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Abstract

Although generic programming founds more and more attention = nowadays generic
programming languages as well as generic libraries exist — there are hardly approaches
for the verification of generic algorithms or generic libraries. This thesis deals with
generic algorithms in the field of computer algebra. We propose the M1ZAR system as a
theorem prover capable of verifying generic algorithms on an appropriate abstract level.
The main advantage of the MizAR theorem prover is its special input language that
enables textbook style presentation of proofs. For generic versions of Brown/Henrici
addition and of Euclidan’s algorithm we give complete correctness proofs written in
the M1ZAR language.

Moreover, we do not only prove algorithms correct in the usual sense. In addition
we show how to check, using the MIZAR system, that a generic algebraic algorithm is
correctly instantiated with a particular domain. Answering this question that espe-
cially arises if one wants to implement generic programming languages, in the field of
computer algebra requires non trival mathematical knowledge.

To build a verification system using the MIZAR theorem prover, we also imple-
mented a generator which almost automatically computes for a given algorithm a set
of theorems that imply the correctness of this algorithm.



Abstract

Obwohl das generische Programmieren immer mehr an Bedeutung gewinnt,  heutzu-
tage existieren generische Programmiersprachen sowie generische Bibliotheken  gibt
es kaum Ansitze zur Verifikation generischer Algorithmen oder generischer Biblio-
theken. In dieser Arbeit beschéaftigen wir uns mit generischen Algorithmen aus dem
Bereich der Computer Algebra. Wir schlagen das MizAR Sytem als einen Beweiser
vor, mit dem generische Algorithmen auf adiquater abstrakter Ebene verifiziert wer-
den konnen. Der Hauptvorteil des MizZAR Systems ist seine spezielle Eingabesprache,
die es erlaubt mathematische Beweise textbuchartig zu prasentieren. Fiir generische
Versionen der Brown/Henrici Addition und des Euklid’schen Algorithmus geben wir
vollstindige in M1ZAR formulierte Korrektheitsbeweise an.

Dabei beweisen wir nicht nur die Korrektheit des Algorithmus im {iblichen Sinn.
Wir zeigen ebenfalls auf, wie mit Hilfe des MiZAR Systems nachgewiesen werden kann,
dal ein generischer algebraischer Algorithmus mit einer bestimmten Domaine kor-
rekt instanziert ist. Die Beantwortung dieser Fragestellung, die insbesondere bei der
Implementierung generischer Programmiersprachen auftritt, verlangt im Bereich der
Computer Algebra tiefgehende mathematische Zusammenhénge.

Um das Mi1zAR System in ein Verifikationssystem einzubinden, haben wir auflerdem
einen Generator implementiert, der benutzerunterstiitzt aus einem gegebenen Algo-
rithmus eine Menge von Theoremen berechnet, die die Korrektheit dieses Algorithmus
implizieren.
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Chapter 1

Introduction

Over the last several years generic programming has received more and more attention.
Many programming languages nowadays include generic concepts like polymorphism in
functional programming languages, overloading or templates in C++ ([Str94]); or they
are even completely designed as a generic language like SUCHTHAT ([LS96], [Sch96]).
Also generic libraries have been developed like the ADA Generic library or the STL. On
the other hand the widespread use of generic concepts more and more entails the need
for a thorough formal machine assisted verification of generic algorithms — especially
to improve the reliability of generic libraries.

In this thesis we argue for the need of such a verification and propose the MizAr
system as a theorem prover for doing so in the field of computer algebra. We give
examples for its use and provide some tools to integrate MIZAR into a verification
system.

1.1 Generic Algorithms

Generic programming has a lot of advantages compared with non-generic programming.
It supports reusability and so safes programming. In addition generic programming
allows one to build up well structured libraries (see [MS96] or [Sch96]). But what
exactly is meant by a generic algorithm?

In general one considers an algorithm to be generic if it is applicable with different
data structures. Obviously that is a property of generic algorithms, but only a small
facet of the whole. Generic programming goes much deeper, up to the essence of a
method: We look for the minimal conditions and domains under which a method works

independent of any data structure.

As a rather trivial example we consider the addition of two integer polynomials.
The method used here is addition of components in the coefficient domain. But that de-
pends neither on the number of indeterminates nor on the integers themselves. It only
requires the existence of addition in the coefficient domain resp. that the coefficient
domain is a ring which implies the existence of addition. So, addition of polynomials
is completely independent of the structure of the given polynomial ring. Consequently
this should lead to one generic addition algorithm for arbitrary polynomial rings over
arbitrary rings.



Especially in the field of algorithmic mathematics we can find this kind of view
concerning genericity. Algorithms are written over abstract domains using only their
axioms and operations (see for example [Lip71]). In fact this is generic programming:
Writing algorithms for multiple of (abstract) domains having in common that they
fulfill the (minimal) conditions which make the underlying method work.

1.2 The SucHTHAT Project

SUCHTHAT is a programming language that enables generic programming in the field
of computer algebra. SUCHTHAT is a procedural language and can be seen as a suc-
cessor of ALDES ([LC92]) from which it adopted its instructions. The main feature of
SUCHTHAT is the possibility to express the specification of an algorithm (and hence
the minimal conditions under which the algorithm works) in the language itself. To
achieve this, SUCHTHAT contains a declaration mechanism that enables the user to
introduce arbitrary algebraic structures. Subsequently, algorithms are written based
on these structures.

We consider the FEuclidean algorithm as an easy example: FEuclid’s method for
computing the greatest common divisor relies on the observation that

ged(a, b) = ged(b,amodb) for b # 0 and ged(a, 0) = a.

Algorithms for greatest common divisors over the integers or polynomial rings over
fields use this method by computing a remainder sequence of a and b until 0 appears
and the second equation is applicable. Now, what are the abstract conditions making
this method work? Of course we need a quotient-remainder-function to compute the
remainder sequence, hence the domain has to be a ring. But that is not enough. What
guarantees the termination of this method? Intuitively speaking the decreasing size of
the remainders. This is given in an abstract way by a degree function. Consequently,
to compute greatest common divisors with Euclid’s method we need the underlying
structure to be a — therefore so-called — Euclidean domain with its corresponding
degree function:!

"eucl.sth" 5 =

global: let E be EuclideanRing;
let d be DegreeFunction of E;
let Amp be AmpleSet of E.

Algorithm: c := GCD(a,b)
Input: a,b € E.
Output: ¢ € E such that ¢ € Amp & c = gcd(a,b).

local: u,v,s,t € E.

(1) [Initialization]
u := a;
v := b.

INote that we actually analysed the method of Euclid to use the vocabulary of [Sch96]: we
lifted the integer Euclidean algorithm  and did not develop a general generic method for computing
greatest common divisors. In fact there are gcd domains in which greatest common divisors cannot
be computed using Euclid’s method (see [SL95]).



(2) [a = 0]
if u = 0 then {c := NF(v); return;}.
(3) [Loopl
while v # 0
{ QR(u,v;s,t);
u = v;
v := t}.
(4) [Normalization]
c := NF(u). O
o
File defined by parts 5, 6ab.

We feel that the use of the global parameter AmpleSet of E needs some further ex-
planation. Its use is due to an algorithmic problem: In general there is more than
one element in an Euclidean domain fulfilling the definition of the greatest common
divisor. In contrast the result of an algorithm should be unique.

One possibility is to compute all greatest common divisors, the result of the algo-
rithm then being a subset of the Euclidean domain. But this is impractical thinking
of a greatest common divisor algorithm as a subalgorithm whose result shall be fur-
ther processed. So, let us again look at the integers. Here the solution is to give side
conditions: A greatest common divisor greater or equal than zero is computed. This
goes along with the concept of ample sets. (In fact the non negative integers form an
ample set for the integers.) Any two greatest common divisors are associates of each
other. The association relation divides the Euclidean domain into equivalence classes
and an ample set is a subset of the Euclidean domain that contains exactly one element
from each equivalence class of associates.! Consequently, asking for a greatest com-
mon divisor that is a member of the ample set, leads to a unique result of the algorithm.

We also give the specifications of the subalgorithms. Note that the methods of
these subalgorithms have no influence on the correctness of the Euclidean algorithm.
Only when the algorithm is instantiated, there has to be a subalgorithm fulfilling this
specification (over the current domain).

Here is the specification of the quotient remainder function:

"eucl.sth" 6a =
Algorithm: QR(x,y;q,r)
Input: x,y € E such that y # 0.
Output: q,r € E such that x = g*xy+r & (r = 0 or d(r) < d(y)). O

o
File defined by parts 5, 6ab.

To compute the normal form modulo an ample set we use  according to the paradigm
of genericity — more general structures than Euclidean domains: The association
relation is defined on integral domains, hence also normal forms should be defined on
integral domains. Consequently, we have to introduce new global declarations before
we can state the specification of the normal form subalgorithm. We use ~ to denote
the association relation.

Mn fact one can define ample sets over arbitrary sets and arbitrary equivalence relations.



"eucl.sth" 6b =
global: let I be integral domain;
let Amp be AmpleSet of I.

Algorithm: y := NF(x)
Input:

x € I.
Output: yel

such that y € Amp & y ~ x. O
(o
File defined by parts 5, 6ab.

Note that the just given Euclidean algorithm is by no means an abstract algorithm,
but a generic algorithm — written in SUCHTHAT — which indeed can be instantiated
and executed.

For execution SUCHTHAT algorithms are translated into C++. Due to its template
mechanism C++ is suitable to represent generic (algebraic) algorithms. Once compiled,
SUCHTHAT programs can be instantiated with special domains in the usual way.

The problem with C++ templates is that type parameters are not checked for
correctness. So calling our example algorithm with an ordinary ring (or even with a
group) lacking the necessary degree function gives an error only at runtime. To detect
such kinds of errors already at compile time, the SUCHTHAT compiler includes a type
checker: Based on the given declarations it checks whether the present instance is al-
gebraically correct. In the example we would have to determine whether the integers
form an Euclidean domain (and whether there exist algorithms for computing QF and
NR over the integers). To answer these questions the SUCHTHAT compiler is equipped
with an algebraic data base holding the necessary algebraic information.

To summarize, SUCHTHAT is a programming language that enables writing abstract
algebraic algorithms in the sense of [Lip71] nevertheless being executable programs.

1.3 Example: Generic Brown/Henrici Addition

In this section we consider as another example the algorithm of Brown and Henrici
concerning addition of fractions over gcd domains.

Let I be an integral domain, and let ) be the set of fractions over I. Based on
algorithms for arithmetic operations in I one obtains algorithms for arithmetic in Q.
To be able to choose a unique representative from each equivalence class of @), we
assume that I is a gcd domain; that is, an integral domain in which for each two
elements a greatest common divisor exists. We also assume that there are algorithms
fract to construct a fraction out of Elements of I and algorithms num and denom that
decompose a fraction into numerator and denominator respectively.

The algorithm accepts normalized fractions as input, giving as the result again a
normalized fraction. The point is that the normalized result is achieved not by execut-
ing ordinary addition of fractions followed by a normalization step, but by integrated
greatest common divisor computations. This allows singling out trivial cases leading
in general to more efficient runtime behaviour (see [Col74]).



"BrHenAdd.sth" 8a =
global: let I be gcdDomain;
let Q be Fractions of I;
let Amp be multiplicative AmpleSet of I.
Algorithm: t := BHADD(r,s)
Input: r,s € Q such that r,s is_normalized_wrt Amp.
Output: t € Q such that t © r+s & t is_normalized_wrt Amp.
local: r1,r2,s1,s2,d,e,r2’,s2’,t1,t2,t1’,t2° € I;

(1) [r = 0 or s = 0]

if r = 0 then {t := s; return};

if s = 0 then {t := r; return}.
(2) [get numerators and denominators]

rl := num(r); r2 := denom(r);

sl := num(s); s2 := denom(s).

(3) [r and s in I]
if (r2 = 1 and s2
(4) [r or s in I]
if r2 = 1 then {t := fract(rl*s2+sl,s2); return}};
if s2 = 1 then {t := fract(sl*r2+r1,r2); return}}.
(5) [general casel
d := gcd(r2,s2);
if d = 1 then {t fract (ri*s2+r2*sl1,r2*s2); return};
r2’ :=r2/d; s2’ s2/d;
tl := rlxs2’+sl*r2’; t2 := r2*s2’;
if t1 = 0 then {t := 0; return};
e := gcd(tl,d);
t1’ := tl/e; t2’ := t2/e;
t:= fract(t1’,t2’). O

1) then {t := fract(ril+si,1); return}}.

<
File defined by parts 8ab.

Please note that in general we do not have t = r+s, but only t ~ r+s, which means
num(t)*denom(r+s) = denom(t)*num(r+s).! The reason for this is that the fraction
t = r+s is defined as usual by num(t) := num(r)*denom(s)+denom(r) *num(s) and
denom(r+s) := denom(r)*denom(s); hence r+s is no normalized fraction in general
and t = r+s cannot serve as the output specification of the algorithm.

The correctness of the algorithm depends on deep properties of greatest common
divisors (see [Col74]). We will see in the following how to prove them (and correctness
of the algorithm) rigorously with machine assistance.

We conclude with the specifications of the subalgorithms. Note that the Euclidean
algorithm of section 1.2 satisfies the specification of the greatest common divisor func-
tion.

"BrHenAdd.sth" 8b =

Algorithm: r1l := num(r)

Input: r € Q.

Output: rl € I such that rl = num(r). O

Algorithm: r2 := denom(r)

Input: r € Q.

Output: r2 € I such that r2 # 0 & r2 = denom(r). O

Algorithm: r := fract(rl,r2)
Input: rl,r2 € I such that r2 # 0.
Output: r € Q such that r = fract(ri1,r2). O

LCompare the corresponding MizAR definitions in section 4.4.



Algorithm d := /(rl,r2)
Input: rl,r2 € I such that r2 # 0 & r2 divides rl.
Output: d € I such that d = r1/r2. O

Algorithm ¢ := gcd(a,b)
Input: a,b € I.
Output: ¢ € I such that ¢ € Amp & c = gcd(a,b). O

o
File defined by parts 8ab.

1.4 Proving Generic Algorithms Correct

We have seen that the paradigm of genericity allows one to develop extremely powerful
algebraic algorithms. On the other hand generic programming requires a more careful
verification — especially if a generic algorithm will be kept in a library. From our point
of view generic algorithms introduce two kinds of correctness:

First there is correctness in the usual sense; that is, an algorithm has to fulfill its
specification. Besides, this proof has to be done on an abstract level: We need generic
correctness proofs for generic algorithms to cover all possible instantiations of the algo-
rithm’s parameters in the proof. For example to prove the generic addition algorithm
of Brown and Henrici correct, we have to argue over gcd domains, so just using the
axioms of a gcd domain and nothing else.

The second kind of correctness concerns the use of generic algorithms: Is a par-
ticular instantiation correct with respect to the specification of a generic algorithm?
Obviously, if a generic algorithm is called with a particular domain, the result is correct
if and only if the domain fulfills the requirements of the specification. For example,
if the generic Brown/Henrici algorithm of the last section is instantiated with a poly-
nomial ring, we have to check whether this ring is a gcd domain. This seems to be a
version of the type problem in typed programming languages; in fact it can be seen
as a type problem (see [Sch96]). Nevertheless here we comprehend it as a matter of
correctness, because the questions to be answered differ extremely from the ones in
ordinary type checking: They include the use of mathematical theorems.

As another example consider a generic algorithm which computes the absolute
value function over an ordered semigroup. If this algorithm is called, we have to check
whether the integers or whether the integers modulo p are a semigroup, which in ad-
dition allow the required order.

We believe that both kinds of correctness are important for generic programming.
Especially in the field of computer algebra the requirements of algorithms are in no
way trivial. In addition these requirements concern not only domains, but also the
input/output parameters themselves.

SAcLIB ([CL90]) for instance contains (non generic) algorithms for factoring poly-
nomials. Algorithm IUSFPF  integral univariate square-free polynomial factorization
— expects as input an integral univariate square-free polynomial, which also is pos-
itive, primitive and of positive degree. The result is a list of the positive irreducible
factors of the input polynomial. Thus thinking of a generic algorithm for this task (for
instance a lifted version of IUSFPF), we see that establishing correctness of (generic)



algebraic algorithms is by means a nontrivial mathematical process.

Consequently developing generic algebraic algorithms and their verification should
go hand in hand.! In particular it is of considerable advantage if correctness is proved
by the same people developing the algorithm.

A theorem prover for supporting verification of generic algebraic algorithms must
take this view into account: The gap between the language of algebra (in which we
write algorithms and argue about their correctness) and the language of the theorem
prover (in which we formally prove correctness of our algorithms) should be as small
as possible.

Unfortunately, present computer algebra systems like Ax1iom ([JS92]), though able
to express quite complex algebraic domains, do not include proof assistance for mathe-
matical theorems. On the other hand powerful theorem provers like HoL ([Hol94])
require the knowledge of a proof logic and special proof tactics, topics distinct from
the language of algebra.

We propose the M1zAR system ([Rud92]) as a theorem prover suitable for support-
ing verification of generic algebraic algorithms. MizAR? is a system that — originally
intended for support in writing mathematical papers  admits expressing mathemati-
cal knowledge in a very natural style. It also includes a large library of MiZAR articles
and a checker that verifies articles written in the M1ZAR language. Therefore the user
is able to naturally formulate and prove theorems that arise when verifying generic
algebraic algorithms. The main goal of this thesis is to establish M1ZAR as a theorem
prover in the field of computer algebra and generic algebraic algorithms.

To prove generic algebraic algorithms correct using the M1ZAR system, we need to
know which theorems we have to prove. Given an algorithm and its specification we
are far away from the actual theorems ensuring correctness of the algorithm. We need
to construct a so-called wverification condition set: a set of theorems that imply the
correctness of the original algorithm (see [Dil94]).

The classical method that allows one to compute such verification condition sets
is the calculus of Hoare ([Hoa69]). Using this calculus one deduces triples of the form
{P}A{Q} with the meaning that program A is correct with respect to precondition P
and postcondition (). A Hoare calculus derivation depends on mathematical theorems
in the following way: To apply some of the calculus’ rules, certain theorems of the
underlying theory must hold. Consequently, these theorems serve as a verification con-
dition set for a given generic algorithm. Moreover, we can prove exactly these theorems
using the MIZAR system, thus proving that for a given generic algebraic algorithm and
its specification it is possible to construct a Hoare calculus derivation.

Evolving algebras (JGur93]) are a promising tool for describing algorithms on ab-
stract levels. They have been used to define operational semantics of programming
languages as well as to specify real-time systems, compilers, architectures and much
more. Evolving algebras are abstract state machines that transform a given state into

'We think of using literate programming ([Knu84]), so that generic algorithms, their documentation
and their verification are combined in one document (see also [Sim97]). The algorithm resp. the
verification part then can be extracted for further processing like compilation resp. proof checking.

2See also the MIzAR home page http://mizar.uw.bialystok.pl.



another one using term-based transition rules of the form
if tothen f(t1,...,t,) := tp41 endif,

where tg, f(t1,...,t,) and t,41 are terms over a given signature. Evolving algebras
allow so-called external functions: Functions that are not affected by the transition
rules, but determine their values by an oracle. Consequently, one can describe generic
algebraic algorithms at the appropriate level by introducing such external functions
over the necessary algebraic domains.!

Unfortunately, so far evolving algebras are a rather theoretical tool. Although
there exist many papers using this approach,? we only found a few interpreters for
evolving algebras. Especially environments for working with evolving algebras or for
proving properties about algorithms specified with evolving algebras are still under
development. Consequently, we decided to implement a Hoare calculus based verifica-
tion condition generator — not at least to get quickly theorems that allow showing the
power of the MI1ZAR system in the field of generic algebraic programming.

1.5 Overview

The organization of the thesis is as follows: In chapter two we describe the MI1ZAR
system in more detail. We show the structure of a MizAR article and give some
example proofs of algebraic theorems (which we will need to prove correctness of the
generic Brown/Henrici addition algorithm).

In chapter three we present a Hoare-calculus-based verification condition generator,
which is able to construct automatically verification conditions for generic Brown/Hen-
rici addition and for the generic Euclidean algorithm provided that the loop invariant
is given. It is implemented in SCHEME.

The following two chapters give examples for using M1zAR to prove generic algebraic
algorithms correct. Chapter four contains the verification of the generic Brown/Henrici
addition algorithm of section 1.3. For that we give M1ZAR proofs for the verification
conditions constructed by the generator of section three. In chapter five the generic
Euclidean algorithm presented in section 1.2 is verified.

In chapter six we discuss how to use MizAR for algebraic typechecking and give an
example proof related to the generic Euclidean algorithm.

Finally, after a short summary we suggest some further work, especially some neces-
sary tools to integrate the M1ZAR theorem prover into a verification system for generic
algebraic algorithms.

IFor instance the subalgorithms QF and NF of the Euclidean algorithm from above could be modeled
by external functions.
2See [Boe95] or http://www.eecs.umich.edu/gasm for an overview.
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Chapter 2

The MIzZAR System

MizAR [Rud92] is a theorem prover based on natural deduction (see [Kle67]). Starting
from the axioms of set theory.! and some axioms of the real numbers, up to now
about 20,000 theorems from such different fields of mathematics as topology, algebra,
category theory and many more have been proven and stored in a library.

From our point of view the main contribution of the MIZAR system is its special
proof script language. This language is declarative? and associates the natural deduc-
tion steps with English constructs, thus allowing to write proofs close to textbook style.

A small example shall illustrate what we mean: Consider the following piece of

MIZAR code:
let z be q;

assume p(z);

(proof of ¥(x))

Actually, this is a proof of Vz.a: ¢(z) = ¢(z)  or better of for z being « holds
p(z) implies 9 (x) as written in the MizAR language. The structure of this proof
exactly corresponds to the one mathematicians use: To prove an V—quantification
Vz.a : 6(x), one takes a arbitrary but fixed element a of type a and proves 6(a).
Furthermore, to prove an implication ¢ = 1, it is rather obvious to suppose that
formula ¢ holds and then to prove .3

Now, although natural deduction captures many mathematical idioms, it is not
ideal for every application. Often we are not interested in every individual natural
deduction step. For example to prove a -0 = 0 in an integral domain I, we do not
want to write the exact detailed sequence of deduction steps, but do the proof in one
step using the theorem Vz € I : x -0 = 0. That is, we want to take obvious shortcuts
using knowledge that already has been proven elsewhere. This is exactly what the
MizAR proof checker does. We may write

@ by Li,...Lp;

with the meaning that ¢ is an obvious consequence of the theorems Lq,...L,. Fur-
thermore the L; may be labeled steps in the present deduction sequence or already

ITo be more precise, it starts from the axioms of a variant of ZFC set theory due to Tarski (see
[Tar38]).

2See [Har97] for a discussion of declarative and procedural proofs.

3In fact this is an application of the so called deduction theorem F ¢ = v iff p - 1.

11



proved theorems. Thus a new MIZAR proof starts on the appropriate level (provided
that the theorems on which the proof is built already exists in the M1zZAR library).

In addition MIizAR includes a kind of mathematical type system: The user can
define so-called modes, that is mathematical structures and objects he wants to argue
about (for example integral domain or domRing, as it is called in M1zAR, is such a
mode). Consequently, we can write

let I be domRing;
let a be Element of the carrier of I;

Because domRing is defined as a commutative ring which fulfills the integral attribute,
it inherits all properties of (commutative) rings especially all preproved theorems
concerning rings are applicable to I. So the theorem mentioned above — of course
being valid for arbitrary rings R — in the M1ZAR language looks like this:

T: for R being Ring
for x being Element of R holds
x * 0.R = 0.R;

and we only have to write
ax0.I =0.I byT;
to prove -0 =0 in an integral domain I.

But this is just the platform we need to reason about generic algebraic algorithms:
We argue in abstract algebraic domains, so using only arguments that hold for ev-
ery possible instantiation. Hence we prove the algorithms correct on the appropriate
abstract algebraic level.

So due to its natural proof script language, M1ZAR is suitable not only to formalize
mathematics, but also for scientists writing generic (algebraic) algorithms: They can
prove the correctness of their algorithms in M1ZAR in almost the same way they would
prove them without machine assistance and need not in addition go deep into a proof
logic or the tactics of a special theorem prover.

In the following sections we describe MIZAR in detail, give some example proofs
and continue our example algorithm of section 1.3. We use STWEB, a simple literate
programming tool derived from NUWEB [Bri89], which allows the extraction of the
MizAR code from this document.

2.1 Introduction

In this section we describe the overall structure of a MizZAR article and show how
naturally mathematical knowledge can be formalized in M1zZAR. As examples we give
extracts from the article GCD.MIZ, in which we prove theorems that are crucial for the
correctness of the generic addition algorithm of Brown and Henrici.

Each M1zAR article consists of two main parts: the environment part and the text
1
proper:

ITo bring more structure into a MizAR article, it is possible to have more than one begin in the text
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"gcd.miz" 15a =
environ
(environment 15b)
begin
(text proper 16, ... )

<
File defined by parts 15a, 17ab, 18ab, 19abc, 20ab, 124, 134, 138, 142a, 143, 145a, 146.

The environment consists of several directives indicating which items of the MizAr
library can be referenced in the text proper. By means of these directives the knowledge
stored in the library is made available for the present article. Each key is followed by
a list of MI1ZAR article names.

(environment 15b) =
vocabulary
BOOLE,VECTSP_1,VECTSP_2,REAL_1,LINALG_1,SFAMILY,GCD;
notation
TARSKI,BOOLE,STRUCT_O,RLVECT_1,SETFAM_1,VECTSP_1,VECTSP_2;
constructors
ALGSTR_1;
definitions
STRUCT_O;
theorems
TARSKI,BOOLE,WELLORD2,SUBSET_1,ENUMSET1,VECTSP_1,VECTSP_2;
clusters
STRUCT_O,VECTSP_1,VECTSP_2;
schemes
SETFAM_1,GROUP_2;

<
Definition referenced in part 15a.

