenced in part 185a.hproof of AMP5 142bi Referenced in part 70b.hproof of B11 109ai Referenced in part 106b.hproof of B1 111bi Referenced in part 105a.hproof of B63 111ci Referenced in part 109c.hproof of B6 109bci Referenced in part 109a.hproof of B7 110ab, 111ai Referenced in part 109a.hproof of Brown/Henrici theorem 27b, 28abc, 29ai Referenced in part 23b.hproof of F1 157ai Referenced in part 80a.hproof of F2 157bi Referenced in part 81b.hproof of H0 68ci Referenced in part 68b.hproof of H11 29bi Referenced in part 28b.hproof of H14 30bi Referenced in part 28c.hproof of H1 69ai Referenced in part 68b.hproof of H2b 68ai Referenced in part 66a.hproof of H2 100ai Referenced in part 99b.hproof of H3 100bi Referenced in part 99b.hproof of H5 112i Referenced in part 111c. 160



hproof of H7 30ai Referenced in part 28a.hproof of K2 65ai Referenced in part 62a.hproof of K3 65bi Referenced in part 62a.hproof of K5a 65ci Referenced in part 62b.hproof of K6a 66abc, 67ai Referenced in part 63a.hproof of K6 68bi Referenced in part 63a.hproof of K7 63ci Referenced in part 63b.hproof of K8 64abi Referenced in part 63b.hproof of M4 67bi Referenced in part 66a.hproof of N 104ai Referenced in part 103b.hproof of case A 104bi Referenced in part 104a.hproof of case B 105ab, 106abc, 108abci Referenced in part 104a.hproof of denom 156ci Referenced in part 79b.hproof of fraction addition 158ai Referenced in part 81a.hproof of fraction's constructor equation 156bi Referenced in part 79a.hproof of gcd-like, case A, label A5 73c, 74i Referenced in part 73b.hproof of gcd-like, case A 73bi Referenced in part 72b.hproof of gcd-like, case B 73ai Referenced in part 72b.hproof of gcd-like 72bi Referenced in part 72a.hproof of theorem L11, if, case A 22bi Referenced in part 22a.hproof of theorem L11, if, case B 23ai Referenced in part 22a.hproof of theorem L11, if 21bi Referenced in part 20d.hproof of theorem L11, only if 21ai Referenced in part 20d.hproof of theorem L11 20di Referenced in part 20c.hproof of theorem T0 151ai Referenced in part 25.hproof of theorem T1 151bi Referenced in part 25.hproof of theorem T2 153i Referenced in part 25.hproof of theorem T3 26abc, 27ai Referenced in part 25.hproof of theorem T4 154i Referenced in part 25.hread input �le 190bi Referenced in parts 48b, 52a, 56ac.hread program specs 190ci Referenced in part 48b.hread variables 186ai Referenced in part 185b.hreturn rule 54ai Referenced in part 185a.htext proper 16, 123i Referenced in part 15a.hwhile annotations 36ai Referenced in part 36c.hwhile generations 36bi Referenced in part 36c.hwhile rule 54bi Referenced in part 185a.hwrite block 191bi Referenced in part 49b.hwrite theorems 192bi Referenced in part 56a.hwrite+close output �le 192ai Referenced in part 52b.C.3 Procedure Namesactual?: 39b, 195.actualout: 51c, 189.actualparam: 38a, 50b, 54c, 184b, 189.ann-rec: 40a, 46b, 47a.annotate: 35a, 40b, 47ab, 49ab.annotations: 35a, 35c, 36c, 40a, 184a.check-format: 183b, 183c.construct: 40b, 50ab, 51abc, 55ab, 179, 184b.construct-list: 179, 184b.do-activities: 35ab, 39b. 161