The directive vocabulary adds symbols of the named files to the article’s internal
lexicon. If there are new symbols (introduced in text proper) these have to be put in
an extra vocabulary file like GCD.VOC in this case.?

The directives notations and constructors request the conceptual framework of
the article. In M1ZAR it is possible to introduce synonyms, if another name is more
appropriate in the current context. So the constructors directive gives the concepts
to be used, and the notations directive gives the synonyms to be used for these
concepts. The clusters directive will be explained in section 4.3.

The definitions and theorems directives indicate which definitions and theorems
may be cited in the article to justify reasonings. The directive schemes describes sec-
ond order theorems that can be referenced in the text proper.

The text proper includes the new mathematical knowledge; that is, new definitions
and theorems as well as proofs for these. Reservations declare the (mathematical)
type of identifiers from the point of reservation up to the end of the article or until the
reservation is overwritten by a new one:

proper. Then each begin stands for a new section of the article. But note that this is not necessary
and that begins can be introduced at places we would not consider as the starting point of a new
section.

2See the beginning of appendix A for a description of this file.
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text proper 16) =
prop

reserve X,Y,Z for set;

reserve I for domRing;

reserve a,b,c,d for Element of the carrier of I;
o

Definition defined by parts 16, 123.
Definition referenced in part 15a.

After this reservation I stands for an integral domain and a,b and ¢ are Elements of I.
As a consequence every theorem about integral domains that already has been proved
in an arbitrary M1zAR article (that is referenced in the environment) can be applied
to them. Using these identifiers new concepts of integral domains can be defined, for
instance divisibility:

"gcd.miz" 17a =
definition
let I be domRing;
let a,b be Element of the carrier of I;
pred a divides b means :Defl:
ex ¢ being Element of the carrier of I st b = axc;
end;

o
File defined by parts 15a, 17ab, 18ab, 19abc, 20ab, 124, 134, 138, 142a, 143, 145a, 146.

Note that divides is a new vocabulary item that as mentioned above must be intro-
duced in a vocabulary file. Of course such definitions can be used to define further
predicates (or special functions):

"gcd.miz" 17b =
definition
let I be domRing;
let x be Element of the carrier of I;
pred x is_unit means :Def2:
x divides 1.I; :: 1.I is the multiplicative identity of I
end;

definition
let I be domRing;
let a,b be Element of the carrier of I;
pred a is_associated_to b means :Def3:
a divides b & b divides a;
antonym a is_not_associated_to b;
end;
o
File defined by parts 15a, 17ab, 18ab, 19abc, 20ab, 124, 134, 138, 142a, 143, 145a, 146.

The phrase antonym allows us to introduce a synonym for the negation of the just
defined predicate. Also, one can define functions over algebraic domains, but contrary
to defining predicates one has to prove existence and uniqueness of this new defined
function:!

INote that the definition not only states properties about the resulting value, but also its type.
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"gcd.miz" 18a =
definition i
let I be domRing;
let x,y be Element of the carrier of I;
assume d: y divides x & y <> 0.I;
func x/y -> Element of the carrier of I means :Defb:
it*y = x; :: it stands for the value of the defined function.

existence
proof

H1l: ex z being Element of the carrier of I
st x = y*z by d,Defl;
thus thesis by Hi;
end;
uniqueness
by d,IDOM1;
:: theorem IDOM1 states that I fulfills the cancellation property.
end;
©
File defined by parts 15a, 17ab, 18ab, 19abc, 20ab, 124, 134, 138, 142a, 143, 145a, 146

One of the main advantages of the MizZAR language is that it allows us to formulate
theorems (and, as we will see later, proofs) in mathematical textbook style using the
just defined concepts, hence giving the possibility to work with a proof checker using
the language of algebra:

"gcd.miz" 18b =
theorem
Li:for I being domRing
for a,b,c being Element of the carrier of I holds
a divides a &
((a divides b & b divides c) implies a divides c)

o
File defined by parts 15a, 17ab, 18ab, 19abc, 20ab, 124, 134, 138, 142a, 143, 145a, 146

L1 is a label that can be used to refer to this theorem in a justification.! So once proved
for arbitrary integral domains I, this theorem is applicable to every object whose type
widens to domRing; that is to every object fulfilling the properties of mode domRing.
This includes for example mode gcdDomain and mode EuclideanRing because they
are defined as domRing with additional properties.

In the next section we will see, how such a theorem is proved in MiZAR.

2.2 Proving Algebraic Theorems

In this section we want to show in detail how theorems are proved in Mi1ZAR. To be
more precise, we want to illustrate that such proofs are closer to textbook proofs than
proofs of other mechanized systems in terms of the syntax in which they are stated.
Hence using the M1ZAR language one can formulate proofs directly in the language of
algebra.

As a first example we prove theorem L1 of the last section. We start by introducing
the domains and the elements the theorem is about:

"gcd.miz" 19a =
proof
let I be domRing;
let a,b,c be Element of the carrier of I;
<
File defined by parts 15a, 17ab, 18ab, 19abc, 20ab, 124, 134, 138, 142a, 143, 145a, 146

LCompare page 11.
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Theorem L1 consists of two statements, the second of them being an implication; so
we suppose that its assumption holds and prove that the conclusion follows.

"gcd.miz" 19b =

M1: now assume
Hl: a divides b & b divides c;

o
File defined by parts 15a, 17ab, 18ab, 19abc, 20ab, 124, 134, 138, 142a, 143, 145a, 146.

The next step is to expand the definition of divides into an existence statement. In
MizAR existence elimination is done using consider. Note that the existence of the
element introduced by consider has to be justified, by the definition of divides in
this case.

"gcd.miz" 19¢c =
consider d being Element of the carrier of I such that
H2: a*d = b by H1,Defl;
consider e being Element of the carrier of I such that
H3: b*xe = c by H1,Defl;
o
File defined by parts 15a, 17ab, 18ab, 19abc, 20ab, 124, 134, 138, 142a, 143, 145a, 146.

Using the just introduced elements and arithmetics of integral domains,*

assertion by applying once again the definition of divides:

we get our

"gcd.miz" 20a =
H4: a*(d*e) = (axd)*e by VECTSP_1l:def 16

.= bxe by H2
.=c by H3;
thus (a divides b & b divides c) implies a divides c by H4,Defil;

end;
o
File defined by parts 15a, 17ab, 18ab, 19abc, 20ab, 124, 134, 138, 142a, 143, 145a, 146.

The first statement of the theorem is an immediate consequence of our definitions and
the properties of an integral domain, and we conclude the proof with:

"gcd.miz" 20b =
M2: ax1.I = a by VECTSP_2:1;
M3: a divides a by M2,Defl;
thus thesis by M1,M3;
end;

<
File defined by parts 15a, 17ab, 18ab, 19abc, 20ab, 124, 134, 138, 142a, 143, 145a, 146.

We see that this proof exactly follows the argumentation used by mathematicians.
Consequently scientists writing generic algebraic algorithms can develop correctness
proofs in MIzAR right alongside the proofs they have in mind. As another example,
we give a MIZAR proof of the following well known theorem.

IThe theorem we use has not been proven for integral domains, but for arbitrary associative group
structures. It is due to the Mi1zAR type system that we can use it here.
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(example lemma 20c) =

theorem

L11l:for a,b being Element of the carrier of I holds

a is_associated_to b iff (ex c st (c is_unit & a*c = b))
(proof of theorem L11 20d)

<
Definition referenced in part 124.

In the M1ZAR proof script language an if and only if statement has to be proven by two
implications, so the overall structure of the above theorem’s proof is simply as follows.

(proof of theorem L11 20d) =

proof
K1: for a,b being Element of the carrier of I holds
a is_associated_to b implies
(ex c being Element of the carrier of I st (c is_unit & a*c = b))
(proof of theorem L11, if 21b)
K2: for a,b being Element of the carrier of I holds
(ex c being Element of the carrier of I st (c is_unit & a*c = b))
implies a is_associated_to b
(proof of theorem L11, only if 21a)
thus thesis by K1,K2;
end;
o
Definition referenced in part 20c.

The proof of the only if direction (K2) is straightforward: It only requires application
of definitions and some arithmetic.

(proof of theorem L11, only if 21a) =

proof
let a,b be Element of the carrier of I;
assume H1: (ex c st (c is_unit & a*c = b));
consider c being Element of the carrier of I such that
H2: c is_unit & a*c = b by Hi;
H3: c divides 1.I by H2,Def2;
consider d being Element of the carrier of I such that
H5: cxd = 1.I by H3,Defl;
H6: a = a*1.1I by VECTSP_2:1
ax(c*d) by H5
(axc)*d by VECTSP_1:def 16
.= bxd by H2;
H7: b divides a by H6,Defl;
H8: a divides b by H2,Defl;
thus thesis by H7,H8,Def3;
end;

<
Definition referenced in part 20d.

The proof of the if direction (K1) starts as usual with introducing the required ele-
ments and the application of the corresponding definitions, in order to show by using
properties of the integral domain that the assertion holds:
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(proof of theorem L11, if 21b) =

proof
let a,b be Element of the carrier of I;
assume HO: a is_associated_to b;
H2: a divides b & b divides a by HO,Def3;
consider c being Element of the carrier of I such that
H5: b = a*c by H2,Defl;
consider d being Element of the carrier of I such that
H6: a = bxd by H2,Defl;
(cases of theorem L11, if 22a)
(o
Definition referenced in part 20d.

But then  as indicated by the name of the macro  we have to distinguish whether
a = 0.I or whether a # 0.I. To do so the M1zAR language has a special feature: the
cases phrase.

(cases of theorem L11, if 22a) =

M: now per cases;
case A: a <> 0.I;
(proof of theorem L11, if, case A 22b)
case B: a = 0.1;
(proof of theorem L11, if, case B 23a)

end; ::cases
thus thesis by M;
end;

<
Definition referenced in part 21b.

Here it is obvious for the M1ZAR proof checker that A and B together cover all possible
cases. But it may happen that this must be proved before and referenced at level
M. Now the rest of the proof is easy: In both cases it only requires some arithmetic
followed by an application of the definition of unit.

Here is the proof of the case a # 0.I: Combining the introduced elements c and d
gives ¢ * d = 1.1 by cancelling a, hence that c is a unit.

(proof of theorem L11, if, case A 22b) =
H7: a = bxd by H6

(a*c)*d by H5

ax(c*d) by VECTSP_1:def 16;

H8: cxd = 1.I by H7,L10,4;

H9: c divides 1.I by H8,Defil;

H10: c is_unit by H9,Def2;

thus thesis by H10,H5;

<
Definition referenced in part 22a.
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What follows now is the proof of the other case a = 0.I: We show that b=a * 1.1,
thus getting the thesis because 1.1 is a unit.

(proof of theorem L11, if, case B 23a) =

Hi: b axc by H5
0.I by B,VECTSP_2:26
0.Ix1.I by VECTSP_2:1
ax1.I by B;
H2: 1.I is_unit
proof
Mi: 1.Ix1.I = 1.I by VECTSP_2:1;
M2: 1.1 divides 1.I by M1,Defil;
thus thesis by M2,Def2;
end;
thus thesis by H2,H1;

<
Definition referenced in part 22a.

This completes the proof of theorem L11. Note that the proof just given  like the one
for theorem L1 although easy to read for human beings, is accepted by the MizAR
proof checker.

2.3 A Theorem of Brown and Henrici

In this section we give a M1ZAR proof for a theorem of Brown and Henrici, which states
a nontrivial property of the greatest common divisor in arbitrary gcd domains 7. In
MizAR it is formulated like this:

(Brown/Henrici theorem 23b) =

theorem

for Amp being AmpleSet of I

for rl,r2,s1,s2 being Element of the carrier of I holds

(gcd(rl,r2,Amp) = 1.1 & gcd(s1,s2,Amp) = 1.1 &

r2 <> 0.1 & s2 <> 0.1I)

implies

ged(ri1x(s2/ged(r2,s2,Amp) ) +s1*(r2/gcd(r2,s2,Amp)),
r2*(s2/gcd(r2,s2,Amp)) ,Amp) =

ged(rix(s2/gcd(r2,s2,Amp) ) +si1*(r2/gecd(r2,s2,Amp)),
gecd(r2,s2,Amp) , Amp)

(proof of Brown/Henrici theorem 27b, ... )

<
Definition referenced in part 146.

We present the proof for two reasons. First we want to give an extended MIZAR proof
of a nontrivial algebraic theorem. On the other hand this theorem is the heart of the
correctness of the above presented generic Brown/Henrici addition algorithm.

Before we can give the entire proof, we have to do some preparations.! We start
with the MizAR definition of the greatest common divisor function.? The MIzZAR
definition of ged domains is included in section 4.3.

IThe MizaR definition of ample sets and gcd domains can be found in section 4.2 and 4.3 respec-
tively. A couple of theorems about divisibility in integral domains and greatest common divisors in
gcd domains are stated and proved in appendix A.1 and A.3 respectively.

2The corresponding correctness — that is existence and uniqueness — proof can be found at the
beginning of appendix A.3.
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(Definition of gcd function 24) =

definition

let I be gcdDomain;

let Amp be AmpleSet of I;

let x,y be Element of the carrier of I;

func gcd(x,y,Amp) -> Element of the carrier of I means :Def4:

it € Amp &
it divides x &
it divides y &
(for z being Element of the carrier of I
st (z divides x & z divides y) holds (z divides it));

(correctness proof of ged function 145b)

<
Definition referenced in part 146.

Note that contrary to the greatest common divisor function in SUCHTHAT, where
it was a global parameter — this definition of the greatest common divisor function
contains the ample set as one of its arguments. Considered as a function over a ged
domain the ample set obviously has to be an explicit parameter: Without choosing a
fixed ample set, the value of the greatest common divisor is not uniquely determined;
for example the greatest common divisor of 4 and 6 over the integers can be 2 or —2. In
Mi1zAR however, the implicit use of function parameters is restricted only to operations
being part of the underlying structure like gcd domain in this case. Nevertheless, in
a programming language like SUCHTHAT one does not want to enumerate all these
parameters explicitly, but rather to introduce them in terms of global declarations.

This may be compared with the algorithm’s dependence on the size of memory:
The result of the algorithm strongly depends on this size — giving an overflow error
or the desired result. However, no one would agree to consider the size of memory as
an explicit argument of an algorithm.

Consequently we are forced to make this kind of global SucHTHAT declarations
explicit when translating SUCHTHAT algorithms into the MizAR language.!

After defining gcd domains and their corresponding greatest common divisor function
the next step is to establish five properties of this function originally stated in [Col74].
Using these properties we will be able to give the proof of the Brown/Henrici theorem.
Note that the following properties hold for arbitrary ample sets in arbitrary integral
domains I.

(gcd theorems 25) =
theorem
TO:for Amp being AmpleSet of I
for a,b,c being Element of the carrier of I holds
ged(ged(a,b,Amp) ,c,Amp) = gcd(a,ged(b,c,Amp) , Amp)
(proof of theorem T0 151a)

1t is possible in MizAR to define an algebraic structure gcdDomain-with-AmpleSet, extending the
structure of gcd domains by a corresponding ample set. Over this structure the greatest common
divisor function again is the usual two argumented function. But this does not go along with our view
of algebraic structures, in which a gcd domain is an integral domain fulfilling the greatest common
divisor property and nothing more. An ample set — especially one for a specific relation like association

is a matter of computing in such domains, and therefore should not be contained in the original
structure definition of a gcd domain.
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theorem

Til:for Amp being AmpleSet of I

for a,b,c being Element of the carrier of I holds
gcd(a*c,b*c,Amp) is_associated_to c*gcd(a,b,Amp)
(proof of theorem T1 151b)

theorem

T2:for Amp being AmpleSet of I

for a,b,c being Element of the carrier of I holds
gcd(a,b,Amp) = 1.1 implies gcd(a,b*c,Amp) = gcd(a,c,Amp)
(proof of theorem T2 153)

theorem

T3:for Amp being AmpleSet of I

for a,b,c being Element of the carrier of I holds

(c = gcd(a,b,Amp) & c <> 0.I) implies gcd(a/c,b/c,Amp) = 1.I
(proof of theorem T3 26a, ... )

theorem

T4:for Amp being AmpleSet of I

for a,b,c being Element of the carrier of I holds
gcd(atb*c,c,Amp) = gcd(a,c,Amp)

(proof of theorem T4 154)

o
Definition referenced in part 146.

Here we only give the proof of theorem T3 as an example. We note that the other four
theorems are proved in a similar way; the corresponding proofs can be found at the
end of appendix A.3. The proof starts as usual with the introduction of objects the
theorem is about followed by stating the given assumptions.

(proof of theorem T3 26a) =

proof
let Amp be AmpleSet of I;
let a,b,c be Element of the carrier of I;
assume HO: c¢ = gcd(a,b,Amp) & c <> 0.I;
o

Definition defined by parts 26abc, 27a.
Definition referenced in part 25.

Our first goal is to show that 1.T and gecd(a/c,b/c,Amp) are associates of each other.
Therefore we introduce elements al and bl representing the quotients a/c and b/c
respectively, concluding that ¢ equals gcd(al*c,bl*c,Amp).

(proof of theorem T3 26b) =

consider al being Element of the carrier of I such that Hl: al = a/c;
consider bl being Element of the carrier of I such that H2: bl = b/c;
M1: c divides a & c divides b by Def4,HO;
H3: al*c = a & bl*c = b by H1,H2,Def5,M1,HO;
H5: ¢ = gcd(a,b,Amp) by HO

.= gcd(al*c,bl*c,Amp) by H3;

<o

Definition defined by parts 26abc, 27a.
Definition referenced in part 25.
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Now we apply theorem T1, which allows us to factor c out of gcd(al*c,bl*c,Amp).
After that, cancelling c gives the desired result.

(proof of theorem T3 26c) =
H6: gcd(al*c,bl*c,Amp) is_associated_to c*gcd(al,bl,Amp) by T1;
H7: ¢ is_associated_to c*gcd(al,bl,Amp) by H5,H6;
M3: c*1.I is_associated_to c*gcd(al,bl,Amp) by H7,VECTSP_2:1;
H8: 1.I is_associated_to gcd(al,bl,Amp) by M3,L15,HO;

O

Definition defined by parts 26abc, 27a.
Definition referenced in part 25.

The last step consists of showing that 1.I and gcd(al,bl,Amp) are not only associates
of each other, but in fact are equal. This is done using the fact that two elements of
an ample set being associates of each other must be identical.’

(proof of theorem T3 27a) =

H9: gcd(al,bl,Amp) is_associated_to 1.I by H8,L2;
H10: gcd(al,bl,Amp) is Element of Amp by Def4;
Hi1: 1.1 is Element of Amp by Def8;
H12: gcd(al,bl,Amp) = 1.I by H9,H10,H11,AMP;
thus thesis by H1,H2,H12;
end;

o

Definition defined by parts 26abc, 27a.
Definition referenced in part 25.

Based on the above five theorems about the greatest common divisor function, one
succeeds in giving a MiZAR proof for the theorem of Brown and Henrici as follows.
We start by introducing synonyms for gcd(r2,s2,Amp), r2/gcd(r2,s2,Amp) and
s2/gcd(r2,s2,Amp):

(proof of Brown/Henrici theorem 27b) =

proof
let Amp be AmpleSet of I;
let r1,r2,s1,s2 be Element of the carrier of I;
assume H1: gcd(rl,r2,Amp) = 1.I & gcd(sl,s2,Amp) = 1.1 &
r2 <> 0.I & s2 <> 0.1;
consider d being Element of the carrier of I such that
H2: d = gcd(r2,s2,Amp);
H2a: d divides s2 & d divides r2 by H2,Def4;
K: d <> 0.I by H2,H1,L12;
consider r being Element of the carrier of I such that H4: r

r2/d;
consider s being Element of the carrier of I such that H5: s = s2/d;
o

Definition defined by parts 27b, 28abc, 29a.
Definition referenced in part 23b.

The proof of the Brown/Henrici theorem takes advantage of the fact that

r2(s2/gcd(r2, s2, Amp)
= gcd(r2, s2, Amp)(r2/gcd(r2, s2, Amp))(s2/gcd(r2, s2, Amp)).

ISee section 4.2 for a MIzAR definition of ample sets and their corresponding properties.
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Consequently two applications of theorem T2 will eliminate s2/gcd(r2,s2,Amp) and
r2/gcd(r2,s2,Amp) leaving the desired gcd(r2,s2,Amp) resp. d as the second argu-
ment of the gcd-function.

So, all we have to show is that the requirements for theorem T2 hold, namely that
gcd(rixs+si*r,s,Amp) = 1.1 and gcd(ril*s+si*r,r,Amp) = 1.1.

To prove the first requirement, we use theorems T3 and T2 to conclude that

(proof of Brown/Henrici theorem 28a) =
H9: gcd(r,s,Amp) = 1.I by H4,H5,H2,K,T3;
H7: gcd(s,s1,Amp) = 1.1
(proof of H7 30a)
H8: gcd(s,sl*r,Amp) = gcd(s,r,Amp) by H7,T2;
o

Definition defined by parts 27b, 28abc, 29a.
Definition referenced in part 23b.

These two equations (H8 and H9) enable us to show that the above mentioned require-
ment holds, hence to execute the first elimination step. In the MIiZAR language this
looks as follows.

(proof of Brown/Henrici theorem 28b) =

:: Requirement for theorem T2
H10: gcd(ri*s+sl*r,s,Amp)

= gcd(sl*r,s,Amp) by T4
= gcd(s,sl*r,Amp) by L13
= gcd(s,r,Amp) by H8
= gcd(r,s,Amp) by L13
= 1.1 by H9;

H11l: r2*s = sx(d*r)
(proof of H11 29b)
: Elimination of s = s2/gcd(r2,s2,Amp)
H12: gcd(rixs+sl*r,r2*s,Amp)
gcd(rixs+si*r,s*(d*r) ,Amp) by H11l
gcd(rixs+sl*r,d*r, Amp) by H10,T2;

o
Definition defined by parts 27b, 28abc, 29a.
Definition referenced in part 23b.

To prove the second requirement we proceed the same way: First we use theorems T3
and T2 to show the necessary preliminaries (H15 and H16):

(proof of Brown/Henrici theorem 28c) =
H14: gcd(r,rl,Amp) = 1.I
(proof of H14 30b)
H15: gcd(r,rl#*s,Amp) = gcd(r,s,Amp) by H14,T2;
H16: gcd(r,s,Amp) = 1.I by H4,H5,H2,K,T3;
o

Definition defined by parts 27b, 28abc, 29a.
Definition referenced in part 23b.

Just like before we can prove that the necessary requirement for theorem T2 holds. So,
we also eliminate r2/gcd (r2,s2,Amp) and complete the proof with
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(proof of Brown/Henrici theorem 29a)

:: Requirement for theorem T2
H17:  gcd(ril*s+sl*r,r,Amp)

= gcd(rl*s,r,Amp) by T4

= gcd(r,rlxs,Amp) by L13
= gcd(r,s,Amp) by H15
= 1.1 by H16;

:: Elimination of r = r2/gcd(r2,s2,Amp)
H18: gcd(rixs+sl*r,d*r, Amp)

= gcd(rl*s+sixr,d,Amp) by H17,T2;
H19:  gcd(ril*s+sl*r,r2*s,Amp)

= gcd(rl*s+si*r,d,Amp) :: Remember that d = gcd(r2,s2,Amp).
by H12,H18;
thus thesis by H19,H4,H5,H2;

end;
o

Definition defined by parts 27b, 28abc, 29a.
Definition referenced in part 23b.

Note again that the proof just presented is not only a thorough argumentation to show
that the theorem of Brown and Henrici holds, but also an accepted proof script for the
MizAR proof checker.

We conclude this section by giving the subproofs we left out above, when proving the
Brown/Henrici theorem. They are easy done by equational reasoning and using basic
properties of the greatest common divisor function.

(proof of H11l 29b) =

proof
HO: d divides d by L1;
HOa: d divides d*r2 by L6;
Hi: r2*s = ((1.I)*r2)*s by VECTSP_2:1
.= ((d/d)*r2)*s by K,L7
.= ((d*r2)/d)*s by K,H0,H0a,L8
.= (d*(r2/d))*s by K,H2a,H0a,L8
.= (d*r)*s by H4
.= sx(d*r);
thus thesis by Hi;
end;
o
Definition referenced in part 28b.

(proof of H7 30a) =

proof
Mi: gcd(s,sl,Amp) divides sl by Def4;
M2: gcd(s,s1,Amp) divides s by Def4;
consider e being Element of the carrier of I such that
M3: gcd(s,sl,Amp)*e = s by M2,Defl;
M4: gcd(s,s1, Amp) * (e*d)
(gcd(s,s1,Amp)*e)*d by VECTSP_1:def 16
s*d by M3
.= s2 by K,H2a,H5,Def5;
M5: gcd(s,sl,Amp) divides s2 by M4,Defl;
M6: gcd(s,sl,Amp) divides gcd(sl,s2,Amp) by M1,M5,Def4;
M7: gcd(s,sl,Amp) divides 1.I by M6,H1;
M8: (1.I)*gcd(s,sl1,Amp) = gcd(s,sl,Amp) by VECTSP_2:1;
M9: 1.I divides gcd(s,sl,Amp) by M8,Defl;
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M10: gcd(s,s1,Amp) is_associated_to 1.I by M7,M9,Def3;
Mi1: gecd(s,sl,Amp) is Element of Amp by Def4;
M12: 1.I is Element of Amp by Def8;
thus thesis by M10,M11,M12,AMP;
end;
o
Definition referenced in part 28a.

(proof of H14 30b) =

proof

Mi: gcd(r,rl,Amp) divides rl by Defé4;

M2: gcd(r,rl,Amp) divides r by Def4;

consider e being Element of the carrier of I such that
M3: gcd(r,rl,Amp)*e = r by M2,Defl;

M4: ged(r,rl, Amp) * (e*d)

(gcd(r,rl,Amp)*e)*d by VECTSP_1:def 16

r*d by M3

r2 by K,H2a,H4,Def5;

M5: gcd(r,rl,Amp) divides r2 by M4,Defl;

M6: gcd(r,rl,Amp) divides gcd(rl,r2,Amp) by M1,M5,Def4;
M7: gcd(r,rl,Amp) divides 1.I by M6,H1;

M8: (1.I)*gcd(r,rl,Amp) = gcd(r,rl,Amp) by VECTSP_2:1;
M9: 1.I divides gcd(r,rl,Amp) by M8,Defl;

M10: gecd(r,rl,Amp) is_associated_to 1.I by M7,M9,Def3;
M11: gcd(r,r1l,Amp) is Element of Amp by Def4;

M12: 1.1 is Element of Amp by Def8;

thus thesis by M10,M11,M12,AMP;

end;

<
Definition referenced in part 28c.
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Chapter 3

A Verification Condition
(Generator

To use the MIizAR system as a tool for the verification of generic algebraic algorithms
one has to construct a set of theorems that ensure the correctness of the algorithm
a set of verification conditions. These theorems then can be proved using MIZAR to
verify the correctness of the given algorithm.

In this chapter we describe a werification condition generator; that is, a program
which almost automatically constructs such theorems out of a given algorithm and its
specification.

The generator is based on the Hoare calculus.! We start with an algorithm and its
input/output specification considering this as a Hoare triple to be proved.

Showing that a triple holds requires a derivation starting with the axioms of the
calculus and the given triple as its final formula. But instead of trying to find such a
derivation, it is much easier to start with the entire triple: One uses the rules of the
calculus in a backward manner to reduce the assertion to simpler Hoare triples, until
axioms are reached. Our generator uses such so-called backward rules.

Note that we do not process the SUCHTHAT algorithm itself but its representation
in an abstract syntax or, to be more precise, a parse tree of the original SUCHTHAT
algorithm represented in SCHEME. There are two reasons for this:

The SUCHTHAT compiler uses SCHEME as an intermediate language into which
each SUCHTHAT algorithm is translated. So starting with this representation frees us
from parsing, performing syntax checks and so on. All these things are done by the
SUCHTHAT compiler. Nevertheless we included some of these checks in order to use
the generator in a stand-alone mode, too.

On the other hand using abstract syntax makes the generator programming lan-
guage independent in the sense that the generator is applicable to every programming
language that can be translated into this representation. And it is a minor task to
construct a SCHEME representation out of a parse tree independently of the original
programming language.

!For an introduction to the Hoare calculus see [Dil94] or [Hoa69].
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The generator is divides its task into three parts:
e annotating the algorithm
e constructing abstract theorems
e constructing specific theorems

The first step consists of annotating the given algorithm: we introduce abstract
intermediate predicates P; in sequences and invariants P; for loops. This allows to
apply Hoare’s rules in a backward manner.

Subsequently theorems are constructed: First abstract theorems are generated
based on the Hoare calculus. By abstract theorems we mean theorems with variables
P; for the predicates. As a consequence up to this point we can ensure the correctness
of the theorems; that is, these theorems imply the correctness of the given algorithm
due to Hoare calculus.

The last thing to do is to find specific counterparts for the abstract predicates
with the input/output specification as a starting point. We have implemented some
heuristics to get simple theorems, and there are two points worth mentioning:

e Not every abstract predicate will be specialized (e.g. loop invariants lie in the
responsibility of the user). Before starting this part of the generator the user has
the possibility to set predicates by hand. The generator then tries to fill in the
remaining predicates with respect to the user given ones.

e The results of the generator should be considered as an aid to the user. Contrary
to the abstract theorems there is not always a guarantee that the specialized
theorems hold, because the chosen specific predicate may be not suitable (but if
the specialized theorems hold they ensure the correctness of the given algorithm).

In the following sections we describe the structure of the verification condition gene-
rator. Note that we use STWEB so that the SCHEME code can be extracted from this
document.

3.1 The Kernel of the Generator

The construction principle behind the generator is that of viewing the given algorithm
as an object on which different activities are performed. These activities may generate
theorems for the algorithm or may do something completely different. So to annotate
a given algorithm there is nothing to be done but calling the corresponding activities.

"kernel.scm" 35a =

(define (annotate prog)
(do-activities prog ’annotations))

o
File defined by parts 35ab, 39b, 40ab.

We proceed the same way, whether we want to construct abstract theorems or get
conjectures for the abstract theorems:
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"kernel.scm" 35b =
(define (generate-theorems annotated-prog)
(do-activities annotated-prog ’generations))

(define (guess annotated-prog)
(do-activities annotated-prog ’guesses))
o
File defined by parts 35ab, 39b, 40ab.

The activities that have to be performed depend on the kind of the given program
statement (for example whether it is a while-construct or a simple assignment). We use
the alist package of the SLIB' ([ELJ94]) to store this information, namely information
about the format of the construct, of how to annotate it, of how to generate abstract
theorems and of how to find conjectures for abstract theorems.

"initialize-tables.scm" 35c =

(require ’alist)

(define formats ’())
(define annotations ’())
(define generations ’())
(define guesses ’())

<
File defined by parts 35c, 184ab, 185ab, 186b.

How are activities for annotating algorithms and generating theorems represented?
An activity is a SCHEME list consisting of an activity name and an optional number of
further arguments describing the activity in more detail.

As an example we consider the while-construct (while condition action): To
annotate this, we have to introduce an intermediate predicate after condition (the
loop invariant) and to recursively annotate action.? This is written (in SCHEME) as
follows.

(while annotations 36a) =

> ((rec ’action)
(insert-pred-after ’condition))
<
Definition referenced in part 36c.

Constructing theorems for the while-construct is based on the while rule of the Hoare
calculus:

{inv A b} S {inv},
{inv}while bdo S; {inv A —b}

When computing verification conditions in a backward manner, in general we will not
have inv nor b itself. In fact we will have nothing more but arbitrary predicates P
and (). As a consequence, we will have to prove {P} while b S {Q}, using in addition
the so-called implication rule:

P PL{P}S{Q'}, Q' = Q
{r}s{Q}

I'We used GAMBIT SCHEME Version 2.5.1 and SLIB version 2a2.
2Compare chapter 3.3.
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These two rules together show that to verify an arbitrary while-statement, it suffices
to show P — inv, {inv A b} S {inv} and (inv A =b) — Q." In our representation we
get the following list of activities:

(while generations 36b) =
> ((theorem-is ’pre ’inv)
(theorem-is ’(and inv (not conditiomn)) ’post)
(rec ’((and inv condition) action inv)))

o
Definition referenced in part 36c.

New activities can be added with insert-newconstruct. Besides the activities one
has to specify a key and the format of the construct.

(insert rules 36¢c) =
(insert-newconstruct ’while
’(while condition action)
(while annotations 36a)
(while generations 36b))

o

Definition defined by parts 36¢, 38b, 39a, 41a.
Definition referenced in part 185a.

Note that to expand the generator with a new programming language construct (using
insert-newconstruct) one only has to add the rules for processing it.

We shall take the procedure call as a second example, also to describe the rule we
implemented to prove such a call correct. For that we need the notion of substitution:
To substitute a variable x by a term ¢ in a formula (or another term) s, one replaces
each free occurrence of z in s by t. We denote the resulting formula (term) by s,[t].
We require a procedure to have no side effects; that is, the only variables changed by
a procedure call are the ones explicitly given in the output specification. We further
assume that

{input—speci fication(f)} f(z, ;) {output—speci fication(f)}

where z stands for the formal input parameters and 2 for the formal output param-
eters of procedure f, is a valid Hoare formula.? To prove a specific procedure call
correct, we adopted the following theorem for procedure calls from [Gri81]:

Let I be a predicate and let procedure f be correct with respect to its specification
as mentioned above. Assume that none of the free identifiers in I appear in the output
variables z of f. Then holds

{input—speci fication(f) [2] AT} f(g7 ?) {output—speci fication(f)~ [2 ?] AT} O

T T,z

The predicate I captures the notion of invariance: predicates that do not refer to
the output variables of a subalgorithm remain unchanged throughout the procedure
call. Requiring I to be invariant for procedure f of course restricts the procedure call.
On the other hand this rule is easier to handle and allows for better constructing of

LSome authors refer to this as the derived while rule.
2Thus, we suppose subalgorithms to be correct with respect to their specification.

29



specific predicates. Furthermore the restriction will be trivially fulfilled if the output
variables of the procedure call are fresh, which is the case in most procedure calls in
algebraic algorithms (see our examples).

To prove that {P} f(a; ?) {Q} resp. {P} ¢ := f(a) {Q@} holds for arbitrary
predicates P and @,' we proceed as we did with the while rule: Again we integrate the
implication rule into the activities, getting the following three conditions to prove.

e P — input—specification(f) [2],

T

e (P A output—specification(f) [2,?]) — (@ resp.

T,z

(P A output—specification(f)Az[g,c]) — @ and

T,

N

e None of the free identifiers of P equals z resp. appear in 2.

The straightforward translation of these conditions into our SCHEME representation
gives the following activities for procedure call.

(procedure call generations 38a) =
’((is-invariant-for ’pre ’(outputparam proc))
(theorem-is ’pre
’ (subst (inputspec ’proc)
(formalparam ’proc)
(actualparam ’proc)))
(theorem-is ’(and pre
(subst (outputspec ’proc)
(formalparam ’proc)
(actualparam ’proc)))

’post) ))
o
Definition referenced in part 38b.

Because there is nothing to do to annotate a procedure call, inserting the procedure
call activities looks as follows. (The star in the format definition indicates that any
number of arguments will be accepted.)

(insert rules 38b) =
(insert-newconstruct ’call
’(call proc * *)
’none
(procedure call generations 38a)

<o

Definition defined by parts 36¢, 38b, 39a, 41a.
Definition referenced in part 185a.

Yet to be described are activities for the assignment, if, sequences, and return con-
structs. Note that the activities for generating theorems directly mirror the corre-
sponding Hoare rules.?

INote that z := f(z) is just another syntax for f(z;z).
2The return rule states that the predicate holding before the return is executed implies the post-
condition of the original algorithm.
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(insert rules 39a) =

(insert-newconstruct ’set!
’(set! var term)
’none
> ((theorem-is ’pre ’(subst post var term))))

(insert-newconstruct ’begin
’ (begin *)
>((rec ’all) (insert-pred-before ’all))
’((rec ’all)))

(insert-newconstruct ’if
>((if condition actionl)
(if condition actionl action2))
’((rec ’actionl) (rec ’action2))
’((rec ’((and pre condition) actionl post))
(rec ’((and pre (not condition)) action2 post))))

(insert-newconstruct ’return
> ((return) (return term))
’none
> ((theorem-is ’pre ’outputspec)))

<o

Definition defined by parts 36¢, 38b, 39a, 41a
Definition referenced in part 185a.

The point is that we consider an activity like (insert-pred-after symbol) to be a
SCHEME procedure with two arguments called prog and theme. The argument theme
states in which of the three stages the generating process actually is: It may have the
values ’annotations, ’generations and ’guesses, which correspond to the different
alist’s of activities. As a consequence do-activities only has to look for the kind
of the given algorithm, take the activities according to this kind and theme and apply
these activities to its other argument prog;:

"kernel.scm" 39b =

(define (do-activities prog theme)
(if (is-sequence-without-begin? (car prog))
(do-activities (cons ’begin prog) theme)
(get key of prog 183a)
(check format of prog 183b)
(let ((activity-list (get (eval theme) key))
(ergprog prog))
(do ((activities activity-list (cdr activities))
(ergprog prog (if (actual? (car activities) prog)
(apply (eval (car activities))
(list ergprog theme))
ergprog)))
((or (empty? activities)
(equal? activities ’none)) ergprog) ))))))

o
File defined by parts 35ab, 39b, 40ab.
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The reader may have observed that the activities for recursively annotating algorithms
and constructing theorems are both named simply rec. We wanted to avoid different
names for activities that recursively annotate algorithms resp. construct theorems, so
we introduce rec as a procedure that calls the “real” procedure according to the given
theme:

"kernel.scm" 40a =

(define (rec symbol)
(lambda (prog theme)
(cond ((equal? theme ’annotations)

((ann-rec symbol) prog))

((equal? theme ’generations)
((gen-rec symbol) prog))

((equal? theme ’guesses)
((guess-rec symbol) prog))

(else

(error ’procedure ’rec: theme ’is ’unknown)))))
o
File defined by parts 35ab, 39b, 40ab.

We conclude this section with an easy but powerful activity, namely the simulate
activity. This activity allows us to reduce the treatment of new constructs to ones
already defined: simulate is equipped with an abstract algorithm scheme consisting
only of already known parts. If called with an algorithm simulate constructs a new
algorithm according to its abstract scheme and annotates this new one. Thus the
new unknown construct is eliminated and for the equivalent part theorems can be
constructed using Hoare calculus rules.!

"kernel.scm" 40b =

(define (simulate scheme)
(lambda (prog . theme)
(let ((actual-prog (construct prog scheme)))
(annotate actual-prog))))

<
File defined by parts 35ab, 39b, 40ab.

For example implementing the repeat-construct using simulate looks as follows. Note
that we only need activities for annotating repeat. Generating theorems for this
construct is done using the activities for the substituted while-statement.

(insert rules 41a) =

(insert-newconstruct ’repeat
’(repeat action until condition)
’((simulate ’(action (while (not condition) actiomn))) ))

<o

Definition defined by parts 36¢, 38b, 39a, 41a.
Definition referenced in part 185a.

INote that simulate allows one to introduce new programming language constructs without taking
care of rules to prove their correctness. One only needs to specify an equivalent already processable
algorithm.
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3.2 Example: Generic Euclidean Algorithm

Before we go into the details of the verification condition generator, we want to illus-
trate our approach with an example. We consider the generic Euclidean algorithm of
section 1.2. Starting with the input file, we describe all three stages of the generator
concluding with a verification condition set for the algorithm.

The input file consists of two parts: the algorithm prototype and the algorithm
body. The algorithm prototype is a result of the first part of the SUCHTHAT type
checker which handles SUCHTHAT declarations: a prototype is the internal counterpart
of the algorithm header.

"eucl-procedure.txt" 41b =

(prototype
(GCD a b out ¢)
(internal (\in u EuclideanRing) (\in v EuclideanRing)
(\in s EuclideanRing) (\in t EuclideanRing))
(input (\in a EuclideanRing) (\in b EuclideanRing))
(output (\in c EuclideanRing)
(with (\in ¢ Amp) (= c (gcd a b))) ))
o
File defined by parts 41bc.

The second part of the input file is a straightforward translation of the algorithm body
into the internal SCHEME representation of the SUCHTHAT compiler:

"eucl-procedure.txt" 4lc =

(set! u a)
(set! v b)
(if (= u 0) ((set! ¢ (NF v)) (return)))
(while (not (= v 0))
((call QR u v s t)
(set! u v)
(set! v t)))
(set! c (NF u))
o
File defined by parts 41bc.

So the input file contains all information about what to prove, namely the pre- and the
postcondition and the algorithm itself. But in addition we need the input/output speci-
fications of the subalgorithms to handle procedure calls. We assume their prototypes
to be (besides others) in the file prototypes.txt.

"prototypes.txt" 42a =

(prototype
(QR x y out q r)
(input (\in x EuclideanRing) (\in y EuclideanRing)
(with (not (= y 0))))
(output (\in q EuclideanRing) (\in r EuclideanRing)
(with (= x (+ (*x q y) )
(or (= r 0) (< (delta r) (delta y))))))
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(prototype
(NF x out y)
(input (\in x IntegralDomain))
(output (\in y IntegralDomain)
(with (\in y Amp) (x is_associated_to y))))
o
File defined by parts 42a, 163.

The first stage of the generator annotates the given algorithm. We use natural numbers
i to denote abstract predicates P;. So, annotating our example results in

"eucl-annotations.txt" 42b =

0

(set! u a) 1
(set! v b) 2
(if (= u 0)

(begin (set! ¢ (NF v)) 3
(return))) 4
(while (not (= v 0)) 7
(begin (call QR u v s t) 6
(set! uv) 5
(set! v t))) 8
(set! c (NF u))
9

<o

Based on these abstract predicates the user can enter loop invariants or any other
predicate desired (except for pre- and postcondition (0 and 9) being automatically set
to the input and the output specification). Here we only set the loop invariant (7):

(put-pred 7 ’(= (gcd u v) (gecd a b))).

In the second stage Hoare’s rules are applied in a backward manner to decompose the
original Hoare triple {input— specification} algorithm {output— specification} until
only programming code free theorems remain. Thereby predicates are still used in an
abstract manner only. We get

"eucl-pretheorems.txt" 43 =

(implies O (subst 1 u a))
(implies 1 (subst 2 v b))
(implies (and 2 (= u 0)) (subst true (x y) (v ¢)))
(implies (and (and 2 (= u 0))
(subst (and (\in y Amp) (x is_associated_to y))
(x y) (v e)))
3)

(implies 3 (and (\in c Amp) (= c (gcd a b))))

(implies 4 7)
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(implies (and 7 (= v 0)) 8)
(implies (and 7 (not (= v 0))) (subst (not (=y 0)) (xyqr) (uvst))

(implies (and (and 7 (not (= v 0)))
(subst (and (= x (+ (*x q y) 1))
(or (= r 0) (< (delta r) (delta y))))

(xyqr) (wv s t)))
6)

(implies 6 (subst 5 u v))
(implies 5 (subst 7 v t))
(implies 8 (subst true (x y) (u c)))

(implies (and 8 (subst (and (\in y Amp) (x is_associated_to y))
(x y) (u <))
9)

<o

This set of theorems is a set of verification conditions in the sense of [Dil94]: If we find
specific counterparts of the abstract predicates that allow proving these theorems, the
original algorithm is correct with respect to its specification.

Based on the input/output specification (and the given loop invariant) the last
stage of the generator constructs the following nontrivial theorems.

"eucl-theorems.txt" 44 =

(implies (and (= uw a) (= v b) (= u 0) (\in c Amp) (c is_associated_to b))
(and (\in c Amp) (= ¢ (gcd a b))))

(implies (and (= u a) (= v b) (not (= u 0)))
(= (gcd u v) (ged a b)))

(implies (and (= (gcd u v) (gecd a b)) (not (= v 0))
(=u (+ (* s v) t)) (or (=t 0) (< (delta t) (delta v))))
(= (gcd v t) (gcd a b)))

(implies (and (= (gcd u v) (gecd a b)) (= v 0)
(\in ¢ Amp) (c is_associated_to u))
(and (\in c Amp) (= ¢ (gcd a b))))
<

The first theorem corresponds to step (2), the last one to step (4) of the algorithm.
The third theorem states that the formula attached to the loop predicate 7 from
above indeed is a loop invariant. The second theorem is trivial for the Mi1zAR proof
checker though our trivial-theorem checker has not detected this (and therefore is quite
far from being accomplished).

We will prove the first and the two last theorems in chapter five. Thus we will show
that the theorems necessary to construct a Hoare calculus derivation for the Euclidean
algorithm hold, hence that the generic Euclidean algorithm of section 1.2 is correct
with respect to its specification for arbitrary Euclidean domains.
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3.3 Annotating Algorithms

An annotated algorithm is an algorithm with formulas — known as annotations — em-
bedded within it. A properly annotated algorithm is an algorithm in which annotations
have been inserted at the following points:

(i) before each command v; for 0 < i < n in a sequence of commands y;;7v2; ... Vn
and

(ii) after the condition in each loop.

In (i) the sequence 71;7s;...vn must not be a subsequence of a longer sequence of
commands. A properly annotated Hoare triple is a formula {P}~{Q} where v is a
properly annotated algorithm.

Given a properly annotated Hoare triple, it is easy to construct theorems according
to the Hoare calculus because each command (with its pre- and postcondition) exactly
fits to a backward Hoare rule. Furthermore introducing the intermediate predicates
enables the user to take action into the verifying process: He can set as many predi-
cates as he wants.

In the following we describe the activities necessary to carry out annotating algo-
rithms: insert-pred-after resp. insert-pred-before and ann-rec.

Procedure insert-pred-after has to handle two cases: Inserting a predicate after
each command (in a sequence) and after a special symbol only (for instance after the
condition in a while-construct).

"annotations.scm" 45a =

(define (insert-pred-after symbol)
(lambda (prog . theme)

(if (equal? symbol ’all)
(insert-pred-after all 45b)
(insert-pred-after special 46a)) ))

o
File defined by parts 45a, 46b, 48b, 49a, 177.

Given the symbol ’all we begin annotating from the end of the sequence. Note that
we distinguish between sequences starting with the key ’begin or not.

(insert-pred-after all 45b) =
(if (or (empty? prog)
(empty? (cdr prog)))
prog
(if (equal? (car prog) °’begin)
(let ((rest
((insert-pred-after ’all) (cddr prog))))
(begin
(set! prednr (+ prednr 1))
(append (list ’begin (cadr prog))
(cons prednr rest))))
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(let ((rest
((insert-pred-after ’all) (cdr prog))))
(begin
(set! prednr (+ prednr 1))
(append (list (car prog) prednr)
rest))) ))

<
Definition referenced in part 45a.

Given a special symbol — that is a symbol not equal to >all — we look for this symbol
in the format definition of the present algorithm. If it exists, we insert a predicate after
the corresponding part of the algorithm.

(insert-pred-after special 46a) =

(do ((format (get formats (get-key prog)) (cdr format))
(pr prog (cdr pr))
(ergprog ’() (append ergprog (list (car pr)) )))
((equal? (car format) symbol)
(begin
(set! prednr (+ prednr 1))
(append (append ergprog (list (car pr)))
(cons prednr (cdr pr)) )))
(if (empty? (cdr format))
(error ’insert-pred-after: symbol ’does ’not
’appear ’in ’format ’of prog)) )
o
Definition referenced in part 45a.

Procedure insert-pred-before works in exactly the same way. We omit this proce-
dure here, but it can be found in appendix B.1.
Procedure ann-rec has to handle the same cases like insert-pred-after:

"annotations.scm" 46b =

(define (ann-rec symbol)
(lambda (prog)
(if (equal? symbol ’all)
(ann-rec all 47a)
(ann-rec special 47b)) ))
o
File defined by parts 45a, 46b, 48b, 49a, 177.

In the ’all case — that is the present algorithm is a sequence — we only have to call
each part of the sequence recursively.

(ann-rec all 47a) =
(if (empty? prog)
prog
(if (equal? (car prog) ’begin)
(append (list ’begin (annotate (cadr prog)))
((ann-rec ’all) (cddr prog)))
(cons (annotate (car prog))
((ann-rec ’all) (cdr prog))) ))

<
Definition referenced in part 46b.
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Given a special symbol we look for it in the format definition of the present algorithm
and annotate the corresponding part of the algorithm.

(ann-rec special 47b) =
(let* ((key (get-key prog))
(format (get-actual formats prog)))
(if (not(member symbol format))
(check other formats 48a)
(do ((form format (cdr form))
(pr prog (cdr pr))
(ergprog ’()
(append ergprog (list (car pr)) )))
((equal? (car form) symbol)
(append ergprog
(append (list (annotate (car pr)))
(cdr pr)))) )))

o
Definition referenced in part 46b.

If the given symbol does not appear in the corresponding format, we check whether
there are other formats of the present algorithm in which this symbol is included.! Tf
not, we report an error.>

(check other formats 48a) =

(do ((other-formats (get formats key)
(cdr other-formats)))
((member symbol (car other-formats)) prog)
(if (empty? formats)
(error ’procedure ’rec: symbol ’does ’not
’appear ’in ’activities ’of prog)))
o
Definition referenced in part 47b.

In the rest of this section we describe the main procedure make-annotations for anno-
tating algorithms: We assume that the algorithm is given in a file (written by hand or
by the SUCHTHAT compiler) starting with the input/output specification followed by
the algorithm as described in the last section. Procedure make-annotated first reads
the input file (assigning the given algorithm to proglist and the prototypes of the file
prototypes.txt to spec-list):

"annotations.scm" 48b =

(define (make-annotated inputfile outputfile)
(set! proglist ’())
(read program specs 190c)
(read input file 190b)

<
File defined by parts 45a, 46b, 48b, 49a, 177.

Lfor instance the if-construct has two formats: with and without alternative.
2This is not necessary because do-activities checks whether an activity applies to a given algo-
rithm, but it may help to find faulty insertions of programming language constructs.
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Before we go into the main loop, we prepare the output file, in which the resulting
annotated algorithm is written. Especially we write the first predicate (0) — which
stands for the input specification of the algorithm — into the file.

"annotations.scm" 49a =

(open output file 191a)
(set! prednr 0)
(write prednr current-output-port)
(newline current-output-port)
(annotate main loop 49b))

o

File defined by parts 45a, 46b, 48b, 49a, 177.

In the main loop each command is annotated and written to the output file. Between
two such commands an abstract predicate is inserted.

(annotate main loop 49b) =
(do ((prog proglist (cdr prog)))

((empty? prog) {(close output file 191c))

(begin
(set! block (annotate (car prog)))
(write block 191b)
(newline current-output-port)
(set! prednr (+ prednr 1))
(write prednr current-output-port)
(newline current-output-port))) )

o
Definition referenced in part 49a.

3.4 Constructing Abstract Theorems

To construct theorems out of a given Hoare triple we have to apply the rules of Hoare’s
calculus in a backward manner until the whole program code is replaced. Which rule
has to be applied to a special algorithm is given by the activities according to the given
algorithm’s kind. Here we describe the implementation of these activities: theorem-is,
gen-rec and is-invariant-for.

A theorem activity is equipped with two arguments: assumption and conclusion.!
These arguments are again abstract schemes (of formulas) that are filled with the
corresponding parts of the present algorithm.

"theorems.scm" 50a =

(define (theorem-is ass concl)
(lambda (annotated-prog . theme)
(if (and (equal? (get-key annotated-prog)
’set!)
(1ist? (caddr (cadr annotated-prog))))
(function call 50b)
(begin

(set! theorem-list

TCompare page 29.
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(cons (1list ’implies
(construct annotated-prog ass)
(construct annotated-prog concl))
theorem-1list))
annotated-prog) )))

o
File defined by parts 50ac, 51c, 52a.