do-subst: 181, 192b.empty?: 39b, 45b, 46a, 47a, 48a, 49b, 51a, 52b, 55ab, 56bc, 177, 178, 179, 180ab, 181, 183ac,184a, 185c, 186a, 187, 188, 190c, 192ab, 193a, 194a, 194b, 196ab, 197, 198.expand: 178, 192b, 198.fits?: 180a, 195.formalparam: 38a, 54c, 184b, 189.formats: 35c, 46a, 47b, 48a, 177, 180ab, 183b, 184a.gen-rec: 40a, 50c.generate-theorems: 35b, 50b, 51ab, 52b.generations: 35b, 35c, 36c, 38b, 40a, 184a.get: 8a, 39b, 46a, 47b, 48a, 50a, 51a, 55b, 177, 180ab, 181, 183abc, 184a, 186ab, 187, 188,190ac, 192b, 193a, 194ab, 195, 196b, 197, 198.get-actual: 47b, 180b.get-headline: 186a, 187, 190c.get-inputspec: 187, 188.get-internal-vars: 186a, 187, 190c.get-internals: 187, 188.get-key: 46a, 47b, 50a, 51a, 55b, 177, 180ab, 183ac, 194b, 195, 196b, 197.get-outputspec: 181, 187, 188, 198.get-pred: 186b, 192b, 193a, 194a, 198.get-prototype: 181, 187, 188, 190a, 198.get-whole-input-spec: 187.get-whole-output-spec: 187.guess: 35b, 40a, 55b, 56b.guess-rec: 40a, 55b.guesses: 35b, 35c, 40a, 53, 54abc, 56ab, 185a.head: 188.headline: 186a, 187, 190a, 190c.initialize-predlist: 52b, 186b.input-vars: 181, 188, 189, 190a, 198.inputparam: 188.inputspec: 38a, 56a, 184b, 187, 188.insert-newconstruct: 36c, 38b, 39a, 41a, 184a.insert-pred-after: 36a, 45a, 45b, 46a.insert-pred-before: 39a, 177.internals: 187, 188.is-annotated?: 180a, 183c, 194a, 194b, 195.is-free: 178, 184b, 196a.is-included: 54a, 196a.is-invariant-for: 38a, 51c, 184b, 192b.is-invariant?: 178, 192b.is-not-free: 53, 196a.is-prednr?: 179, 194b, 198.is-prototype?: 190b, 194a.is-sequence-without-begin?: 39b, 194b.is-trivial: 56c, 196b.is-trivial-and?: 196b.is-trivial-imply?: 196b.key-list: 179, 184a, 184b, 198.last-el: 187, 194b.logicals-list: 178, 179, 184b, 194ab, 196b, 198.lookup: 179, 180a.make-annotated: 48b.make-guesses: 56a. 162



make-nontrivial-theorems: 56c.make-theorems: 52a.member*: 181, 194b, 198.missing-list: 193a.oper: 50b, 185c, 188, 189, 190c, 194a.operator-list: 181, 184b, 196b, 198.output-vars: 181, 188, 189, 190a, 198.outputparam: 38a, 184b, 188.outputspec: 38a, 39a, 54c, 56a, 181, 184b, 187, 188, 198.predicate-list: 186b.proc-list: 179, 181, 183c, 185b, 185c, 190c, 198.proglist: 48b, 49b, 52ab, 56abc, 190b, 192b, 193b.program-spec: 188, 190c.put: 53, 54abc, 55a, 56a, 184a, 185a, 186b, 192a.put-pred: 55a, 56a, 186b.rec: 36ab, 39a, 40a, 46b, 47a, 48a, 50c, 54ab, 55b, 185a.remove: 184a.set-predicate: 53, 54abc, 55a, 195.side-cond-list: 51c, 52a, 192a.simple: 181, 192b, 197, 198.simulate: 40b, 41a.spec-list: 181, 185b, 185c, 186a, 187, 188, 190ac, 198.subst: 38a, 39a, 43, 53, 54c, 181, 184b, 192b, 198.symbol-list: 179, 183c, 184b.theorem-is: 36b, 38a, 39a, 50a.theorem-list: 50a, 52a, 192a.var-list: 179, 186a, 190ac, 198.voc-list: 179, 184b, 196b, 198.without-last: 194b.
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