Procedure calls with only one output variable z are usually written more naturally as
z:= f(x) — or (set!c (f x)) in SCHEME representation. If such a procedure call
is detected,' we generate theorems for the equivalent call f(x;2).

(function call 50b) =
(begin
(let ((scheme
(list ’pre
(cons ’call
(cons (oper annotated-prog)
((actualparam ’proc) annotated-prog)))
’post)))
(generate-theorems (construct annotated-prog scheme)))
annotated-prog)
o
Definition referenced in part 50a.

Like the other recursive procedures gen-rec has to distinguish between processing
sequences and other constructs. Thus we get again

"theorems.scm" 50c =
(define (gen-rec scheme)
(lambda (annotated-prog . theme)
(if (equal? scheme ’all)
(gen-rec all 51a)
(gen-rec special 51b)) ))

<
File defined by parts 50ac, 51c, 52a.

Given the symbol >all we have a sequence. So we generate theorems for each construct
of the sequence according to the intermediate predicates (resp. the annotations). We
build the current Hoare triple using the already mentioned procedure construct.

(gen-rec all 51la) =
(do ((pr (if (equal? (get-key annotated-prog) ’begin)
(append (list (car annotated-prog))
(cdadr annotated-prog)
(cddr annotated-prog))
annotated-prog)
(cddr pr)))
((empty? (cdr pr)) annotated-prog)
(generate-theorems (construct pr ’(pre first intermed))) )

o
Definition referenced in part 50c.

If a special symbol is given, this symbol is an abstract scheme describing which Hoare
triple has to be called recursively.! So again we construct the triple to be called out of
this scheme according to the given algorithm:

INote that both ordinary assignment and this kind of procedure call have ’set! as key.
Hn fact this kind of scheme implements Hoare rules not eliminating program code at once.
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(gen-rec special 51b) =
(begin
(generate-theorems (construct annotated-prog scheme))
annotated-prog)

o
Definition referenced in part 50c.

Procedure is-invariant-for is due to our rule for procedure calls requiring the pre-
condition to be invariant for the procedure.? Here we only replace abstract parts of
this condition according to the given algorithm (using again procedure construct)
and add it to the sidecondition-list. Checking whether this condition is fulfilled is not
possible until specific predicates have been built.

"theorems.scm" 51lc =

(define (is-invariant-for formula proc)
(lambda (annotated-prog . theme)
(begin
(let ((side-cond
(list ’is-invariant-for
(construct annotated-prog formula)
((actualout ’proc) annotated-prog)) ))
(set! side-cond-list
(cons side-cond side-cond-list)))
annotated-prog)))
o
File defined by parts 50ac, 51c, 52a.

In the main procedure make-theorems we again first read an (annotated) algorithm
from an input file and prepare the output file. Note, that we do not check syntax of
the given algorithm here because we assume the input file to be constructed by the
annotation stage of our generator, where formats already have been checked.

"theorems.scm" 52a =

(define (make-theorems inputfile outputfile)
(set! proglist ’())
(read input file 190b)
(open output file 191a)
(set! theorem-list ’())
(set! side-cond-list ’())
(make-theorems main loop 52b))
o
File defined by parts 50ac, 51c, 52a.

For each construct of the algorithm (with its corresponding pre- and postcondition)
we generate theorems and side conditions and add them to the theorem-list resp.
sidecondition-list:

(make-theorems main loop 52b) =

(do ((prog proglist (cddr prog)))
((empty? (cdr prog))
(begin
(write+close output file 192a)

2Compare page 29.
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(initialize-predlist (+ prednr 1)) ))
(let ((actual-prog (list (car prog)
(cadr prog)

(caddr prog))))
(generate-theorems actual-prog))))

o
Definition referenced in part 52a.

3.5 From Abstract to Specific Theorems

Up to this point we have constructed a set of theorems ensuring the correctness of a
given algorithm. But all the intermediate predicates that have been introduced ac-
cording to the rules of the Hoare calculus are still abstract ones. In the following we
give some simple rules to fill in this gap. Our examples will show that these easy
rules are strong enough to construct theorems for the algorithms we presented in the
introduction (provided that the loop invariant for the Euclidean algorithm is given).

Let us first look at the assignment construct. If we have {P}z := ¢t {Q}, we know
that setting P = ). [t] makes this triple valid. But most algebraic algorithms start
with an initialization phase followed by a loop or an if-statement. To compute specific
predicates for a loop or an if-statement, it is much better to have a specific predicate
as precondition. So we decided to implement a different rule that allows — starting
with the input-specification — to move forward through the algorithm:!

{P}z:=t{P Az =1t}, if zis not free in P.

Note that during the initialization phase the condition is trivially fulfilled. If = is free
in P we use the classical rule getting for the most theorems concerning assignment
trivial ones.

So we expand our list of rules? for computing specific predicates by

(assignment rule 53) =
(set! guesses
(put guesses ’set!
> ((set-predicate ’post ’(and pre (= var term))
’provided ’is-not-free ’var ’pre)
(set-predicate ’pre ’(subst post var term)) )))

o
Definition referenced in part 185a.

The next rule concerns the return-statement. A return stands for a semantic end of
the algorithm, so we may assume that such a statement is embraced by an if-statement

{P} if condition {A, return} {Q}

because otherwise the code following the return will never be executed. Only if the
condition is false, @) will be needed as a precondition for the following statements, so
@ = (P A —condition) is a reasonable setting. We get

! This approach can be compared with the one in [Wan96], where the verification of C++ programs
is investigated.
2Note that these rules again are considered to be SCHEME procedures.
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(return rule 54a) =
(set! guesses
(put guesses ’if
> ((set-predicate ’post ’(and pre (not condition))
’provided ’is-included ’return ’proc)
(rec ’((and pre condition) actionl post))
(rec ’((and pre (not condition)) action2 post)) )))

o
Definition referenced in part 185a.

Due to the second and the third rule specific theorems are computed for the substate-
ments of the if-construct.

To get specific predicates after a while-loop and a procedure call we use rather
trivial rules. After the execution of a while-loop we know that the loop invariant inv
as well as the condition’s negation hold. So we set Q = (I A —condition) getting

(while rule 54b) =
(set! guesses
(put guesses ’while
’((set-predicate ’post ’(and inv (not condition)))
(rec ’((and inv condition) action inv)) )))

o
Definition referenced in part 185a.

Analogously for the procedure call we have that after executing the call the (invariant)
precondition and the subalgorithm’s output specification hold:

(procedure call rule 54c) =
(set! guesses
(put guesses ’call
’ ((set-predicate
’post
’(and pre
(subst (outputspec ’proc)

(formalparam ’proc)
(actualparam ’proc))) ))))

o
Definition referenced in part 185a.

Note that in both cases this setting leads to at least one trivial theorem of the form
P — P. In the following we describe the implementation of the activities for con-
structing specific theorems set-predicate and guess-rec.

Procedure set-predicate has two arguments both being abstract schemes of for-
mulas. The first one is the predicate to be set to the second one. We start with filling
in these schemes according to the present algorithm. We do not want to override al-
ready defined predicates (especially those having been set by the user), so if the first
formula is already specific we do nothing. Otherwise the setting is done, provided that
the optional argument ass  the condition under which the rule is applicable  can
be evaluated to true.

"guesses.scm" 55a =
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(define (set-predicate formulal formula2 . ass)
(lambda (annotated-prog . theme)
(let ((forml (construct annotated-prog formulal))
(form2 (construct annotated-prog formula2)))
(if (is-not-already-specific formi)
(if (or (empty? ass)
(apply (eval (cadr ass))
(construct annotated-prog (cddr ass)) ))
(put-pred forml form2))))
annotated-prog))

o
File defined by parts 55ab, 56ac, 178.

Procedure guess-rec works exactly like gen-rec: To each necessary part of the algo-
rithm the corresponding activities for constructing specific theorems are applied:

"guesses.scm" 55b =

(define (guess-rec symbol)
(lambda (annotated-prog . theme)
(if (equal? symbol ’all)
(do ((pr (if (equal? (get-key annotated-prog) ’begin)
(append (list (car annotated-prog))
(cdadr annotated-prog)
(cddr annotated-prog))
annotated-prog)
(cddr pr)))
((empty? (cdr pr)) annotated-prog)
(guess (construct pr ’(pre first intermed))) )
(begin
(guess (construct annotated-prog symbol))
annotated-prog))))

<
File defined by parts 55ab, 56ac, 178.

The main procedure for constructing specific theorems starts with setting the first
predicate to the input-specification and setting the last to the output-specification.
After the main loop — where the above presented rules are applied — it reads the
abstract theorems from the input file and fills them in using the just computed specific
predicates. Finally, the resulting theorems are written into the output file.

"guesses.scm" 56a =

(define (make-guesses inputfile outputfile)
(put-pred 0 ((inputspec) ’proc))
(put-pred prednr ((outputspec) ’proc))
(make-guesses main loop 56b)

(set! proglist ’())
(read input file 190b)
(write theorems 192b))

o
File defined by parts 55ab, 56ac, 178.

In its loop, make-guesses simply applies procedure guess to each part of the given
algorithm to get specific predicates necessary to fill in the abstract theorems.
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(make-guesses main loop 56b) =
(do ((prog proglist (cddr prog)))
((empty? (cdr prog)) (guesses message 193a))
(let ((actual-prog (list (car prog)
(cadr prog)
(caddr prog))))
(guess actual-prog)))

o
Definition referenced in part 56a.

One drawback of the Hoare calculus is the large number of theorems that are con-
structed, many of them in addition being trivial. So we have included a procedure
make-nontrivial-theorems that tries to filter out such trivial theorems making the
resulting file as short as possible.

"guesses.scm" 56c =
(define (make-nontrivial-theorems inputfile outputfile)

(set! proglist ’())

(read input file 190b)

(open output file 191a)

(handle predicates 193b)

(do ((theorems proglist (cdr theorems)))

((empty? theorems) (close output file 191c))
(if (not(is-trivial (car theorems)))
(begin

(write (car theorems) current-output-port)
(newline current-output-port)
(newline current-output-port))) )))

o
File defined by parts 55ab, 56ac, 178.

This completes the description of our verification condition generator although many

other functions exist. These can be found in appendix B; some of the more important
ones are commented in appendix B.1.
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Chapter 4

Verification of Generic
Brown/Henrici Addition

In this chapter we present a machine assisted proof of the correctness of the generic
Brown/Henrici addition algorithm of section 1.3. To be more precise, we show that
the verification conditions — constructed by the generator of the last chapter — hold
by giving the corresponding Mi1zZAR proofs. These verification conditions are given in
section 4.1.

To prove these theorems, we need some preparation: We have to provide in MizARr
the necessary algebraic structures and concepts. In doing so, we start from integral
domains, which are already included in the MizAR library. We define ample sets for
integral domains and gcd domains in section 4.2 and 4.3 respectively. Furthermore we
introduce the concept of normal forms — closely related to ample sets —in section 4.2.

Subsequently we define fractions over an integral domain  the elements the algo-
rithm deals with. Finally, in section 4.5 we prove some exemplary verification condi-
tions, the remaining ones being in appendix A.6.

4.1 Verification Conditions

The output file constructed by the verification condition generator contains 15 non-
trivial theorems. The remaining 29 theorems were found to be trivial by the generator.
These 15 theorems are divided into two groups: First, there are theorems directly
connected to the algorithm’s output; that is, theorems stating that the result of the
algorithm fulfills its output specification.

Here we only present the theorems we prove in section 4.5. The remaining verifica-
tion conditions can be found in appendix A.5. Note that ~ stands for the association
relation over fractions whereas is_associated_to used above demotes the association
relation over integral domains based on divisibility.

"BrHenAdd-theorems.txt" 59a =
(implies (and (is_normalized_wrt r Amp) (is_normalized_wrt s Amp)
(not (= r 0)) (not (= s 0)) (=rl1 (num r)) (= r2 (denom r))
(not (= r2 0)) (= s1 (num s)) (= s2 (denom s)) (not (= s2 0))
(=r2 1) (=s2 1) (=t (fract (+ rl1l s1) 1)))
(and (" t (+ r s)) (is_normalized_wrt t Amp)))
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(implies (and (is_normalized_wrt r Amp) (is_normalized_wrt s Amp)
(not (= r 0)) (not (= s 0)) (=rl1 (num r)) (= r2 (denom r))
(not (= r2 0)) (= s1 (num s)) (= s2 (denom s)) (not (= s2 0))
(not (and (= r2 1) (= s2 1))) (not (= r2 1)) (not (= s2 1))
(\in d Amp) (= d (gcd r2 s2)) (=d 1)
(= t (fract (+ (* r1 s2) (* r2 s1)) (* r2 s2))))
(and (" t (+ r s)) (is_normalized_wrt t Amp)))

<
File defined by parts 59ab, 161, 162.

The first theorem corresponds to the return in step (3) of the algorithm, the second
one to the return in step (5), where d = gcd(r2,s2) = 1.

The second group consists of theorems concerned with procedure calls. They ensure
that at the point where subalgorithms are called, the corresponding input specification
is in fact fulfilled. Here, these theorems concern the calls of fract and /. Again we
give two theorems as examples, the remaining ones being listed in appendix A.5.

"BrHenAdd-theorems.txt" 59b =
(implies (and (is_normalized_wrt r Amp) (is_normalized_wrt s Amp)

(not (= r 0)) (not (= s 0)) (=r1 (num r)) (= r2 (denom r))
(not (= r2 0)) (= s1 (num s)) (= s2 (denom s)) (not (= s2 0))
(not (and (= r2 1) (= s2 1))) (not (= r2 1)) (not (= s2 1))
(\in d Amp) (= d (gcd r2 s2)) (not (=d 1))
(= r2° (/ r2 d)) (= s2’ (/ s2 d))
(= t1 (+ (* r1 s2°) (*x s1 r2’))) (= t2 (* r2 s2’))
(not (= t1 0)) (\in e Amp) (= e (gcd t1 d))
(= t1” (/ t1 e)))

(and (not (= e 0)) (e divides t2)))

(implies (and (is_normalized_wrt r Amp) (is_normalized wrt s Amp)
(not (= r 0)) (not (= s 0)) (=rl1 (num r)) (= r2 (denom r))
(not (= r2 0)) (= s1 (num s)) (= s2 (denom s)) (not (= s2 0))
(not (and (= r2 1) (= s2 1))) (not (= r2 1)) (not (= s2 1))
(\in d Amp) (= d (gcd r2 s2)) (not (=4 1))
(= r2” (/ r2 d)) (=82’ (/ s2 d))
(= t1 (+ (*x r1 s2°) (*x s1 r2’))) (= t2 (* r2 s2’))
(not (= t1 0)) (\in e Amp) (= e (gcd t1 d))
(= t1> (/ t1 e)) (=t2° (/ t2e)))
(not (= t2’ 0)))

<
File defined by parts 59ab, 161, 162.

The first theorem establishes the applicability of procedure / to compute t2’ = t2/e
in step (5) of the algorithm, the other one the applicability of fract to compute t =
fract(t1’,t2’) at the end of the algorithm.

4.2 Definition of Ample Sets

Ample sets are sets of representatives modulo an equivalence relation (see [Col74] or
[Mus71]). Here we need ample sets for the association relation over integral domains.
They are necessary for the generic Brown/Henrici addition algorithm in order to get a
unique greatest common divisor function. Here is the M1ZAR definition:
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(Definition of AmpleSet 60a) =

definition

let I be domRing;

mode AmpSet of I -> non empty Subset of the carrier of I means :Def8a:
(for a being Element of the carrier of I ex z being Element of it
st z is_associated_to a) &
(for x,y being Element of it holds
x <> y implies x is_not_associated_to y);

(existence proof of AmpSet 61, ... )

<
Definition defined by parts 60a, 69b.
Definition referenced in part 138.

The existence of ample sets is due to the axiom of choice. It allows one to chose one
element out of each equivalence class of associates of the integral domain. Here we
only give the definition of the association classes; correctness proofs and some further
properties are included in appendix A.2.

(Definition of association classes 60b) =

definition

let I be domRing;

let a be Element of the carrier of I;
func Class a -> non empty Subset of the carrier of I means :Defhl:
(for b being Element of the carrier of I holds
b € it iff b is_associated_to a);

(correctness proof of Class 135)

definition
let I be domRing;
func Classes I -> Subset-Family of the carrier of I means :Defh2:
(for A being Subset of the carrier of I holds
A € it iff (ex a being Element of the carrier of I st A = Class a));
(correctness proof of Classes 137)

o
Definition referenced in part 134.

We start the existence proof concerning ample sets by setting M to the set of association
classes of the integral domain I. As should be clear, the first goal is to apply the axiom
of choice to M.

(existence proof of AmpSet 61) =
existence
proof
set M = Classes I;
Ki: M is non empty by CLZ2;
CL2 states that Classes I is non empty (see appendix A.2).
reconsider M as non empty set by Ki;

o
Definition defined by parts 61, 62abc, 63ab.
Definition referenced in part 60a.

Note that in MI1ZAR the axiom of choice is not an axiom but a theorem! contained in
the MIZAR article WELLORD2. It looks as follows.

Tt can be proved by use of the axiom of Tarski, which is included in the axiomatics of MIZAR (see
the introduction of chapter two).
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(for X st X € M holds X <> 0) &

(for X\,Y st X € M&Y € M&X<>Yholds XNY-=0@
implies

ex Choice being set st

for X st X € M ex x st Choice N X = x ;

To apply this theorem we first have to establish two preconditions about the set of
association classes M; to be more precise, we have to show that the the association
classes X form a partition on M:

(existence proof of AmpSet 62a) =
K2: for X st X € M holds X <> 0
(proof of K2 65a)
K3: for X,Y st X e M& Y EM&X<>Yholds XNY=20
(proof of K3 65b)
o

Definition defined by parts 61, 62abc, 63ab.
Definition referenced in part 60a.

Using K2 and K3 we can establish the existence of a set AmpS’ that contains exactly one
element out of each association class X. It is easy to prove that this set is nonempty.!

(existence proof of AmpSet 62b) =
consider AmpS’ being set such that
K5: for X st X € M ex x being Any
st AmpS’ N X = {x} by K2,K3,WELLORD2:27;
Kba: AmpS’ is non empty
(proof of K5a 65c)
reconsider AmpS’ as non empty set by Kba;
o

Definition defined by parts 61, 62abc, 63ab.
Definition referenced in part 60a.

Unfortunately, so far we cannot conclude that there are no other elements in AmpS’ but
the ones of the integral domain I, hence we cannot prove that AmpS’ C I. So we define
a second set AmpS containing only those elements of AmpS’ that are also members of
an association class X:

(existence proof of AmpSet 62c) =

set AmpS = { x where x is Element of AmpS’:
ex X being non empty Subset of the carrier of I
st X € M & AmpS’ N X = {x}};
o

Definition defined by parts 61, 62abc, 63ab.
Definition referenced in part 60a.

Note that the properties of AmpS’ do not automatically carry over to this new set.
We have to show again the choice set property for AmpS. Subsequently we succeed in
proving that AmpS is a nonempty subset of I, thus that AmpS has the type required by
our definition.

We need non-emptiness of AmpS’ introduced by reconsider for mode Element of AmpS’, which is
not accepted by the Mi1zARr checker for empty sets.
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(existence proof of AmpSet 63a) =

K6a: for X being Element of M holds
ex z being Element of AmpS st AmpS N X = {z}
(proof of K6a 66a, ... )
K6: AmpS is non empty Subset of the carrier of I
(proof of K6 68b)
reconsider AmpS as non empty Subset of the carrier of I by K6;
o
Definition defined by parts 61, 62abc, 63ab.
Definition referenced in part 60a.

It remains to show that AmpS has the desired properties, namely that for every element
a € I there is an element z € AmpS, such that a and z are associates of each other,
and that two distinct elements of AmpS are not associated to each other. In the MizAr
language it looks like this:

(existence proof of AmpSet 63b) =

K7: for a being Element of the carrier of I
ex z being Element of AmpS st z is_associated_to a
(proof of K7 63c)

K8: for x,y being Element of AmpS holds
x <> y implies x is_not_associated_to y
(proof of K8 64a, ... )

thus thesis by K7,K8;

end;

end;

o

Definition defined by parts 61, 62abc, 63ab.
Definition referenced in part 60a.

Properties K7 and K8 of course hold because AmpS is defined via the axiom of choice.
K7 is an immediate consequence of the fact that for each subset of M there is an element
z of this subset being also a member of AmpS.

(proof of K7 63c) =

proof
let a be Element of the carrier of I;
HO: Class a € M by Defh2; :: remember that M = Classes I

reconsider N = Class a as Element of M by HO;
consider z being Element of AmpS such that
Hi: AmpS N N = {z} by K6a;
Hla: z € {z} by ENUMSET1:4;
Hib: z € AmpS N Class a by Hla,H1;
H2: z € Class a by Hib,BOOLE:def 3;
H3: z is_associated_to a by H2,Defhl;
thus thesis by H3;
end;
o
Definition referenced in part 63b.

Property K8 follows because there is only one element out of each association class in
AmpS. We proceed by contradiction, first proving that both x and y are contained in
AmpS N Class x if they are Elements of AmpS and associates of each other.
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(proof of K8 64a) =

proof

let x,y be Element of AmpS;

assume HO: x <> y;

assume H1l: x is_associated_to y;

H2: x is_associated_to x & y is_associated_to x by H1,L2;

H3: x € Class x & y € Class x by H2,Defhl;

H6: x € AmpS N Class x & y € AmpS N Class x by H3,BO0LE:def 3;
o
Definition defined by parts 64ab.
Definition referenced in part 63b.

We know — by the axiom of choice — that AmpS N Class x is a one-element set.
Consequently we get x = y by using H6, a contradiction.

(proof of K8 64b) =

H8: Class x € M by Defh2;
consider z being Element of AmpS such that
H9: AmpS N Class x = {z} by H8,K6a;
H10: x € {z} & y € {z} by H6,H9;
H11: x = z & y = z by H10,ENUMSET1:3;
thus thesis by HO,H11;
end;
o

Definition defined by parts 64ab.
Definition referenced in part 63b.

This completes the main level of the existence proof concerning ample sets. In the
following we want to fill in the gaps we left in order to make clear the overall structure
of the proof. The reader not being interested in these details may continue at page 55.

We start with proving properties K2 and K3 about M = Classes I that we needed
above in order to apply the axiom of choice at level K5. The first one states, that each
subset X of M is nonempty, which is easy to prove because each X is an association class
of the integral domain I.

(proof of K2 65a) =
proof
let X be Any such that HO: X € M;
consider A being Element of the carrier of I such that
Hi: X = Class A by HO,Defh2;
thus thesis by Hi;
end;

o
Definition referenced in part 62a.

The second condition requires that two subsets X and Y are either equal or distinct,
thus that the association classes induce an equivalence relation on I. This is an easy
exercise we proved in theorem CL1. We do not present the proof of CL1 here, but it is
included in appendix A.2.
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(proof of K3 65b) =

proof
let X,Y be Any such that HO: X € M & Y € M & X <> ¥;

assume H1: X N'Y < 0;
consider A being Element of the carrier of I such that
H2: X = Class A by HO,Defh2;
consider B being Element of the carrier of I such that
H3: Y = Class B by HO,Defh2;
H4: X = Y by H1,H2,H3,CL1;
thus contradiction by HO,H4;
end;
o
Definition referenced in part 62a.

At level Kba we had to show that the set AmpS’ defined by applying the axiom of
choice is nonempty. This follows by taking an arbitrary association class: Due to the
definition of AmpS’, there is an element x out of this class being also in AmpS~’.

(proof of Kba 65c) =

proof
MO: Class 1.I € M by Defh2;
consider x being Any such that
M1i: AmpS’ N Class 1.I = {x} by K5,MO;
M2: x € {x} by ENUMSET1:4;
M3: x € AmpS’ N Class 1.I by M2,M1;
thus thesis by M3,BO0LE:def 3;
end;
°
Definition referenced in part 62b.

As we said above, the properties of AmpS’ do not automatically carry over to AmpS. Of
course they hold because AmpS is defined via AmpS’, but we have to prove the existence
of an element = with AmpS N X = {x} again for the new set AmpS. We start by showing
that x € AmpS and x € AmpS N X if x is in AmpS N X = {x}.

(proof of K6a 66a) =

proof
let X be Element of M;
consider x being Any such that
Hi: AmpS’ N X = {x} by K5;
M4: x € AmpS

(proof of M4 67b)
H2b: x € AmpS N X

(proof of H2b 68a)

o

Definition defined by parts 66abc, 67a.
Definition referenced in part 63a.

To establish our assertion AmpS N X = {x}, we have to prove two inclusions. The first
one is easy to show, because y € {x} implies y € AmpS N X by the just proven level
H2b.

(proof of K6a 66b) =
H3a: for y being Any holds y € {x} implies y € AmpS N X
by H2b,ENUMSET1:3;
o

Definition defined by parts 66abc, 67a.
Definition referenced in part 63a.
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To prove the second implication — AmpS N X C {x} — we go back to the set AmpS?,
of which we know that AmpS’> N X = {x}. Thus we get the desired thesis by showing
that y € AmpS N X implies y € AmpS’, which follows by the definition of AmpS.

(proof of K6a 66¢c) =
H3b: for y being Any holds y € AmpS N X implies y € {x}
proof
let y be Any;
assume MO: y € AmpS N X;
Mia: y € AmpS & y € X by MO,BOOLE:def 3;
consider zz being Element of AmpS’ such that
Mi: y = zz &
(ex X being non empty Subset of the carrier of I
st X € M & AmpS’ N X = {zz}) by Mla;
M2a: y € AmpS’ by Mi;
M2: y € AmpS’ N X by Mla,M2a,BO0LE:def 3;
thus thesis by M2,H1;
end;
o

Definition defined by parts 66abc, 67a
Definition referenced in part 63a.

Consequently, we can prove the choice set property of AmpS using levels H3a and H3b.
Note that we also have to reference label M4 stating that x indeed is an element out of
AmpS and not only of type Any.

(proof of K6a 67a) =
H3c: AmpS N X = {x} by H3a,H3b,TARSKI:2;
thus thesis by H3c,M4;
end;

o

Definition defined by parts 66abc, 67a
Definition referenced in part 63a.

To establish the choice set property of AmpS, all that remains to show is x € AmpS and
x € AmpS N X (the proofs of levels M4 and H2b we left out above). The first assertion
follows by using the definition of the set AmpS’, the second one is an easy consequence
of the first:

(proof of M4 67b) =

proof

MOa: X € Classes I;

MO: X is non empty Subset of the carrier of I by MOa,CL3;
Mia: x € {x} by ENUMSET1:4;

M2: x € AmpS’ by Mla,H1,BO0OLE:def 3;

M3: ex X being non empty Subset of the carrier of I
st X € M & AmpS’ N X = {x} by MO,H1;
thus thesis by M2,M3;
end;
°
Definition referenced in part 66a.
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(proof of H2b 68a) =

proof

Mia: x € {x} by ENUMSET1:4;

M1: x € X by Mla,H1,BO0LE:def 3;
thus thesis by M1,M4,BO0LE:def 3;
end;

<
Definition referenced in part 66a.

To fill in the last gap in the existence proof for ample sets of integral domains we have
to show that AmpS is a nonempty subset of I This is done in MiZAR as follows:

(proof of K6 68b) =
proof
HO: AmpS is non empty
(proof of HO 68c)
H1: for z being Any holds
z € AmpS implies z € the carrier of I
(proof of H1 69a)
thus thesis by HO,H1,TARSKI:def 3;
end;
o
Definition referenced in part 63a.

To prove level HO, we proceed the same way, we used to show non-emptiness of the set
AmpS’: We know that there is an element x being a member of both AmpS’ and Class
1.I. Thus, this x also is a member of AmpS by definition.

(proof of HO 68c) =

proof

MO: Class 1.I € M by Defh2;

consider x being Any such that

M1: AmpS’ N Class 1.I = {x} by K5,MO;
M2: x € {x} by ENUMSET1:4;

M3: x € AmpS’ N Class 1.I by M2,M1;
M4: x € AmpS’ by M3,BO0LE:def 3;

M5: x € AmpS by M4,M1,MO;

thus thesis by M5;

end;

<
Definition referenced in part 68b.

The proof of level H1 is a trivial consequence of the definition of AmpS. Remember that
the property proved here was the reason for introducing AmpS.

(proof of H1 69a) =

proof
let z be Any;
assume H3: z € AmpS;
consider x being Element of AmpS’ such that
H4: z = x &
(ex X being non empty Subset of the carrier of I
st X € M & AmpS’ N X = {x}) by H3;
consider X being non empty Subset of the carrier of I such that
H4a: X € M & AmpS’ N X = {z} by H4;
H5: z € {z} by ENUMSET1:4;
H6: z € AmpS’ N X by H4a,H5;
H7: z € X by H6,BO0LE:def 3;
thus thesis by HT7;
end;
°
Definition referenced in part 68b.
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So far, we established the existence of ample sets for association classes in integral
domains. As a matter of convenience we require that 1.I always is an element of
our ample sets — whereas 0.1 anyhow is contained in every ample set, because the
association class of 0.1 contains only one element. Consequently, we define:

(Definition of AmpleSet 69b) =
definition
let I be domRing;
mode AmpleSet of I -> non empty Subset of the carrier of I means :Def8:
it is AmpSet of I &
1.1 € it;
(existence proof of AmpleSet 139)

reserve Amp for AmpleSet of I;
<o

Definition defined by parts 60a, 69b.
Definition referenced in part 138.

It is easy to show the existence of these special ample sets: In an ordinary ample set
there is an element x being associated to 1.I. We only have to take an ample set and
exchange this x by 1.1:

(Defining AmpleSet 69c) =
let A be AmpSet of I;
consider x being Element of A such that
Hi: x is_associated_to (1.I) by Def8a;
set A’ = { z where z is Element of A : z <> x } U {(1.1)};

<
Definition referenced in part 139.

The rest of the proof consists of showing that A’ again fulfills the definition of an ample
set for the association classes of the integral domain I. It is very close to the proof just
given, so we omit it here (it can be found in appendix A.2).

As we will see, using ample sets to define the greatest common divisor function only
suffices to show gcd(num(t) ,denom(t)) = 1 for the output t of the Brown/Henrici
addition algorithm. To establish that t is a normalized fraction  that is, in addition
holds that denom(t) is an element of the ample set! — we need our ample sets to be
multiplicative:

(Definition of multiplicative AmpleSet 70a) =
definition
let I be domRing;
let Amp be AmpleSet of I;
pred Amp is_multiplicative means :Def25:
for x,y being Element of Amp holds x*y € Amp;
end;
o

Definition defined by parts 70ab.
Definition referenced in part 142a.

ISee section 4.4 for a thorough MizAR definition of normalized fractions.
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The main property of multiplicative ample set we will use to verify the Brown/Henrici
addition algorithm, is that they are also closed with respect to division:

(Definition of multiplicative AmpleSet 70b) =

theorem
for Amp being AmpleSet of I holds
Amp is_multiplicative implies
(for x,y being Element of Amp holds
(y divides x & y <> (0.I)) implies x/y € Amp)
(proof of AMP5 142b)
o

Definition defined by parts 70ab.
Definition referenced in part 142a.

We conclude this section with the definition of a normal form modulo an ample set,
though this is not necessary for verification of the Brown/Henrici addition algorithm.?
The normal form of an element x out of I is nothing more than the element z of the
corresponding ample set associated to x:

(Definition of Normal Form 71a) =
definition
let I be domRing;
let Amp be AmpleSet of I;
let x be Element of the carrier of I;
func NF(x,Amp) -> Element of the carrier of I means :Def20:
it € Amp & it is_associated_to x;
(correctness proof of normal form 144)

<
Definition referenced in part 143.

4.3 Definition of Ged Domains

A ged domain is an integral domain I, in which for each two elements = and y in I a
greatest common divisor exists. Integral domains are already included in the MizAR
library (where they are called domRing). To introduce ged domains we define the
following attribute gcd-1like on integral domains.

(Definition of gcdDomain 71b) =
definition
let I be domRing;
attr I is gcd-like means :Def7:
(for x,y being Element of the carrier of I
ex z being Element of the carrier of I st
z divides x &
z divides y &
(for zz being Element of the carrier of I
st (zz divides x & zz divides y)
holds zz divides z));

2We need the definition when verifying the generic Fuclidean algorithm of section 1.2 in chapter
5. Note also that the predicate normalized of section 4.4 can be defined via normal forms using the
fact that a € Amp iff a = NF(a, Amp).
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end;
<

Definition defined by parts 71bc.
Definition referenced in part 145a.

In MizAR each type must have nonempty denotation.! Consequently, before defining
mode gcdDomain as gcd-like domRing, we have to show that a domRing fulfilling the
attribute gcd-like exists. Formally this is done with an ezistential cluster. After the
cluster definition we succeed in defining mode gcdDomain as indicated.

(Definition of gcdDomain 71c) =
definition
cluster gcd-like domRing;
existence
(existence proof of gcdDomain 72a)
end;

definition
mode gcdDomain is gcd-like domRing;
end;
o

Definition defined by parts 71bc.
Definition referenced in part 145a.

Fortunately we need not prove the existence of gcd domains from scratch. MizAr
already contains the algebraic structure Field, so we proceed by proving that a field
is a gcd domain. To show that a field is an integral domain, we use the corresponding
theorem out of the MizAR library.? It remains to prove that a field is gcd-1like:

(existence proof of gcdDomain 72a) =

proof
consider F being strict Field;
reconsider F as domRing by VECTSP_2:13;
H4: F is gcd-like
(proof of gcd-like 72b)
thus thesis by H4;
end;
o
Definition referenced in part 71c.

To show that the field F is gcd-like, we have to find a greatest common divisor for each
pair of elements x and y out of F.! We proceed by considering two cases:

(proof of gcd-like 72b) =

proof

let x,y be Element of the carrier of F;
H3: now per cases;

case A: x <> 0.F;

(proof of gcd-like, case A 73b)

case B: x = 0.F;

I This prohibits modes like non empty empty set.

?Note that the type of F has to be changed using reconsider, because otherwise MizAR will not
accept step H4. The reason is that attribute gcd-1like (as well as divides) is defined for domRing only.

INote that in fields for z and y not both being zero every element z # 0 is a greatest common
divisor of z and y. Using in addition ample sets for normalization, this implies that 1 and 0 are the
only possible values for greatest common divisors in fields.
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(proof of gcd-like, case B 73a)
thus thesis by H3;
end;

o

Definition referenced in part 72a.

We start with case B: If x = 0.F, then y is a greatest common divisor of x and y.
The proof is simply done by listing the required properties properties of the attribute
gcd-like.

(proof of gcd-like, case B 73a) =
BO: y divides y by L1;
Bl: yx0.F = 0.F by VECTSP_2:26;
B2: y divides 0.F by B1,Defl;
B3: for z being Element of the carrier of F
st (z divides 0.F & z divides y)
holds z divides y;
thus thesis by B,B0,B2,B3;
end;
o
Definition referenced in part 72b.

To show the other case — x # 0.F —, we prove that 1.F is a greatest common divisor
of x and y. The first two properties of gcd-1like — 1.F divides x and 1.F divides
x  are an immediate consequence of 1.F being the multiplicative identity of field F.

(proof of gcd-like, case A 73b) =

Al: x = 1.F*xx & y = 1.F*y by VECTSP_2:1;
A2: 1.F divides x & 1.F divides y by Al,Defl;
A5: for z being Element of the carrier of F
st (z divides x & z divides y)
holds z divides 1.F
(proof of gcd-like, case A, label A5 73c, ... )
thus thesis by A2,A5;
o
Definition referenced in part 72b.

It remains to show that every element z dividing both x and y also divides 1.F. If we
have z # 0.F, this follows by taking the multiplicative inverse z’ of z.

(proof of gcd-like, case A, label A5 73c) =
proof
let z be Element of the carrier of F;
M1: now per cases;
case Al: z <> 0.F;
consider z’ being Element of the carrier of F such that
M11: z*z’ = 1.F by A1,VECTSP_1:def 20;
thus z divides 1.F by M11,Defl;
o

Definition defined by parts 73c, 74.
Definition referenced in part 73b.

If z=0.F andzdividesx , we conclude that also x equals 0.F  a contradiction
to the assumption x # 0.F from above:

(proof of gcd-like, case A, label A5 74) =
case A2: z = 0.F;
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assume M12: z divides x;

consider d being Element of the carrier of F such that
M13: 0.F*d = x by M12,Def1,A2;

M14: x = 0.F by M13,VECTSP_2:26;

thus z divides 1.F by Mi14,A;

end; :: cases
thus thesis by Mi;
end;

o

Definition defined by parts 73c, 74.
Definition referenced in part 73b.

So far, we established the existence of gcd domains (the definition of the greatest
common divisor function can be found in section 2.3) and ample sets for integral
domains in MiZAR. In the next section we start with the actual correctness proof of
the generic Brown/Henrici addition algorithm by introducing the algebraic structures
and objects the algorithm deals with.

99



4.4 Definition of Fractions

In this section we present M1ZAR definitions for the domains and functions the generic
Brown/Henrici addition algorithm works on. We have to introduce fractions over an
integral domain as well as constructors for them: num, denom and fract. Also we need
addition of two fractions, additive and multiplicative unity of fractions and two further
predicates ~ and is_normalized_wrt.

The above mentioned definitions are contained in the M1ZAR article BrHenAdd .miz,
which of course begins with the necessary environment.

"BrHenAdd .miz" 75a =

(BrHenAdd environment 164)
o

File defined by parts 75ab, 76a, 77ab, 78, 79ab, 80ab, 81ab, 82ab, 83, 84ab, 85abc, 86ab, 87ab,
88abc, 89, 90abc, 91, 158b, 159, 160, 165, 174.

We start with the introduction of fractions over an integral domain I. A fraction is
a pair over I with its second element being not zero. Consequently we use the MI1ZAR
constructors for arbitrary pairs, defined in the article MCART_1. Existence of fractions
is simply proved by showing that [0,1] is of this kind.

"BrHenAdd .miz" 75b =
definition
let I be domRing;
mode Fraction of I
-> Element of [:the carrier of I,the carrier of I:]
means :Defb2:
ex a,b being Element of the carrier of I
st (it = [a,b] & b <> 0.I);
existence
proof
Hi: 1.I <> 0.I by VECTSP_1:def 21;
take [0.I,1.I];
thus thesis by H1;
end;
end;
o

File defined by parts 75ab, 76a, 77ab, 78, 79ab, 80ab, 81ab, 82ab, 83, 84ab, 85abc, 86ab, 87ab,
88abc, 89, 90abc, 91, 158b, 159, 160, 165, 174.

The set Q of fractions over an integral domain I' contains all just defined pairs. In the
MizAR language this is described by saying u € Q if and only if a suitable predicate
over u holds.

"BrHenAdd.miz" 76a =
definition
let I be domRing;
mode Fractions of I
—-> non empty Subset of [:the carrier of I,the carrier of I:]
means :Defb7:

LCompare the global declarations of the algorithm on page 6.
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<o

for u being Any holds

u € it iff ex a,b being Element of the carrier of I st

(u = [a,b] & b <> 0.1);

(existence proof of fractions 76b)

File defined by parts 75ab, 76a, 77ab, 78, 79ab, 80ab, 81ab, 82ab, 83, 84ab, 85abc, 86ab, 87ab,
88abc, 89, 90abc, 91, 158b, 159, 160, 165, 174.

Existence of the set Q is shown by just taking the desired set (here called M). Note that
the main effort goes into proving that M has the type required by the definition, that is
in proving that M in fact is a nonempty subset of the Cartesian product of the integral
domain I — whereas the defining property of Q trivially holds for M.

(existence proof of fractiomns 76b) =

<

existence

proof
set M = {[a,b] where a,b is Element of the carrier of I:

H2:

HO:

Hi:

H3:

b <> 0.1 };

for u being Any holds

u € M iff ex a,b being Element of the carrier of I st
(u = [a,b] & b <> 0.1);

for u being Any holds u € M implies

u € [:the carrier of I,the carrier of I:]

proof

let u be Any;

assume H12: u € WM;

H13: ex a,b being Element of the carrier of I st

(u = [a,b] & b <> 0.I) by H12;

thus thesis by H13;

end;

M is Subset of [:the carrier of I,the carrier of I:]

by HO,TARSKI:def 3;

M is non empty

proof

H31: 1.I <> 0.I by VECTSP_1:def 21;

consider u being Any such that H32: u = [0.I,1.I];

H33: u € M by H31,H32;

thus thesis by H33;

end;

thus thesis by H1,H2,H3;

end;
end;

Definition referenced in part 76a.

In the following we show two simple consequences of our definitions, nevertheless being
very helpful in later proofs. The first one states that for every fraction the second
element of the corresponding pair — the denominator — is not zero.

"BrHenAdd .miz" 77a =

theorem

N:for I being domRing
for u being Fraction of I holds u‘2 <> 0.I
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proof
let I be domRing;
let u be Fraction of I;
consider a,b being Element of the carrier of I such that
HO: u = [a,b] & b <> 0.I by Defb2;
Hi: u‘2 = b by HO,MCART_1:def 2;
thus thesis by HO,H1;
end;
o

File defined by parts 75ab, 76a, 77ab, 78, 79ab, 80ab, 81ab, 82ab, 83, 84ab, 85abc, 86ab, 87ab,
88abc, 89, 90abc, 91, 158b, 159, 160, 165, 174.

The second property connects the set Q of fractions with the individual fractions u.
Note that the proof is nothing more than referencing the two definitions.

"BrHenAdd .miz" 77b =

theorem
for I being domRing
for Q being Fractions of I
for u being Fraction of I holds u is Element of (
proof
let I be domRing;
let Q be Fractions of I;
let u be Fraction of I;
HO: ex a,b being Element of the carrier of I
st (u = [a,b] & b <> 0.I) by Defb2;
thus thesis by HO,Defb7;
end;
o

File defined by parts 75ab, 76a, 77ab, 78, 79ab, 80ab, 81ab, 82ab, 83, 84ab, 85abc, 86ab, 87ab,
88abc, 89, 90abc, 91, 158b, 159, 160, 165, 174.

Now that we have made fractions available in M1ZAR, we define constructors for them:
the functions num, denom and fract. This is not necessary — we could use the above
mentioned pair constructors of MIzZAR but we prefer having the same vocabulary
in the algorithm and its corresponding MiZAR proof. Consequently the following defi-
nitions are hardly more than renaming the pair constructors of MiZAR for the special
case of fractions over integral domains I (this includes that the type of the result is —
contrary to the one of arbitrary pairs — Element of the carrier of I).

"BrHenAdd .miz" 78 =

definition

let I be domRing;

let u be Fraction of I;

func num(u) -> Element of the carrier of I means :Def55:
it = u‘l;

correctness;

end;

definition

let I be domRing;

let u be Fraction of I;

func denom(u) -> Element of the carrier of I means :Defb53:
it = u‘2;
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correctness;
end;

definition

let I be domRing;

let ul,u2 be Element of the carrier of I;

assume A:u2 <> 0.1;
func fract(ul,u2) -> Fraction of I means :Defb4:
it = [ul,u2];

existence

proof

consider u being Any such that H3: u = [ul,u2];
H1l: u is Fraction of I by H3,A,Defb2;

thus thesis by H1,H3;

end;
uniqueness;

end;

o
File defined by parts 75ab, 76a, 77ab, 78, 79ab, 80ab, 81ab, 82ab, 83, 84ab, 85abc, 86ab, 87ab,
88abc, 89, 90abc, 91, 158b, 159, 160, 165, 174.

Before going on with defining addition of fractions, we want to prove three theorems
about the just defined functions num, denom and fract. The proofs are simple (they
require application of definitions only), so we omit them here. The interested reader
can find them in appendix A.4.

The first theorem shows that the usual defining equation about our constructors
holds:

"BrHenAdd.miz" 79a =
theorem
for I being domRing
for u being Fraction of I holds u = fract(num(u),denom(u))
(proof of fraction’s constructor equation 156b)

<
File defined by parts 75ab, 76a, 77ab, 78, 79ab, 80ab, 81ab, 82ab, 83, 84ab, 85abc, 86ab, 87ab,
88abc, 89, 90abc, 91, 158b, 159, 160, 165, 174.

The second one shows that for fractions u the denominator denom(u) is not zero. It
is just a reformulation of theorem N on page 61, which stated that the second pair
element u‘2 does not equal zero.

"BrHenAdd .miz" 79b =

theorem

TT: for I being domRing

for u being Fraction of I holds
denom(u) <> 0.I

(proof of denom 156¢)

o
File defined by parts 75ab, 76a, 77ab, 78, 79ab, 80ab, 81ab, 82ab, 83, 84ab, 85abc, 86ab, 87ab,
88abc, 89, 90abc, 91, 158b, 159, 160, 165, 174.

The last theorem connects fractions with the corresponding elements of the integral
domain I. We need this property later in our verification proofs, where we have to
decompose fractions into elements of the integral domain, to apply the theorem of
Brown and Henrici we proved in section 2.3.
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"BrHenAdd .miz" 80a =

theorem
Fl:for I being domRing
for u being Fraction of I
for a being Element of the carrier of I
for b being Element of the carrier of I st b <> 0.I holds
(a = num(u) & b = denom(u)) iff fract(a,b) = u
(proof of F1 157a)
o

File defined by parts 75ab, 76a, 77ab, 78, 79ab, 80ab, 81ab, 82ab, 83, 84ab, 85abc, 86ab, 87ab,
88abc, 89, 90abc, 91, 158b, 159, 160, 165, 174.

In the following we introduce addition of fractions! over an integral domain I. We
use the usual definition giving not the representatives of the equivalence relation over
fractions (see below):

a/b+ c/d := (ad + bc)/bd.

Again the existence proof is easy: It is trivial to get a fraction u with the desired
properties; all we have to show is that this u is of the type required by the definition,
namely that it is a pair over the integral domain:

"BrHenAdd.miz" 80b =
definition .
let I be domRing;
let u,v be Fraction of I;
func u+v -> Fraction of I means_ :Def70:
it = [u1*xv‘2+v i*u‘2, u‘2%v‘2];
existence
proof
Hi: u‘2 <> 0.I & v‘2 <> 0.I by N;
H2: u‘2*xv‘2 <> 0.I by H1,VECTSP_2:15;
consider a being Element of the carrier of I such that
H6: a = u‘l*v‘2+v‘1%u‘2;
consider b being Element of the carrier of I such that
H7: b = u‘2%v‘2;
consider u being Element of [:the carrier of I,the carrier of I:]
such that H3: u = [a,b];
H4: u is Fraction of I by H3,H2,H7,Defb2;
thus thesis by H3,H4,H6,HT7;
end;
uniqueness;
end;
(o
File defined by parts 75ab, 76a, 77ab, 78, 79ab, 80ab, 81ab, 82ab, 83, 84ab, 85abc, 86ab, 87ab, 88abc
89, 90abc, 91, 158b, 159, 160, 165, 174

Note that this definition implies that the result t of the Brown/Henrici addition al-
gorithm in general does not fulfill t = r+s. To overcome this problem, it is possible
to define the sum u+v by (u+v) ‘1 * u‘2*%v‘2 = (u+v) ‘2 * u‘lxv‘2+v 1*xu‘2, thus
stating that u+v and [u‘1*v‘2+v‘1*u‘2, u‘2xv‘2] belong to the same equivalence
class. In this case the sum u+v is not uniquely determined, hence we would have to
define u+v in MIZAR not as a function, but as a mode. However we prefer defining + as
a function, thus being forced to accept that not t = r+s, but only t ~ r+s — where
~ stands for the usual equivalence relation over fractions — holds for the result t of
Brown/Henrici addition.

INote that it is no problem in MI1zAR to use the symbol + to denote addition over both the integral
domain I and fractions over I.
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The following theorem! classifies addition of fractions in terms of our constructors
num, denom and fract.

"BrHenAdd .miz" 8la =
theorem
for I being domRing
for u,v being Fraction of I holds
u+v = fract (num(u)*denom(v)+num(v)*denom(u) ,denom(u) *denom(v))
(proof of fraction addition 158a)
O

File defined by parts 75ab, 76a, 77ab, 78, 79ab, 80ab, 81ab, 82ab, 83, 84ab, 85abc, 86ab, 87ab,
88abc, 89, 90abc, 91, 158b, 159, 160, 165, 174.

Again we present a theorem that states a connection between addition of fractions and
the corresponding elements of the integral domain I. The proof is done by just substi-
tuting the elements of I standing for numerators and denominators in the definition of
the addition function.

"BrHenAdd .miz" 81b =
theorem
F2:for I being domRing
for r,s being Fraction of I
for rl,r2,s1,s2 being Element of the carrier of I holds
(r1 = num(r) & r2 = denom(r) & sl = num(s) & s2 = denom(s)) implies
num(r+s) = rilxs2+sl*r2 & denom(r+s) = r2xs2
(proof of F2 157b)
o

File defined by parts 75ab, 76a, 77ab, 78, 79ab, 80ab, 81ab, 82ab, 83, 84ab, 85abc, 86ab, 87ab,
88abc, 89, 90abc, 91, 158b, 159, 160, 165, 174.

We carry on with defining the additive and multiplicative unity 0.Q and 1.Q for the
set of fractions Q over an integral domain. This requires nothing more than renaming
fract(0.I,1.I) and fract(0.I,1.I) respectively. Consequently the corresponding
correctness proofs are trivial. Theorems showing that 0.Q and 1.Q indeed are unities
for fractions can be found in appendix A.4.2

"BrHenAdd .miz" 82a =
definition
let I be domRing;
let Q be Fractions of I;
func 0.Q -> Fraction of I means :Def74:

it = fract(0.I,1.1I);
correctness;
end;

definition
let I be domRing;
let Q be Fractions of I;

The Mi1zAR proofs of this and the next theorem can be found in appendix A.4.

2For completion, we also defined multiplication of fractions, although we did not need this opera-
tion for the verification of Brown/Henrici addition. (It is necessary to prove generic Brown/Henrici
multiplication correct; see [Sch97b].)
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func 1.Q -> Fraction of I means :Def75:
it = fract(1.I,1.1);
correctness;
end;
<

File defined by parts 75ab, 76a, 77ab, 78, 79ab, 80ab, 81ab, 82ab, 83, 84ab, 85abc, 86ab, 87ab,
88abc, 89, 90abc, 91, 158b, 159, 160, 165, 174.

It remains to define the above mentioned predicates ~ and is_normalized_wrt. They
are necessary to express the input/output specification of Brown/Henrici addition in
MizAR: Proving the algorithm correct consists mainly of showing that the output t
fulfills these two predicates.

The first one describes, when two fractions belong to the same equivalence class;
that is, when they denote the same value.

"BrHenAdd .miz" 82b =
definition
let I be domRing;
let u,v be Fraction of I;
pred u © v means :Def76:
num(u) *denom(v) = num(v)*denom(u) ;
end;
<

File defined by parts 75ab, 76a, 77ab, 78, 79ab, 80ab, 81ab, 82ab, 83, 84ab, 85abc, 86ab, 87ab,
88abc, 89, 90abc, 91, 158b, 159, 160, 165, 174.

The other predicate is the already several times mentioned is_normalized_wrt. Note
that it can be defined over gcd domains only. In fact this is the reason for the
Brown/Henrici algorithm computing in gcd domains only, and not in arbitrary integral
domains.

"BrHenAdd .miz" 83 =
definition
let G be gcdDomain;
let u be Fraction of G;
let Amp be AmpleSet of G;
pred u is_normalized_wrt Amp means :Def73:
gcd (num(u) ,denom(u) ,Amp) = 1.G &
denom(u) € Amp;
end;
o

File defined by parts 75ab, 76a, 77ab, 78, 79ab, 80ab, 81ab, 82ab, 83, 84ab, 85abc, 86ab, 87ab,
88abc, 89, 90abc, 91, 158b, 159, 160, 165, 174.
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So far, we finished the necessary preparations to prove the verification condition
for the generic Brown/Henrici addition algorithm, which follows next.

4.5 Proving the Verification Conditions

In this section we show, how to prove verification conditions for the generic Brown/Hen-
rici addition algorithm — and consequently the correctness of this algorithm — using
MizAR. Here we only present four exemplary theorems, the ones given in section 4.1.
The remaining proofs are included in appendix A.6.

We start with MI1ZAR reservations for the necessary algebraic objects. Note that
these reservations directly correspond to the global and local declarations of the Brown/
Henrici addition algorithm.

"BrHenAdd .miz" 84a =

reserve G for gcdDomain;

reserve Q for Fractions of G;

reserve Amp for AmpleSet of G;

reserve s,r,t for Fraction of G;

reserve rl,r2,s1,s2,d,e,r2’,s2’,t1,t2,t1°,t2’
for Element of the carrier of G;

o

File defined by parts 75ab, 76a, 77ab, 78, 79ab, 80ab, 81ab, 82ab, 83, 84ab, 85abc, 86ab, 87ab,
88abc, 89, 90abc, 91, 158b, 159, 160, 165, 174.

In the first part of this section we prove two theorems about the correctness of
procedure calls. The first one states correctness of the application of procedure / to
compute t2’ = t2/e in step (5) of the algorithm. Note that the following is a direct
translation of the theorem in SCHEME representation constructed by our verification
condition generator.

"BrHenAdd .miz" 84b =

theorem

(Amp is_multiplicative &

r is_normalized_wrt Amp & s is_normalized_wrt Amp &
not(r = 0.Q) & not(s = 0.Q) &

rl = num(r) & r2 = denom(r) & r2 <> 0.G &

sl = num(s) & s2 = denom(s) & s2 <> 0.G &

not(r2 = 1.6 & s2 = 1.G) & r2 <> 1.G & s2 <> 1.G &
d € Amp & d = gcd(r2,s2,Amp) & d <> 1.G &

r2’ = r2/d & s2’ = s2/d &

tl = ri*s2’+sl*r2’ & t2 = r2*s2’ &

tl1 <> 0.G & e € Amp & e = gcd(tl,d,Amp) & t1’ = tl/e)
implies (e <> 0.G & e divides t2)

o

File defined by parts 75ab, 76a, 77ab, 78, 79ab, 80ab, 81ab, 82ab, 83, 84ab, 85abc, 86ab, 87ab,
88abc, 89, 90abc, 91, 158b, 159, 160, 165, 174.

As obvious the proof starts with stating the assumptions. Note that we do not need to
list all assumptions of the theorem, but only those necessary to prove the assertions.
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"BrHenAdd .miz" 85a =

proof

M: now assume

HO: d = gcd(r2,s2,Amp) & t2 = r2*s2’ &

tl <> 0.G & e = gcd(t1,d,Amp);
o
File defined by parts 75ab, 76a, 77ab, 78, 79ab, 80ab, 81ab, 82ab, 83, 84ab, 85abc, 86ab, 87ab, 88abc,
89, 90abc, 91, 158b, 159, 160, 165, 174.

To show e divides t2 = r2*s2’ we use the definition of the greatest common divisor
function and transitivity of divides, which was proved in theorem GCD:2.!

"BrHenAdd .miz" 85b =
Hl: e divides d & d divides r2 by HO,GCD:def 12;
H4: e divides r2 by H1,GCD:2;
H5: e divides r2*s2’ by H4,GCD:7;

o

File defined by parts 75ab, 76a, 77ab, 78, 79ab, 80ab, 81ab, 82ab, 83, 84ab, 85abc, 86ab, 87ab,
88abc, 89, 90abc, 91, 158b, 159, 160, 165, 174.

The remaining e # 0.G is an immediate consequence of theorem GCD:33, stating that
the greatest common divisor of a and b is zero if and only ifa = 0.Gand b = 0.G.

"BrHenAdd .miz" 85c¢ =
thus thesis by H5,GCD:33;

end; :: M
thus thesis by M;
end;

o
File defined by parts 75ab, 76a, 77ab, 78, 79ab, 80ab, 81ab, 82ab, 83, 84ab, 85abc, 86ab, 87ab,
88abc, 89, 90abc, 91, 158b, 159, 160, 165, 174.

The second theorem concerns the call of fract in step (5) at the end of the algorithm,
which requires the element t2’ — the denominator of the constructed fraction — to
be not zero.

"BrHenAdd .miz" 86a =

theorem
BH14: (Amp is_multiplicative &

r is_normalized_wrt Amp & s is_normalized_wrt Amp &
not(r = 0.Q) & not(s = 0.Q) &

rl = num(r) & r2 = denom(r) & r2 <> 0.G &

s1 = num(s) & s2 = denom(s) & s2 <> 0.G &

not(r2 = 1.G & s2 = 1.G) & r2 <> 1.G & s2 <> 1.G &
d € Amp & d = gcd(r2,s2,Amp) & d <> 1.G &

r2’ =r2/d & s2’ = s2/d &

tl = ri*s2’+sl*r2’ & t2 = r2*s2’ &

INote that theorems about greatest common divisors and divisibility are cited by GCD:n and not
by the levels we introduced in chapter two or in appendix A.l1 and A.3. The reason for this is that
they are contained in a different Mi1zAR article: Once an article is accepted by the proof checker, one
constructs a so-called M1ZAR abstract containing only definitions and theorems, but no proofs. During
this construction new labels for theorems (and definitions) are automatically constructed consisting of
the article’s name followed by a number. These levels allow one to reference these theorems in other
articles.
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tl <> 0.G & e € Amp & e = gcd(tl,d,Amp) &
t1’ = tl/e & t2’ = t2/e)
implies t2’ <> 0.G

o

File defined by parts 75ab, 76a, 77ab, 78, 79ab, 80ab, 81ab, 82ab, 83, 84ab, 85abc, 86ab, 87ab,
88abc, 89, 90abc, 91, 158b, 159, 160, 165, 174.

The proof of this theorem begins like the last one by showing that e divides t2 =
r2*s2’ and e # 0.G.! Please note that t2° = (r2%(s2/gcd(r2,s2))) /e, especially
the exact form of the nominator.

"BrHenAdd .miz" 86b =

proof

M: now

assume HO: r2 <> 0.G & s2 <> 0.G &
d = gcd(r2,s2,Amp) & s2’ = s2/d &
t2 = r2%s2’ & t1 <> 0.G &
e = gcd(tl,d,Amp) & t2’ = t2/e;

Hl: e divides d & d divides r2 by HO,GCD:def 12;
H4: e divides r2 by H1,GCD:2;

H5: e divides r2*s2’ by H4,GCD:7;

H2: e <> 0.G by HO,GCD:33;

<
File defined by parts 75ab, 76a, 77ab, 78, 79ab, 80ab, 81ab, 82ab, 83, 84ab, 85abc, 86ab, 87ab,
88abc, 89, 90abc, 91, 158b, 159, 160, 165, 174.

The next step consists of showing that the numerator r2*s2’ of t2’ does not equal
zero. For that we use theorem GCD:8  stating that a/b = 0.G if and only ifa = 0.G
— to conclude s2’ # 0.G:

"BrHenAdd.miz" 87a =
H7: d <> 0.G by HO,GCD:33;
H9: gcd(r2,s2,Amp) divides s2 by GCD:def 12;
H8: s2/gcd(r2,s2,Amp) <> 0.G by HO,H7,H9,GCD:8;
o

File defined by parts 75ab, 76a, 77ab, 78, 79ab, 80ab, 81ab, 82ab, 83, 84ab, 85abc, 86ab, 87ab,
88abc, 89, 90abc, 91, 158b, 159, 160, 165, 174.

Thus we get the desired r2*s2’ # 0.G by applying the defining property of integral
domains I x*y = 0.I — (x = 0.I V y = 0.I), stated in theorem VECTSP_2:15.
Using again theorem GCD:8 completes the proof.

"BrHenAdd .miz" 87b =

H6: r2*s2’ <> 0.G by HO,H8,VECTSP_2:15;
thus thesis by H6,H5,H2,GCD:8;

end; :: M
thus thesis by M;
end;

o
File defined by parts 75ab, 76a, 77ab, 78, 79ab, 80ab, 81ab, 82ab, 83, 84ab, 85abc, 86ab, 87ab,
88abc, 89, 90abc, 91, 158b, 159, 160, 165, 174.

IWe could have conclude this at once by the theorem above. But then we would have to state at
level HO all the assumptions necessary to apply this theorem, rather than only the ones we need to
establish the current assertions.
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In the following we prove two theorems directly connected with the output t of the
algorithm, thus showing that the output t of the algorithm indeed fulfills the output
specification. These theorems fall into two groups. One group requires the application
of the theorem of Brown and Henrici of section 2.3 (referenced as GCD:40). The other
group consists of theorems due to special cases that can therefore proved without this
theorem.

We continue with a theorem of the second kind that is due to step (3) of the
algorithm.

"BrHenAdd .miz" 88a =

theorem

(Amp is_multiplicative &

r is_normalized_wrt Amp & s is_normalized_wrt Amp &
not(r = 0.Q) & not(s = 0.Q) &

ri num(r) & r2 = denom(r) & r2 <> 0.G &

sl = num(s) & s2 = denom(s) & s2 <> 0.G &

r2 =1.G & s2 =1.G & t = fract(ri+s1,1.G))

implies (t ~ r+s & t is_normalized_wrt Amp)

o
File defined by parts 75ab, 76a, 77ab, 78, 79ab, 80ab, 81ab, 82ab, 83, 84ab, 85abc, 86ab, 87ab,
88abc, 89, 90abc, 91, 158b, 159, 160, 165, 174.

After stating the necessary assumptions we first prove that t is a normalized fraction.
To do so, according to the definition of is_normalized_wrt (Def73) we have to show
gcd(num(t) ,denom(t) ,Amp) = 1.Gand denom(t) € Amp. This is no trouble, because
we have denom(t) = 1.G by assumption.

"BrHenAdd .miz" 88b

proof
M: now assume
HO: r is_normalized_wrt Amp & s is_normalized_wrt Amp &
rl = num(r) & r2 = denom(r) & s1 = num(s) & s2 = denom(s) &
r2 =1.G6 & s2 =1.G6 & t = fract(rl+s1,1.G);
H2: 0.G <> 1.G by VECTSP_1:31;
Hi: num(t) = rl+sl & denom(t) = 1.G by HO,H2,F1;
H3: gcd(ri+s1,1.G,Amp) = 1.G & denom(t) € Amp by H1,GCD:21,GCD:32;
H5: t is_normalized_wrt Amp by H3,H1,Def73;
o

File defined by parts 75ab, 76a, 77ab, 78, 79ab, 80ab, 81ab, 82ab, 83, 84ab, 85abc, 86ab, 87ab,
88abc, 89, 90abc, 91, 158b, 159, 160, 165, 174.

To show t ~ r+s, we only have to take num(r+s) = ri*s2+si*r2and denom(r+s) =
r2xs2! and substitute r2 = 1.G and s2 = 1.G respectively to get the desired equation
num(t)*denom(r+s) = num(r+s)*denom(t).

"BrHenAdd .miz" 88c =
H7: num(r+s) = rl*s2+sl*r2 by HO,F2
.= r1*1.G+sl1*r2 by HO
.= ri1x1.G+s1*1.G by HO
.= rl+s1*1.G by VECTSP_2:1
.= rl+sl by VECTSP_2:1;

LCompare theorem F2 on page 65.
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H8: denom(r+s) = r2*s2 by HO,F2
.= 1.G*s2 by HO

.= 82 by VECTSP_2:1
.= 1.G by HO;
H9: num(t)*denom(r+s) = (rl+sl)*denom(r+s) by HO,H2,F1
= (ri+s1)#*1.G by H8
= num(r+s)*1.G by H7

.= num(r+s)*denom(t) by HO,H2,F1;
H10: t ~ (r+s) by H9,Def76;
thus thesis by H10,H5;

end; :: M
thus thesis by M;
end;

o
File defined by parts 75ab, 76a, 77ab, 78, 79ab, 80ab, 81ab, 82ab, 83, 84ab, 85abc, 86ab, 87ab,
88abc, 89, 90abc, 91, 158b, 159, 160, 165, 174.

We conclude this section with proving a theorem that actually requires the use of the
Brown/Henrici theorem. It shows that t computed in step (5) of the algorithm, where
d = gcd(r2,s2) = 1, indeed is normalized and equivalent to r+s.

"BrHenAdd .miz" 89 =

theorem

(Amp is_multiplicative &

r is_normalized_wrt Amp & s is_normalized_wrt Amp &
not(r = 0.Q) & not(s = 0.Q) &

rl = num(r) & r2 = denom(r) & r2 <> 0.G &

sl = num(s) & s2 = denom(s) & s2 <> 0.G &

not(r2 = 1.G & s2 = 1.G) & r2 <> 1.G & s2 <> 1.G &
d € Amp & d = gcd(r2,s2,Amp) & d = 1.G &

t = fract(rl*s2+r2*sl, r2*s2))

implies (t ~ r+s & t is_normalized_wrt Amp)
3

File defined by parts 75ab, 76a, 77ab, 78, 79ab, 80ab, 81ab, 82ab, 83, 84ab, 85abc, 86ab, 87ab,
88abc, 89, 90abc, 91, 158b, 159, 160, 165, 174.

The first step of the proof is to establish gcd(r1,r2,Amp) = 1.G and gcd(s1,s2,Amp)
= 1.G, which follows from the definition of is_normalized_wrt.

"BrHenAdd .miz" 90a =
proof
M: now assume_ . .
HO: Amp is_multiplicative &
r is_normalized_wrt Amp & s is_normalized_wrt Amp &
rl = num(r) & r2 = denom(r) & r2 <> 0.G &
si num(s) & s2 = denom(s) & s2 <> 0.G &
d = gcd(r2,s2,Amp) & d = 1.G & t = fract(rl*s2+r2+sl,r2*s2);
H3: r2xs2 <> 0.G by HO,VECTSP_2:15;
Hi: denom(t) = r2*s2 by HO,H3,F1;
H2: num(t) = ril*s2+r2xs1 by HO,H3,F1;
H4: gcd(rl,r2,Amp) = 1.G & gcd(sl,s2,Amp) = 1.G by HO,Def73;

<
File defined by parts 75ab, 76a, 77ab, 78, 79ab, 80ab, 81ab, 82ab, 83, 84ab, 85abc, 86ab, 87ab, 88abc
89, 90abc, 91, 158b, 159, 160, 165, 174

To show gcd(num(t) ,denom(t),Amp) = 1.G we apply the theorem of Brown and
Henrici. This is done by extending the term gcd (ri1*s2+r2xs1,r2+s2,Amp) — which
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in fact is gcd (num(t) ,denom(t) ,Amp) — to the form the theorem requires. After this
application the assumption ged(r2,s2,Amp) = 1.G allows us to infer that the original
term also equals 1.G.

"BrHenAdd .miz" 90b =
H5: ged (rixs2+r2*s1,r2+s2, Amp)

= gcd(ri1*(s2/1.G)+r2*s1,r2*s2,Amp) by GCD:10
= gcd(rix(s2/1.G)+s1*(r2/1.G) ,r2*s2, Amp) by GCD:10
= gcd(rix(s2/1.G)+s1*(r2/1.G) ,r2*(s2/1.G) , Amp) by GCD:10
= gcd(rix(s2/gcd(r2,s2,Amp) ) +s1*(r2/gcd(r2,s2,Amp)),
r2%(s2/gcd(r2,s2,Amp) ) , Amp) by HO
= gcd(rix(s2/gecd(r2,s2,Amp))+s1*(r2/gcd(r2,s2,Amp)),
gcd(r2,s2, Amp) , Amp) by GCD:40,H4,HO
=1.G by HO,GCD:32;

<
File defined by parts 75ab, 76a, 77ab, 78, 79ab, 80ab, 81ab, 82ab, 83, 84ab, 85abc, 86ab, 87ab,
88abc, 89, 90abc, 91, 158b, 159, 160, 165, 174.

Next we show that denom(t) = r2#*s2 is an element of the ample set Amp. This follows
from the assumption that r and s are normalized fractions. Note that we need Amp to
be multiplicative to conclude r2*s2 € Amp at level H6.

"BrHenAdd .miz" 90c =

H8: r2 € Amp & s2 € Amp by HO,Def73;

reconsider r2,s2 as Element of Amp by HS;

H6: r2*s2 € Amp by HO,GCD:def 9;

H7: t is_normalized_wrt Amp by H6,H5,H2,H1,Def73;
o

File defined by parts 75ab, 76a, 77ab, 78, 79ab, 80ab, 81ab, 82ab, 83, 84ab, 85abc, 86ab, 87ab,
88abc, 89, 90abc, 91, 158b, 159, 160, 165, 174.

It remains to show that t
preceding proof:

r+s. This is done by the same technique we used in the

"BrHenAdd .miz" 91 =
H9: num(t)*denom(r+s)

(r1*s2+r2xs1)*denom(r+s) by H2

= (r1*s2+r2*s1)*(r2*s2) by HO,F2
= num(r+s) * (r2*s2) by HO,F2
.= num(r+s)*denom(t) by H1;

H13: t ~ (r+s) by H9,Def76;
thus thesis by H13,H7;
end; HE |
thus thesis by M;
end;
o
File defined by parts 75ab, 76a, 77ab, 78, 79ab, 80ab, 81ab, 82ab, 83, 84ab, 85abc, 86ab, 87ab, 88abc
89, 90abc, 91, 158b, 159, 160, 165, 174

We end by mentioning that the MizZAR article BrHenAdd.miz we just presented
indeed serves as a correctness proof for the generic Brown/Henrici addition algorithm,
because the theorems proved in this article (by machine assistance) enable the con-
struction of a Hoare calculus derivation for this algorithm.
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Chapter 5

Verification of a Generic
Euclidean Algorithm

In this section we will prove M1zZAR theorems that enable the construction of a Hoare
calculus derivation for the generic Euclidean algorithm of chapter 1.2. Unfortunately
so far the M1zAR library does not contain Euclidean domains. Therefore we introduce
this algebraic structure in section 5.1. Subsequently we give M1ZAR proofs for the
verification conditions constructed by our verification condition generator.!

5.1 Definition of Euclidean Domains

In the following we define Euclidean domains in M1ZAR as well as their corresponding
degree functions. We include this definitions together with the verification proofs
concerning the generic Euclidean algorithm in an extra MizAR article. Consequently,
we have start with the necessary environment. For completion we also give the file
EUCL.VOC which contains the vocabulary items introduced in the text proper.

"eucl.voc" 92a =

VEuclidean
MEuclideanRing
MDegreeFunction

<o

"eucl.miz" 92b =

environ
vocabulary
VECTSP_1,VECTSP_2,REAL_1,LINALG_1,FUNC,GCD,EUCL;
notation
TARSKI,ARYTM,STRUCT_O,RLVECT_1,VECTSP_1,VECTSP_2,FUNCT_2,
NAT_1,PRELAMB,GCD;
constructors
NAT_1,ALGSTR_1,VECTSP_1,VECTSP_2,ARYTM,PRELAMB,GCD;
definitions
TARSKI,GCD;
theorems

LCompare section 3.2.
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TARSKI,VECTSP_1,VECTSP_2,GCD;

clusters
STRUCT_O,VECTSP_1,VECTSP_2,FUNCT_2,GCD;
schemes

NAT_1;

requirements

ARYTM;

begin

reserve I for domRing;
reserve a,b,c for Element of the carrier of I;
(lemma for Euclidean algorithm 133)

o
File defined by parts 92b, 93, 94, 96abc, 97abc, 98abcd, 99abc

To introduce Euclidean domains, we use the already defined integral domains (or
domRing as it is called in M1zAR). An Euclidean domain is an integral domain fulfilling
the following attribute.

"eucl.miz" 93 =
definition
let I be domRing;
attr I is Euclidean means :Defl:
ex f being Function of the carrier of I,NAT st
(for a,b being Element of the carrier of I st b <> 0.I holds
(ex q,r being Element of the carrier of I st
(a = g*b+r & (r = 0.I or f.r < £.b))));
end;

o
File defined by parts 92b, 93, 94, 96abc, 97abc, 98abcd, 99abc

Each MIZAR type must have nonempty denotation.! As a consequence before defining
mode EuclideanRing as Euclidean domRing, we have to show the existence of such
a domain. Formally this is done with an ezistential cluster:

"eucl.miz" 94 =
definition
cluster Euclidean domRing;
existence
proof
(existence proof for Euclidean domains 95a, ... )
end;

definition
mode EuclideanRing is Euclidean domRing;
end;
o
File defined by parts 92b, 93, 94, 96abc, 97abc, 98abcd, 99abc

To show existence of Euclidean domRing we have to construct a MiZAR object ful-
filling all the requirements of the definition of Euclidean and domRing. Fortunately

IThis prohibits types like empty non-empty set.
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we do not have to do this from scratch, but can use mode Field and show that every
function f is an Euclidean function for fields' by using the fact that in a field each
element b # 0 has a multiplicative inverse:

(existence proof for Euclidean domains 95a) =

L:for F being Field
for f being Function of the carrier of F, NAT holds
(for a,b being Element of the carrier of F st b <> 0.F holds
(ex q,r being Element of the carrier of F st
(a = g¥b+r & (r = 0.F or f.r < £.b))))
proof
let F be Field;
let f be Function of the carrier of F, NAT;
H2: now let a,b be Element of the carrier of F;
assume H3: b <> 0.F;
consider x being Element of the carrier of F such that
H5: b*x = 1.F by H3,VECTSP_1:30;
H6: (a*x)*b+0.F
ax(b*x)+0.F by VECTSP_1:28
ax1.F+0.F by H5
a+0.F by VECTSP_1:29
.= a by VECTSP_1:25;
thus b <> 0.F implies
(ex q,r being Element of the carrier of F st
(a = g¥b+r & (r = 0.F or f.r < £.b))) by H6;

end; :: H2
thus thesis by H2;
end;

<o

Definition defined by parts 95ab.
Definition referenced in part 94.

The rest of the existence proof is easy: A field F is an integral domain simply by the
Mi1zAR theorem VECTSP_2:13, hence using the just proven lemma L we can complete
the proof.?

(existence proof for Euclidean domains 95b) =

consider F being Field;

reconsider F as domRing by VECTSP_2:13;

consider f being Function of the carrier of F,NAT;

H2: (for a,b being Element of the carrier of F st b <> 0.F holds
(ex q,r being Element of the carrier of F st
(a =q*b+r & (r = 0.F or f.r < £.b)))) by L;

H3: F is Euclidean by H2,Defl;

thus thesis by H3;

end;

o

Definition defined by parts 95ab.
Definition referenced in part 94.

In addition we define the mode DegreeFunction of an Euclidean domain. Existence
of degree functions trivially follows from the definition above:

Mn fact this proves that every field is an Euclidean domain.
2Note that we have to change the type of F using reconsider. The reason is that the attribute
Euclidean is defined for integral domains only and not for fields.
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"eucl.miz" 96a =
definition X X
let E be EuclideanRing;
mode DegreeFunction of E ->
Function of the carrier of E, NAT means :Def2:
(for a,b being Element of the carrier of E st b <> 0.E holds
(ex q,r being Element of the carrier of E st
(a = g*b+r & (r = 0.E or it.r < it.b))));
existence by Defl;
end;
o
File defined by parts 92b, 93, 94, 96abc, 97abc, 98abcd, 99abc

A second problem concerns the existence of a greatest common divisor function
in Euclidean domains.! We defined the greatest common divisor according to the
paradigm of genericity in the most general way: for gcd domains.2 Clearly this implies
the existence of a greatest common divisor function in every gcd domain  especially
in Euclidean domains. But MIizAR does not know that Euclidean domains are ged
domains. So we first have to prove this.?

"eucl.miz" 96b =

(Euclidean domain is gcd domain 103a, ... )
o
File defined by parts 92b, 93, 94, 96abc, 97abc, 98abcd, 99abc.

To include the just mentioned property into the MI1ZAR type hierarchy (which frees
us from referencing this theorem each time we talk about a greatest common divisor
function in Euclidean domains), we use the conditional cluster:

"eucl.miz" 96c =
definition
cluster Euclidean -> gcd-like domRing;
coherence by EG;
end;

<
File defined by parts 92b, 93, 94, 96abc, 97abc, 98abcd, 99abc.

Now we have collected all we need to prove the Euclidean algorithm of section 1.2
correct using the M1ZAR system. Note that we extended the Mi1zZAR type system by
Euclidean domains, thus also gave a proof for a new SUCHTHAT global declaration,
namely for let Euclidean domain be gcd domain.

5.2 Proofs of the Verification Conditions

In this section we prove the verification conditions for the Euclidean algorithm we
already presented at the end of section 3.2. As usual we start with translating the
global and local declarations of the algorithm into the MiZAR language.

Do not confound this with algorithms computing the greatest common divisor function: Such
a function exists in every gcd domain by just attaching to each pair of elements the corresponding
greatest common divisor, whereas algorithms for this function may be varying or even non existent.

2Compare section 4.3 and section 2.3.

3This theorem will be proved in section 5.2.
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"eucl.miz" 97a =
reserve E for EuclideanRing;
reserve d for DegreeFunction of E;
reserve Amp for AmpleSet of E;
reserve a,b,c for Element of the carrier of E;
reserve u,v,s,t for Element of the carrier of E;

o
File defined by parts 92b, 93, 94, 96abc, 97abc, 98abcd, 99abc

For completeness we also state the following theorem being trivial for the MizAr
proof checker. The reason is that although the theorem trivially holds our verification
condition generator did not detect this.

"eucl.miz" 97b =

theorem
(u =a & v =">) implies (gcd(u,v,Amp) = gcd(a,b,Amp));

o
File defined by parts 92b, 93, 94, 96abc, 97abc, 98abcd, 99abc

The next theorem is due to step (2) of the algorithm: It captures the case that the
first input variable a is zero.

"eucl.miz" 97c =

theorem

(u=a&v=b&u=0.E&c € Amp & c is_associated_to v)
implies (c € Amp & c = gcd(a,b,Amp))

proof

<
File defined by parts 92b, 93, 94, 96abc, 97abc, 98abcd, 99abc

The proof consists of two steps. First we show that the normal form of v the local
variable holding the second input variable b — equals the greatest common divisor of
a and b.

"eucl.miz" 98a =

assume Hl: u = a & v=b & u=0.E & c € Amp & c is_associated_to v;
H2: gcd(a,b,Amp) gcd (u, v, Amp) by H1

gcd(0.E,v,Amp) by H1

NF (v, Amp) by GCD:30;

o
File defined by parts 92b, 93, 94, 96abc, 97abc, 98abcd, 99abc

The second step is to prove that c equals the normal form of v. This is an immediate
consequence of the assumptions ¢ € Amp and ¢ is_associated_to v:

"eucl.miz" 98b =
H4: ¢ = NF(v,Amp) by H1,GCD:def 10;
thus thesis by H4,H2,H1;
end;
o
File defined by parts 92b, 93, 94, 96abc, 97abc, 98abcd, 99abc

The following theorem concerns the last step of the algorithm: It states that the normal
form c computed after the while-loop indeed is the greatest common divisor of the input
variables a and b.
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"eucl.miz" 98c =

theorem
(gcd(u,v,Amp) = gcd(a,b,Amp) & v = 0.E &
c € Amp & c is_associated_to u)
implies (c € Amp & c = gcd(a,b,Amp))
<
File defined by parts 92b, 93, 94, 96abc, 97abc, 98abcd, 99abc

This theorem is nearly the same as the one before. Consequently its proof is hardly
more than a copy of the one above:

"eucl.miz" 98d =

proof

assume H1: gcd(u,v,Amp) = gcd(a,b,Amp) & v = 0.E &
c € Amp & c is_associated_to u;

H2: gcd(a,b,Amp) = gcd(u,v,Amp) by H1

gcd(u,0.E,Amp) by H1

= NF(u, Amp) by GCD:30
.= C by H1,GCD:def 10;
thus thesis by H1,H2;

end;
o
File defined by parts 92b, 93, 94, 96abc, 97abc, 98abcd, 99abc

The last theorem we have to prove, shows correctness of the while-loop. In fact it
proves Euclid’s equation about greatest common divisors ged(a,b) = ged(b, amodb)
for b # 0.1

"eucl.miz" 99a =

theorem
(gcd(u,v,Amp) = gcd(a,b,Amp) & v <> 0.E &
u=s*xv+tt & (t = 0.E or d.t < d.v))
implies (gcd(v,t,Amp) = gcd(a,b,Amp))
o
File defined by parts 92b, 93, 94, 96abc, 97abc, 98abcd, 99abc

To prove the theorem we first show that gcd(v,t,Amp) and gcd(a,b,Amp) are asso-
ciates of each other:

"eucl.miz" 99b =
proof
assume H1: gcd(u,v,Amp) = gcd(a,b,Amp) & v <> 0.E &
u=s*xv+tt & (t = 0.E or d.t < d.v);
H2: gcd(v,t,Amp) divides gcd(u,v,Amp)
(proof of H2 100a)
H3: gcd(u,v,Amp) divides gcd(v,t,Amp)
(proof of H3 100b)
H4: gcd(u,v,Amp) is_associated_to gcd(v,t,Amp)
by H2,H3,GCD:def 3;
o
File defined by parts 92b, 93, 94, 96abc, 97abc, 98abcd, 99abc

By the definition of the greatest common divisor function both gcd(v,t,Amp) and
gcd(u,v,Amp) are a member of the ample set Amp. Thus they are equal, and we can
complete the proof using the assumption gecd(u,v,Amp) = gcd(a,b,Amp).

LCompare the description of the algorithm on page 4.
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"eucl.miz" 99c =

<

H5: gcd(u,v,Amp) is Element of Amp by GCD:def 12;
H6: gcd(v,t,Amp) is Element of Amp by GCD:def 12;
H7: gcd(v,t,Amp) = gcd(u,v,Amp) by H4,H5,H6,GCD:22
gcd(a,b,Amp) by Hi;

thus thesis by HT7;
end;

File defined by parts 92b, 93, 94, 96abc, 97abc, 98abcd, 99abc.

We end with the proofs of the division properties of gcd(v,t,Amp) and gcd(a,b,Amp)
necessary to complete the above proof. They are easy done requiring only fundamental
facts of the predicate divides and the greatest common divisor function.

(proof of H2 100a) =

<o

proof

M1: gcd(v,t,Amp) divides t & gcd(v,t,Amp) divides v by GCD:27;
M3: v divides s*v by GCD:6;

M4: gcd(v,t,Amp) divides s*v by M1,M3,GCD:2;

M5: gcd(v,t,Amp) divides s*v+t by M4,M1,L1;

M6: gcd(v,t,Amp) divides u by M5,H1;

thus thesis by M1,M6,GCD:def 12;

end;

Definition referenced in part 99b.

(proof of H3 100b) =

<o

proof

M1: gcd(u,v,Amp) divides u & gcd(u,v,Amp) divides v by GCD:27;
M3: v divides s*v by GCD:6;

M4: gcd(u,v,Amp) divides s*v by M1,M3,GCD:2;

M5: gcd(u,v,Amp) divides u-(s*v) by M1,M4,L1;

M6: t = u-(s*v) by H1,VECTSP_2:22;

M7: gcd(u,v,Amp) divides t by M5,M6;

thus thesis by M1,M7,GCD:def 12;

end;

Definition referenced in part 99b.
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Chapter 6

MizAR and Algebraic
Typechecking

Now that we have seen how to prove that a generic algebraic algorithm fulfills its
specification using M1ZAR, we come back to the second kind of verification concerning
generic algorithms we mentioned in section 1.4: the problem of instantiations. We
pointed out that it is by no means trivial in the field of computer algebra to show that
a particular domain fulfills the requirements given by the algorithm. This question is
deeply connected with SUCHTHAT’s global declarations. In the following we discuss
how to treat this problem using the MiZAR system.

6.1 Global Declarations in SUCHTHAT

Global declarations enable a SUCHTHAT user to build the algebraic environment nec-
essary for a generic algebraic algorithm: They introduce the algebraic objects the algo-
rithm shall deal with. Furthermore, based on these global declarations the SUCHTHAT
type checker tests whether a particular instantiation is correct with respect to a generic
algorithm.

SucHTHAT declarations fall into two categories. The first one  which we already
used in our example algorithms — allows one to introduce identifiers for algebraic
objects, for example

let R be Ring,
let G be gcdDomain,
let Amp be AmpleSet of G.

The other kind of SUCHTHAT declarations refers to mathematical theorems, thus re-
lating two mathematical structures. Examples are

let GF(p) be prime field,
let prime field be field,
let GF(p) also be vector space.

All these declarations are loaded in a so-called algebraic database used by the type
checker. Following the implications given by the declarations, the type checker decides
whether the actual parameters of a procedure call fulfill the necessary requirements
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given by the specification of the formal parameters. Consequently the amount and
the kind of declarations is crucial for the acceptance of an instantiated generic alge-
braic algorithm by the typechecker.! For example, the above declarations state that
an algorithm written for arbitrary fields is correctly instantiated if called with GF (p)

provided that p is a prime. The Brown/Henrici addition algorithm called with the
integers will be accepted if the algebraic database allows inferring that the integers are
a gcd domain.?

Note that there is no check whether the declarations represent valid mathematical
theorems. For instance, no error message will occur if a user declares the following.

let ring be field

Consequently, algorithms over fields will be considered correct if called with the inte-
gers. This obviously leads to runtime errors due to the inversion operation of fields
being non existent for integers. So it seems natural to look for possibilities to verify
mathematical correctness of SUCHTHAT declarations.

For already mentioned reasons the MIZAR system is capable of expressing and to
proving such theorems. We will give an extended example in the next section. Note
that we do not propose to run Mi1zZAR to check global declarations at compile time.
This would lead to an unacceptable loss of efficiency. Instead we suggest verifying the
theorems contained in the algebraic database,® thus improving the reliability of the
knowledge the type checker uses.

Furthermore there are cases where such type questions reach into the verification
of the generic algorithms themselves. Consider as an example again our Euclidean
algorithm: We defined the greatest common divisor function for arbitrary ged domains.
Consequently, to use this function in Euclidean domains we must tell the MizAR proof
checker that Euclidean domains are a special kind of gcd domains. But this implies
that generic algorithms written for arbitrary gcd domains are correctly instantiated by
Euclidean domains; in other words the correctness of the following global SUCHTHAT
declaration

let EuclideanRing be gcdDomain.

The next section gives an example for a M1ZAR proof of theorems arising during the
verification of SUCHTHAT global declarations, namely for the property of Euclidean
domains we just presented.

6.2 Proving Declarations Correct

In this section we want to give an example for proving global SUCHTHAT declarations
correct using MIZAR — not at least to present once again the fascinating facilities of
the M1zAR proof script language. We will show the following theorem:

TWe believe that in a future version of SUCHTHAT the algebraic database will contain some built-in
knowledge concerning important algebraic domains.

2Properties of integers are an example for such built-in knowledge.

3This is the same approach used before, when showing correctness of generic algebraic algorithms
with respect to their specifications: Obviously the proofs are not done during compilation; they are
rather to raise certainty of the algorithmic library.
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(Euclidean domain is gcd domain 103a) =

theorem R R . . .
EG:for E being EuclideanRing holds E is gcdDomain

<o

Definition defined by parts 103ab.
Definition referenced in part 96b.

From the mathematical point of view this is just a theorem connecting two algebraic
domains. However from the generic algorithmic point of view it states that arbitrary
algorithms written for gcd domains can be correctly instantiated by Euclidean domains;
in particular the generic Brown/Henrici addition algorithm is correct (for Euclidean
domains), if greatest common divisors are computed by the Euclidean algorithm of
section 1.2.

To prove this theorem we have to show that Euclidean domains fulfill the predicate
gcd-like:!

(Euclidean domain is gcd domain 103b) =

proof
let E be EuclideanRing;
M: now let d be DegreeFunction of E;
N: E is gcd-like
(proof of N 104a)
thus thesis by N;

end; 1t M
thus thesis by M;
end;

(o
Definition defined by parts 103ab.
Definition referenced in part 96b.

To be more precise, we have to prove that for arbitrary elements x and y of E there
exists a greatest common divisor z. We proceed by case distinction.

(proof of N 104a) =

proof
let x,y be Element of the carrier of E;
M1: now per cases;
case A: x = 0.E;
(proof of case A 104b)
case B: x <> 0.E;
(proof of case B 105a, ... )

end; :: cases
thus thesis by Mi;
end;

o
Definition referenced in part 103b.

The first case — x = 0.E — is rather trivial. We simply show that y is a greatest
common divisor of y and 0.E:?

LCompare the definition of gcd-like on page 57.

2Note that showing E to be a gcd domain does not involve ample sets. It suffices to show that a
greatest common divisor exists. Ample sets are necessary only for defining a greatest common divisor
function to get a unique result.
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(proof of case A 104b) =

Al: y divides y by GCD:2;

A2: y%0.E = 0.E by VECTSP_2:26;

A3: y divides 0.E by A2,GCD:def 1;

A4: y divides x by A3,A;

A5: for zz being Element of the carrier of E
st (zz divides x & zz divides y)
holds (zz divides y);

thus thesis by A1,A5,A4;

<
Definition referenced in part 104a.

The other case requires some more work. We follow the ideal theoretic proof given in
[Lip81].1 We start by setting M to the set of linear combinations of x and y (the ideal
generated by x and y):

(proof of case B 105a) =
set M = { z where z is Element of the carrier of E:
ex s,t being Element of the carrier of E
St z = s*x+t*y};
Bl: x e M&y eM
(proof of B1 111b)
o

Definition defined by parts 105ab, 106abc, 108abc.
Definition referenced in part 104a.

The key to the proof is to take an element g # 0.E with minimal degree d.g out of
M.2 To do so, we first have to show, that such an element g exists. We use the following
MizAR scheme stating that every subset of the natural numbers contains a minimal
element:

scheme Min { P[Nat] } :
ex k st P[k] & for n st P[n] holds k < n
provided ex k st P[k];

So we define P[Nat] suitable for our situation — P holds for the natural number
n, if there is an element 0.E # z € M having n as its degree  and prove the necessary
precondition about P to apply scheme Min.

(proof of case B 105b) =

defpred P[Nat] means
ex z being Element of the carrier of E
st (z €M&z<>0.E&1=4d.z);
B2: ex k being Nat st P[k]
proof
B21: x € M & x <> 0.E by B,B1;
B23: ex k being Nat st k = d.x;
thus thesis by B21,B23;
end;

INote that using the same method one can show that Euclidean domains are principal ideal do-
mains.
2The element g will turn out to be a greatest common divisor of x and y.
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consider k being Nat such that
B4: P[k] & for n being Nat st P[n] holds k < n from Min(B2);
o

Definition defined by parts 105ab, 106abc, 108abc.
Definition referenced in part 104a.

Now we can choose the desired element g being the element z of E for which P[k]
holds. In addition we define G to be the set of products with g (again this actually is
the ideal generated by g).

(proof of case B 106a) =

consider g being Element of the carrier of E such that
B5: g e M&g<>0.E&k =d.g&

for n being Nat st

(ex z being Element of the carrier of E

st (z €M & z<>0.E&mn-=4d.z)) holds k < n by B4;
set G = { z where z is Element of the carrier of E:

ex r being Element of the carrier of E st z = r*g};
o

Definition defined by parts 105ab, 106abc, 108abc.
Definition referenced in part 104a.

In fact the main effort to show that the element g is a greatest common divisor of x
and y goes into proving the following identity of M and G. But before we give the proof,
we want, to show how to conclude using this property that g is a greatest common
divisor of x and y.

roof of case B 106b) =
P
Bi1: M = G
(proof of B11 109a)

<o

Definition defined by parts 105ab, 106abc, 108abc.
Definition referenced in part 104a.

The above equation allows us to infer x € G and y € G, from which we immediately
conclude the first two requirements of a greatest common divisor for x and y.

(proof of case B 106c) =
B12: g divides x & g divides y
proof
Hi: x € G & y € G by B11,B1;
consider zx being Element of the carrier of E such that
H2: x = zx &
ex r being Element of the carrier of E st zx = r*g by Hi;
consider zy being Element of the carrier of E such that
H3: y = zy &
ex r being Element of the carrier of E st zy = r*g by Hi;
thus thesis by H2,H3,GCD:def 1;
end;
<o

Definition defined by parts 105ab, 106abc, 108abc.
Definition referenced in part 104a.
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It remains to show the ”greatest property” of g. This is done by decomposing x, y and
g and some equational reasoning. First we decompose x and y into products with z
due to the assumptions x divides z and y divides z.

(proof of case B 108a) =

B13: for z being Element of the carrier of E

holds (z divides x & z divides y) implies z divides g
proof
let z be Element of the carrier of E;
assume H1: z divides x & z divides y;
consider u being Element of the carrier of E such that
H2: x = z*u by H1,GCD:def 1;
consider v being Element of the carrier of E such that
H3: y = z*v by H1,GCD:def 1;

<o

Definition defined by parts 105ab, 106abc, 108abc.
Definition referenced in part 104a.

On the other hand g € M = {z|3s,t: 2z = sxx + t x y} gives us the following decom-
position of g into a sum of products with x and y.

(proof of case B 108b) =

consider zz being Element of the carrier of E such that
H4: g = zz &
ex s,t being Element of the carrier of E st
zz = s*x+t*y by B5;
consider s,t being Element of the carrier of E such that
H5: zz = sxx+txy by H4;
<o

Definition defined by parts 105ab, 106abc, 108abc.
Definition referenced in part 104a.

Substituting the products for x and y in the decomposition of g (and some equational
reasoning based on the arithmetics of E) shows, that g is a product of z, hence the
desired g divides z completing the proof of our theorem.

(proof of case B 108c) =
H6: g = s*x+txy by H4,H5
.= s*(uxz)+t*xy by H2
.= s*(uxz)+t*(v*z) by H3
.= (s*u)*z+t*(v*z) by VECTSP_l:def 16
.= (s*u)*z+(t*v)*z by VECTSP_1l:def 16
.= (s*u+t*v)*z by VECTSP_2:1;
thus thesis by H6,GCD:def 1;
end;
thus thesis by B12,B13;
o

Definition defined by parts 105ab, 106abc, 108abc.
Definition referenced in part 104a.

In the rest of this section we present the proof of M = G to fill in the gap we left in the
proof above. As usual we show such a statement by two implications.

85



(proof of B1l 109a) =

proof
B6: for z being Any holds z € M implies z € G
(proof of B6 109b, ... )
B7: for z being Any holds z € G implies z € M
(proof of B7 110a, ... )
thus thesis by B6,B7,TARSKI:2;
end;
o
Definition referenced in part 106b.

To prove M C G we apply the Euclidean property of E: We divide an arbitrary z € M by
g getting the following.!

(proof of B6 109b) =

proof
let z be Any;
assume B61: z € M;
consider z2 being Element of the carrier of E such that
B67: z = z2 &
ex s,t being Element of the carrier of E st
z2 = s*x+t*y by B61;
reconsider z as Element of the carrier of E by B67;
consider q,r being Element of the carrier of E such that
B62: z = g*g+r & (r = 0.E or d.r < d.g) by B5,Def2;
o

Definition defined by parts 109bc.
Definition referenced in part 109a.

After showing r € M, we can conclude r = 0.E due to the minmality of g’s degree.
This implies z = g*g, hence the desired z € G = {z|Jy : © = y * g}.

(proof of B6 109c) =

B63: r € M
(proof of B63 111c¢)
B64: r = 0.E by B62,B63,B5;
B65: z = qg*g+r by B62
.= q*g+0.E by B64
.= q*g by VECTSP_2:1;
thus thesis by B65;
end;

o

Definition defined by parts 109bc.
Definition referenced in part 109a.

The proof of the other direction G C M again is done by taking the decompositions of
z and g followed by a suitable substitution. We start with decomposing an arbitrary
z € G into z = uxg.

INote that we have to change the type of z from Any to Element of the carrier of E using
reconsider before the operations of E are applicable to z.
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(proof of B7 110a) =

proof

let z be Any;

assume B71: z € G;

consider z2 being Element of the carrier of E such that

B72: z = z2 & .
ex s being Element of the carrier of E st

z2 = s*g by B71;
reconsider z as Element of the carrier of E by B72;
consider u,v being Element of the carrier of E such that
B73: z2 = u*xg by B72;
B74: z = u*g by B72,B73;
o
Definition defined by parts 110ab, 111a.
Definition referenced in part 109a.

In addition we know that g = s*x+t*y for suitable elements s and t, because g is an
Element of the set M of linear combinations of x and y.

(proof of B7 110b) =

consider zl being Element of the carrier of E such that
B75: g = z1 &
ex s,t being Element of the carrier of E st
z1l = s*x+t*y by B5;
consider s,t being Element of the carrier of E such that
B76: zl1 = sxx+txy by B75;
B77: g = s*x+t*y by B75,B76;
o

Definition defined by parts 110ab, 111a.
Definition referenced in part 109a.

Like above substituting g by s*x+t*y in u*g gives the desired representation of z in
terms of products with x and y:

(proof of B7 1ila) =
B78: z = ux*g by B74
.= ux(s*x+txy) by B77
.= ux(s*x)+u*x(t*y) by VECTSP_2:1
.= (u*s)#*x+u*x(t*y) by VECTSP_1:def 16
.= (uxs)#*x+(u*t)*y by VECTSP_1:def 16;
thus thesis by B78;
end;

<o

Definition defined by parts 110ab, 111a.
Definition referenced in part 109a.

We conclude this section with giving the proofs of some technical statements we left
out above. The first one states that x and y are contained in the set M  which was
the ideal generated by x and y.
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(proof of Bl 111b) =

proof

H1: 1.E*x+0.E*y
= 1.E*¥x+0.E by VECTSP_2:26
= 1.E*x by VECTSP_2:1
=X by VECTSP_2:1;

H2: 0.E*x+1.E*y
= 0.E+1.Exy by VECTSP_2:26
= 1.Exy by VECTSP_2:1
=y by VECTSP_2:1;

. y
thus thesis by H1,H2;

end;
o

Definition referenced in part 105a.

The second proof shows that r is an Element of M if r is given by z = g*g+r. We

needed this fact to conclude r = 0.E in the proof of M = G.

(proof of B63 1lic) =

proof
H1:

consider zl being Element of the carrier of E

r

z+(-(g*g))

(g*g+r)+(-(g*g)) by B62
(r+g*g) +(-(q*g))
r+((g*g)+(-(q*g))) by VECTSP_2:1
r+0.E by VECTSP_2:1

by VECTSP_2:1;

such that H2: g = z1 &

ex s,t being Element of the carrier of E st

z1

consider s,t being Element of the carrier of E

s*x+t*y by B5;

such that H3: zl = s*x+t*y by H2;
H4: g = s*x+t*xy by H2,H3;

consider u,v being Element of the carrier of E

such that B68: z2 = u*x+vky by B67;

B69:
H5: r

z

= uxx+v*y by B67,B68;
(ut+((-q) *s) ) *x+(v+((-q) *t)) *xy

(proof of H5 112)
thus thesis by H5;

end;
o

Definition referenced in part 109c.

The following last proof is part of the one we just presented.

It is the equational

reasoning necessary to show level H5 stating the required linear combination of r in
terms of x and y.

(proof of H5 112) =

proof
H: r

z+(-(q*g)) by H1

z+(-(g*(s*x+t*y))) by H4
z+(-(q*(s*x)+q*(t*y))) by VECTSP_2:1
z+((-(gq* (s*x)))+ (- (g*(t*y))))

by VECTSP_2:25

(uxx+v*y) +((-(q* (s*x)))+(-(g*(t*y))))
by B69
((u*x+vxy)+ (- (q* (s*x))) )+ (- (g* (t*y)))
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by VECTSP_2:1
.= ((uxx+ (- (g*(s*x))))+v*y) + (- (g* (t*y)))
by VECTSP_2:1
.= (u*x+(-(g*(s*x))) )+ (v*y+ (- (q* (t*y))))
by VECTSP_2:1
.= (ukx+((-q) * (s*x)) )+ (v*y+ (- (q* (t*y))))
by VECTSP_2:28
.= (ukx+((-q) *(s*x)) )+ (v*y+((—q) *(t*y)))
by VECTSP_2:28
.= (ukx+((-q) *s) *x) + (v*y+ ((—q) *(t*y)))
by VECTSP_1:def 16
.= (uxx+((-q) *s) *x) + (v*y+ ((-q) *t) *y)
by VECTSP_1:def 16
.= (u+((=q) *s) ) *x+ (viy+ ((—q) *t) *y)
by VECTSP_2:1
.= (ut ((-q) *s) ) *x+ (v+((-q) *t) ) *y
by VECTSP_2:1;
thus thesis by H;
end;

o
Definition referenced in part 111c.
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Chapter 7

Conclusions and Further Work

We have presented a new approach to bringing machine assistance into the field of
generic programming. Thereby we focused on generic algebraic algorithms and their
verification. Using the MIzZAR system we succeeded in verifying generic versions of
Brown/Henrici addition and of Euclid’s algorithm on the appropriate algebraic level;
thus our proofs are independent of any particular instantiation. We also showed,
how to support algebraic typechecking with M1zZAR, and hence how to check algebraic
declarations used in the generic programming language SUCHTHAT.

The emphasis is on the fact that algebraic proof in MiZAR can be directly written
in the language of algebra and need not be transformed into a more or less completely
different proof language. In addition we provided a verification condition generator,
which computes out of a given SUCHTHAT algorithm and user-given lemmata the the-
orems necessary to establish its correctness.

MIizAR’s original purpose was to bring mathematics  including the necessary proof
techniques onto the computer and to build a library of mathematical knowledge.
In fact, so far the library is nothing more than a collection of articles accepted by the
MizAR proof checker: Reusing the knowledge is not supported as well as it needs to
be for our purpose. Consequently, to build a verification system for generic algebraic
algorithms around the MIZAR system requires some further work. In this context we
do mention four points.

e First of all, we need a tool for searching the M1zAR library. At the beginning of
a verification we have to look at which kinds of algebraic domains are already in-
cluded in the library and which theorems about these domains have been proven.
We did some experiments using GLIMPSE ([MG96]), a powerful indexing and
query system: After indexing the files the MIZAR abstracts in our case
it allows one to look through these files without the need of specifying file
names. It enables the user to look for arbitrary keywords, for instance gcdDomain,
VectorSpace or finite-dimensional.

e In a next step the search tool should be extended not only to look for algebraic
keywords, but also for whole theorems. This would enable the user to look for
theorems similar to the ones he wants to prove. Using such theorems may shorten
the verification proofs dramatically. The verification of the Brown/Henrici ad-
dition algorithm for example would have been a third shorter if we could have
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used theorems about divisibility in integral domains and about greatest common
divisors.

e Though the M1ZAR system provides a proof script language capable of expressing
algebraic structures appropriately, reasoning about these structures sometimes is
a bit large-scale. For example to prove equations in integral domains we had to do
each little step using explicitly the domain’s axioms. To handle equational rea-
soning there are well known better methods, for instance rewriting systems; for a
couple of algebraic domains there even exist canonical rewrite systems ([LeC86]).
It seems promising to extend M1ZAR by such procedural proof techniques (com-
pare also [Har96]).

e Finally we also would like to have a translator transforming theorems constructed
by the verification condition generator from the SCHEME representation into the
MizAR proof script language as well as other technical tools making it more
comfortable to use the MI1ZAR system.

Besides the verification method presented for generic algebraic algorithms there are
two other facets of our work we consider worth mentioning:

e Defining nontrivial algebraic domains and proving properties about these do-
mains is more than an unwelcome effort necessary to prove generic algebraic
algorithms correct. It also contributes to the field of formalized mathematics;
namely to the QED-Project ([Boy94], [Mat95]), which aims to construct a com-
puter system representing important mathematical knowledge as well as the nec-
essary mathematical proof techniques.

e We also consider our work as a motivation for the use of literate programming
([Knug4]) in the field of computer algebra. We believe that it is of considerable
advantage to combine development, presentation and verification of algorithms
in one document leading to more transparency and confidence in the correctness
of (generic algebraic) algorithms. We plan to provide the description of some
more example algorithms rigorously following this approach.

Writing generic algebraic algorithms is a hard job: One has to look for abstract
algebraic domains suitable for the method one wants to implement; in addition using
the constructed generic algorithms with particular instantiations again raises nontrivial
algebraic questions.

Consequently, writing correct generic algebraic algorithms requires a careful way
of dealing with the underlying mathematical structures. We hope that this thesis is
a first step to support a rigorous development of provable correct generic algebraic
algorithms.
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Appendix A

Additional MizAR Code for
Generic Brown/Henrici
Addition

In this section we present the MIZAR code we left out in the text and additional
lemmata necessary to prove the generic Brown/Henrici addition algorithm correct.
Consequently the MizAR files extracted from this document by STWEB are complete
MizARr articles that are accepted by the MI1zZAR proof checker.

We start with a description of the vocabulary file GCD.VO0C:

"gcd.voc" 122 =
Rdivides
Ris_unit
Ris_associated_to
Ris_not_associated_to
Rare_canonical_wrt
Rcanonical
Rare_normalized_wrt
Ris_multiplicative
Dadd1
Dadd?2
Omultl
Omult?2
Ogcd
ONF
OClass
OClasses
Vgcd-like
MgcdDomain
MAmpSet
MAmpleSet

o

The capitel letters preceding the entire name indicate the kind of the following symbol.
For instance the letter 0 means that this symbol is (and must be) used for a function.
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M denotes mode symbols R predicate symbols and V attribute symbols. The difference
between predicates and attributes is that a attribute can be attached to an already
existing mode to define a new one (like we did when defining mode gcdDoamin to be
gcd-like domRing in section 4.3).

A.1 Lemmata about Divisibility

Let us start with lemmata about divisibility, namely about the predicates divides,
is_unit, is_associated_to and the function /. Altogether we proved 23 lemmata
including three further ones necessary for the verification of the generic Euclidean
algorithm.

(text proper 123) =
theorem
IDOM1:for a,b,c being Element of the carrier of I holds
a <> 0.I implies ((a*b = a*c implies b = c) &
(bxa = c*a implies b = c))
proof
let a,b,c be Element of the carrier of I;
assume HO: a <> 0.I;
K1: now assume H1l: a*b = axc;
H2: 0.I = a*b+(-(a*b)) by VECTSP_2:1
.= axb+(-(axc)) by H1
.= axbta*(-c) by VECTSP_2:28
.= ax(b+(-c)) by VECTSP_2:1

.= ax(b - ¢) by VECTSP_1:12;
H3: b - c =0.I by H2,HO,VECTSP_2:15;
H4: c = 0.I+c by VECTSP_2:1

.= (b - c)+c by H3
.= (b+(-c))+c by VECTSP_1:12
.= b+(c+(-c)) by VECTSP_2:1

.= b+0.I by VECTSP_2:1
.= b by VECTSP_2:1;
thus b = c by H4;
end;
thus thesis by Ki;

end;
o

Definition defined by parts 16, 123.
Definition referenced in part 15a.

"gcd.miz" 124 =

theorem

Lla:for a,b,c,d being Element of the carrier of I holds
(b divides a & d divides c) implies b*d divides a*c
proof

let a,b,c,d be Element of the carrier of I;

assume H1: b divides a & d divides c;

consider x being Element of the carrier of I such that
H2: b*x = a by H1,Defl;

consider y being Element of the carrier of I such that
H3: d*y = c by H1,Defl;

H4: (b*d)*(y*x) = ((b*d)*y)*x by VECTSP_1:def 16
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(b*(d*y))*x by VECTSP_1:def 16

= (b*c)*x by H3
= c*(b*x) by VECTSP_1:def 16
.= a%c by H2;

thus thesis by H4,Defl;

end;

theorem

L2:for a,b,c being Element of the carrier of I holds

a is_associated_to a &

(a is_associated_to b implies b is_associated_to a) &

((a is_associated_to b & b is_associated_to c)

implies a is_associated_to c)

proof

let A,B,C be Element of the carrier of I;

H1: A*1.I = A by VECTSP_2:1;

H2: A divides A by H1,Defl;

H9: A is_associated_to A by H2,Def3;

M1: now

assume H3: A is_associated_to B;

H4: A divides B & B divides A by H3,Def3;

thus A is_associated_to B implies
B is_associated_to A by H4,Def3;

end; :: Ml

M2: now

assume H5: A is_associated_to B & B is_associated_to C;

H6: A divides B & B divides A by H5,Def3;

H7: B divides C & C divides B by H5,Def3;

H8: A divides C & C divides A by H6,H7,L1;

thus (A is_associated_to B & B is_associated_to C)
implies A is_associated_to C by H8,Def3;

end; ::M2

thus thesis by H9,M1,M2;
end;

theorem

L3:for a,b,c being Element of the carrier of I holds

a divides b implies c*a divides c*b

proof

let A,B,C be Element of the carrier of I;

assume H1: A divides B;

consider D being Element of the carrier of I such that
H2: AxD = B by H1,Defl;

H3: (CxA)*D = C*(AxD) by VECTSP_1:def 16
.= Cx*B by H2;

thus thesis by H3,Defl;

end;

theorem

L6:for a,b being Element of the carrier of I holds
a divides a*b & b divides a*b by Defl;
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theorem
L6a:for a,b,c being Element of the carrier of I holds
a divides b implies a divides bx*c
proof
let a,b,c be Element of the carrier of I;
assume HO: a divides b;
consider d being Element of the carrier of I such that
H1: a*d = b by HO,Defl;
H2: a*(d*c) = (axd)*c by VECTSP_1:def 16
.= b*c by H1;
H3: a divides b*c by H2,Defil;
thus thesis by H3;
end;

theorem
for a,b being Element of the carrier of I holds
(b divides a & b <> 0.I)
implies (a/b = 0.I iff a = 0.I)
proof
let a,b be Element of the carrier of I;
assume HO: b divides a & b <> 0.I;
K1: now assume H1: a/b = 0.I;
consider d being Element of the carrier of I such that
H2: d = a/b;
H2a: d = 0.I by H1,H2;
H3: a = dx*b by H2,HO,Defb

.= 0.I¥b by H2a

.= 0.1 by VECTSP_2:26;
thus a/b = 0.I implies a = 0.I by H3;
end; :: K1
K2: now assume H1: a = 0.I;
consider d being Element of the carrier of I such that
H2: d = a/b;
H3: 0.I = a by H1
.= d*xb by H2,HO,Def5;
0.I by H3,HO,VECTSP_2:15;

H4: d =

thus a = 0.I implies a/b = 0.I by H2,H4;
end; :: K2

thus thesis by K1,K2;

end;

theorem

L7:for a being Element of the carrier of I holds
a <> 0.I implies a/a = 1.I
proof
let A be Element of the carrier of I;
assume HO: A <> 0.I;
consider Al being Element of the carrier of I such that
H1i: A1 = A/A;
H2: A divides A by L1;
H3: Al1xA = A by HO,H1,H2,Defb
.= 1.IxA by VECTSP_2:1;
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H5: A1 = 1.I by H3,HO,IDOM1;
thus thesis by H1,H5;
end;

theorem

for a being Element of the carrier of I holds a/1.I = a

proof
let a be Element of the carrier of

I;

consider A being Element of the carrier of I such

HO: A = a/1.1;
H1: 1.I <> 0.I by VECTSP_1: def 21;
H2: 1.I*a = a by VECTSP_2:1;
H3: 1.I divides a by H2,Defil;
H4: A Ax1.I by VECTSP_2:1
.= a by HO,H1,H3,Defb;
thus thesis by H4,HO;
end;

theorem

that

L8:for a,b,c being Element of the carrier of I holds

c <> 0.I implies

(((c divides a*b & c divides a) implies (a*b)/c
((c divides a*b & c divides b) implies (a*b)/c

proof

let A,B,C be Element of the carrier of I;

assume HO: C <> 0.I;
K1: now

assume H1: C divides A*B & C divides A;

(a/c)*b) &
a*(b/c)))

consider Al being Element of the carrier of I such that

H2: A1 = A*B/C;
H3: A1xC = A*B by H2,H1,HO,Defb;

consider A2 being Element of the carrier of I such that

H4: A2 = A/C;
H5: A2xC = A by H4,H1,HO,Def5;
H6: A1*xC = AxB by H3

(A2%C)*B by H5

H7: A1l = A2+B by HO,H6,IDOMI1;
H8: (A*B)/C = (A/C)*B by H7,H2,H4;

thus (C divides A*B & C divides A) implies

(AxB)/C = (A/C)*B by H8;
end; :: K1
K2: now

assume H1: C divides A*B & C divides B;

A2%(C*B) by VECTSP_1:def 16
(A2*B)*C by VECTSP_1l:def 16;

consider Al being Element of the carrier of I such that

H2: A1 = (A*B)/C;
H3: A1xC = A*B by H2,H1,HO,Def5;

consider A2 being Element of the carrier of I such that

H4: A2 = B/C;
H5: A2xC = B by H4,H1,H0,Def5;
H6: A1%C = AB by H3

A%(A2%C) by H5

(AxA2)*C by VECTSP_1l:def 16;
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H7: A1 = AxA2 by HO,H6,ID0OM1;

H8: (A*B)/C = A*(B/C) by H7,H2,H4;

thus (C divides A*B & C divides B) implies
(A*B)/C = A*(B/C) by HS;

end;

thus thesis by K1,K2;

end;

theorem
for a,b,c being Element of the carrier of I holds
(c <> 0.I&
c divides a & c divides b & c divides a+b)
implies (a/c)+(b/c) = (a+b)/c
proof
let a,b,c be Element of the carrier of I;
assume HO: c <> 0.I;
assume Hl: c divides a & c divides b & c divides
consider d being Element of the carrier of I such
H2: d = a/c;
consider e being Element of the carrier of I such
H3: e = b/c;
H4: d*c = a by H2,H1,HO,Defb;
H5: exc = b by H3,H1,HO0,Def5;
H6: a+b = d*c+exc by H4,HS
(d+e)*c by VECTSP_2:1;
H7: c divides c by L1;
H8: c divides (d+e)*c by H6,H1;
H9: (a+b)/c = ((d+e)*c)/c by HE
(d+e)*(c/c) by HO,H7,H8,L8
(d+e)*1.I by HO,L7

.= d+e by VECTSP_2:1;
thus thesis by H9,H2,H3;
end;
theorem

a+b;
that

that

for a,b,c,d being Element of the carrier of I holds

(b <>0.I &d <> 0.1 & b divides a & d divides c)
implies (a/b)*(c/d) = (axc)/(bxd)

proof

let a,b,c,d be Element of the carrier of I;

assume HO: b <> 0.I & d <> 0.I & b divides a & d divides

consider x being Element of the carrier of I such
Hi: x = a/b;

consider y being Element of the carrier of I such
H2: y = c/d;

consider z being Element of the carrier of I such
H3: z = (a*c)/(bxd);

H4: xxb = a by HO,H1,Def5;

H5: y*d = c by HO,H2,Defb;

H6: bxd divides a*c by HO,Lla;

H7: b*d <> 0.I by HO,VECTSP_2:15;

H8: z*(b*d) = a*c by H3,H7,H6,Defb
(x*b)*(y*d) by H4,H5
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x* (b* (y*d) )
x* ((b*y)*d)
x* (y* (b*d) )
= (x*y)*(bxd)
by H8,H7,IDOM1
by H9,H1,H2,H3

HO: z = xxy
thus thesis
end;

theorem
L9:for a,b,c being Element

16
16
16
16;

by VECTSP_1:def
by VECTSP_1:def
by VECTSP_1:def
by VECTSP_1:def

3

of the carrier of I holds

(a <> 0.I & a*b divides a%*c)

implies b divides c
proof

let A,B,C be Element of the carrier of I;

assume H1:

A <> 0.1 & A*B divides Ax*C;

consider D being Element of the carrier of I such that

H2:
H3:
H9:

(A*B) *D
Ax (B*D)
(A*(B*D)) /A
proof

Ax*C by H1,Defl;
A*C by H2,VECTSP_1:def 16;
(A/A)*(B+D)

M1i: A divides A*(B#D) by L6;

M2: A divides A by L1;

thus thesis by M1,M2,H

end;
(A*C) /A
proof

H10: (A/R)*C

1,L8;

M1: A divides A*C by L6;

M2: A divides A by L1

thus thesis by M1,M2,H1,L8;

end;

H11: B*D

1.Ix(B*D)
(A/A) % (B*D)
(A% (B*D))/A
(A*C) /A

(A/h)*C
1.IxC

.= C

thus thesis by H11,Defl;
end;

theorem

L10:for a,b being Element

(a <> 0.1 & a*b = a) impli

proof

let A,B be Element of the

assume H1: A <> 0.I & A*B

consider Al being Element

H2: A1 = A/A;

consider Bl being Element

H3: Bl = (A*B)/A;

H6: A1 = 1.I by H2,L7,H1;

H7: (A*B)/A = (A/A)*B
proof

VECTSP_2:1
L7,H1

H9

H3

H10
L7,H1
VECTSP_2:1;

of the carrier of I holds
1.1

es b
carrier of I;
= A

of the carrier of I such that

of the carrier of I such that
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M1i: A divides A*B by L6;
thus thesis by M1,H1,L8;
end;

H8: B1

(AxB)/A by H3
(A/M)*B by H7
A1%B by H2
.= B by H6,VECTSP_2:1;
H10: A1 = B1 by H1,H2,H3;
thus thesis by H6,H10,HS8;
end;

theorem

L15:for a,b,c being Element of the carrier of I holds
(c <> 0.1 & c*a is_associated_to c*b)

implies a is_associated_to b

proof

let A,B,C be Element of the carrier of I;
assume HO: C <> 0.I & CxA is_associated_to C*B;
H1: CxA divides C*B by HO,Def3;

H2: A divides B by H1,HO,L9;

H3: CxB divides C*A by HO,Def3;

H4: B divides A by H3,HO,L9;

thus thesis by H2,H4,Def3;

end;

(example lemma 20c)

o
File defined by parts 15a, 17ab, 18ab, 19abc, 20ab, 124, 134, 138, 142a, 143, 145a, 146

(lemmata for Brown/Henrici 131) =

theorem

Ll:for a,b,c being Element of the carrier of I holds
(a divides b & a divides c) implies a divides b+c
proof

let a,b,c be Element of the carrier of I;

assume H1: a divides b & a divides c;

consider d being Element of the carrier of I such that
H2: b = a*d by H1,GCD:def 1;

consider e being Element of the carrier of I such that
H3: ¢ = a*e by H1,GCD:def 1;

H4: a*(d+e) = a*d+axe by VECTSP_2:1

.= b+c by H2,H3;
thus thesis by H4,GCD:def 1;
end;
theorem

L3:for a,b,c being Element of the carrier of I holds

c <> 0.I implies

((c divides a implies (a*b)/c
(c divides b implies (a*b)/c

proof

(a/c)*b) &
a*(b/c)))

let a,b,c be Element of the carrier of I;
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assume HO: c <> 0.I1;
K1: now assume H1l: c¢ divides a;
Mi: c divides a*b by H1,GCD:7;
consider al being Element of the carrier of I such that
H2: al = (ax*b)/c;
H3: al*c = axb by H2,HO0,M1,GCD:def 4;
consider a2 being Element of the carrier of I such that
H4: a2 = a/c;
H5: a2*c = a by H4,H1,H0,GCD:def 4;
H6: alxc = a*b by H3
(a2*c)*b by H5
a2+ (cxb) by VECTSP_1l:def 16
(a2*%b)*c by VECTSP_1:def 16;
H7: al = a2%b by HO,H6,GCD:1;
thus ¢ divides a implies (a*b)/c = (a/c)#*b by H7,H2,H4;
end; :: K1
K2: now assume H1l: c¢ divides b;
M1: c divides a*b by H1,GCD:7;
consider al being Element of the carrier of I such that
H2: al = (ax*b)/c;
H3: al*xc = axb by H2,HO0,M1,GCD:def 4;
consider a2 being Element of the carrier of I such that
H4: a2 = b/c;
H5: a2*xc = b by H4,H1,H0,GCD:def 4;
H6: alxc = a*b by H3
a*(a2xc) by H5
.= (a*a2)*c by VECTSP_1:def 16;
H7: al = (a*a2) by HO,H6,GCD:1;
thus ¢ divides b implies (a*b)/c = a*(b/c) by H7,H2,H4;
end;
thus thesis by K1,K2;
end;

theorem

L2:for a,b,c being Element of the carrier of I holds
(c <> 0.1 & c divides a & c divides b)

implies (a/c)+(b/c) = (a+b)/c

proof

let a,b,c be Element of the carrier of I;

assume HO: ¢ <> 0.I & c divides a & c divides b;
consider d being Element of the carrier of I such that
H2: d = a/c;

consider e being Element of the carrier of I such that
H3: e = b/c;

H4: dxc = a by H2,H0,GCD:def 4;

H5: ex*c b by H3,HO0,GCD:def 4;

H6: a+b = (d*c)+(e*c) by H4,H5

(d+e) *c by VECTSP_2:1;

H7: c divides c by GCD:2;

H8: ¢ divides (d+e)*c by GCD:def 1;

H9: (at+b)/c ((d+e)*c)/c by H6

(d+e)*(c/c) by HO,H7,H8,GCD:11

(d+e)*(1.I) by HO,GCD:9
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<o

.= d+e by VECTSP_2:1;
thus thesis by H9,H2,H3;
end;

Definition referenced in part 164.

The remaining lemma is not necessary for the correctness proof of the generic Brown/
Henrici addition algorithm, but we used it for the one of the generic Euclidean algo-
rithm. We put it in this section because it is also about divisibility.

(lemma for Euclidean algorithm 133) =

<o

theorem
Ll:for I being domRing
for a,b,c being Element of the carrier of I holds
((a divides b & a divides c) implies a divides b+c) &
((a divides b & a divides c) implies a divides b-c)
proof
let I be domRing;
let a,b,c be Element of the carrier of I;
M1: now assume
Hl: a divides b & a divides c;
consider d being Element of the carrier of I such that
H2: b = a*d by H1,GCD:def 1;
consider e being Element of the carrier of I such that
H3: ¢ = a*e by H1,GCD:def 1;
H4: a*(d+e) = a*d+a*e by VECTSP_2:1
.= b+c by H2,H3;
thus (a divides b & a divides c) implies a divides b+c
by H4,GCD:def 1;
end; :: Ml
M2: now assume
H5: a divides b & a divides c;
consider d being Element of the carrier of I such that
H6: b = a*d by H5,GCD:def 1;
consider e being Element of the carrier of I such that
H7: ¢ = a*e by H5,GCD:def 1;
H8: a*(d-e) = a*d-a*e by VECTSP_2:31
.= b-c by H6,H7;
thus (a divides b & a divides c) implies a divides b-c
by H8,GCD:def 1;

end; :: M2
thus thesis by M1,M2;
end;

Definition referenced in part 92b.

A.2 Lemmata about Ample Sets

This section contains M1ZAR code for defining ample sets, multiplicative ample sets
and normal forms modulo ample sets, as well as theorems proving some additional
properties about these structures.

Let us start with some easy properties about the Class and the Classes function:
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"gcd.miz" 134 =

(Definition of association classes 60b)

theorem

CL1:for a,b being Element of the carrier of I holds
Class a N Class b <> ) implies Class a = Class b

proof

let a,b be Element of the carrier of I;

assume HO: Class a N Class b <> (;

HOa: Class a meets Class b by HO,BOOLE:119;
consider Z being Any such that

H1: Z € Class a & Z € Class b by HOa,BOOLE:def 5;
reconsider Z as Element of the carrier of I by Hi;
H4: Z is_associated_to a by H1,Defhl;

H5: Z is_associated_to b by H1,Defhil;

H6: c € Class a implies ¢ € Class b

proof

assume H7: c € Class a;
H8: c is_associated_to a by H7,Defhil;
H9: a is_associated_to c by H8,L2;

H10:
Hi1:
H12:
H13:
Hi4:
thus
end;

Z
b
b
c
[

th

is_associated_to
is_associated_to
is_associated_to
is_associated_to
€ Class b by H13,
esis by H14;

c by H4,H9,L2;

Z by H5,L2;

c by H11,H10,L2;
b by H12,L2;
Defhl;

H15: ¢ € Class b implies c € Class a
proof
assume

H16:
H17:
H18:
H19:
H20:
H21:
H22:

end;

0o P P NO O

C

H7: ¢ € Class b;
is_associated_to
is_associated_to
is_associated_to
is_associated_to
is_associated_to
is_associated_to

by H7,Defhil;
by H16,L2;

by H5,H17,L2;
by H4,L2;

by H19,H18,L2;
by H20,L2;

P O NO O O

€ Class a by H21,Defhil;
thus thesis by H22;

thus thesis by H6,H15,SUBSET_1:8;

end;

theorem

CL2:for I being domRing holds Classes I is non empty

proof

let I be domRing;
Hi: Class (1.I) € Classes I by Defh2;
thus thesis by Hi;

end;

theorem

CL3:for X being Subset of the carrier of I holds
X € Classes I implies X is non empty

proof
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let X be Subset of the carrier of I;

assume HO: X € Classes I;

H1l: ex a being Element of the carrier of I st X = Class a by HO,Defh2;
thus thesis by Hi;

end;

o
File defined by parts 15a, 17ab, 18ab, 19abc, 20ab, 124, 134, 138, 142a, 143, 145a, 146

In the following we present the correctness proofs of the functions Class and Classes.
Note that each correctness proof consists of an existence and a uniqueness proof.

(correctness proof of Class 135) =

existence
proof
set M = { b where b is Element of the carrier of I:
b is_associated_to a};
Ki: M is non empty Subset of the carrier of I
proof
K2: now let B be Any;
K3: now assume L1: B € M;
L2: ex B’ being Element of the carrier of I st
B = B’ & B’ is_associated_to a by L1;
L3: B € the carrier of I by L2;
thus B € M implies B € the carrier of I by L3;
end;
thus B € M implies B € the carrier of I by K3;
end;
L4: M c= the carrier of I by K2,TARSKI:def 3;
L5: M is non empty
proof
H1: a is_associated_to a by L2;
H2: a € M by Hi;
thus thesis by H2;
end;
thus thesis by L4,L5;
end;
K4: now let A be Element of the carrier of I;
Hi: A € M implies A is_associated_to a
proof
assume M1: A € NM;
M2: ex A’ being Element of the carrier of I st
A=A’ & A’ is_associated_to a by Mi;
thus thesis by M2;
end;
thus A € M iff A is_associated_to a by Hi;
end;
thus thesis by K1,K4;
end;
uniqueness
proof
let M,N be non empty Subset of the carrier of I;
assume H1: for A being Element of the carrier of I holds
A € M iff A is_associated_to a;
assume H2: for A being Element of the carrier of I holds
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A € N iff A is_associated_to a;
H3: for a being Element of the carrier of I holds
a € Miff ae€NlN
proof
let A be Element of the carrier of I;
K1: now assume M1: A € M;
M2: A is_associated_to a by H1,Mi;
M3: A € N by M2,H2;
thus A € M implies A € N by M3;
end;
K2: now assume M1: A € N;
M2: A is_associated_to a by H2,M1;
M3: A € M by M2,H1;
thus A € N implies A € M by M3;

end;
thus thesis by K1,K2;
end;
thus thesis by H3,SUBSET_1:8;
end;
end;

o
Definition referenced in part 60b.

(correctness proof of Classes 137) =

existence from SubFamEx;
uniqueness
proof
let F1,F2 be Subset-Family of the carrier of I;
assume A: for A being Subset of the carrier of I holds
A € F1 iff
ex a being Element of the carrier of I st A = Class a;
assume B: for A being Subset of the carrier of I holds
A € F2 iff
ex a being Element of the carrier of I st A = Class a;
thus thesis from SubFamComp(A,B);
end;
end;
o
Definition referenced in part 60b.

Now we present to some additional properties of ample sets. The first theorem sum-
marizes the basic properties of an ample set. The other ones prove useful statements
about ample sets, we use in later MIZAR proofs.

"gcd.miz" 138 =
(Definition of AmpleSet 60a, ... )

theorem

AMP:for Amp being AmpleSet of I holds

1.1 € Amp &

(for a being Element of the carrier of I ex z being Element of Amp
st z is_associated_to a) &

(for x,y being Element of Amp holds x <> y implies
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x is_not_associated_to y)

proof

let Amp be AmpleSet of I;

HO: 1.I € Amp by Def8;

Hi: Amp is AmpSet of I by Def8;

H2: (for a being Element of the carrier of I ex z being Element of Amp
st z is_associated_to a) &
(for x,y being Element of Amp holds x <> y implies

x is_not_associated_to y) by H1,Def8a;
thus thesis by HO,H2;
end;

theorem
AMP1:for x,y being Element of Amp holds
x is_associated_to y implies x = y by AMP;

theorem
AMPO:for Amp being AmpleSet of I holds
0.I is Element of Amp
proof
let Amp be AmpleSet of I;
consider A being Element of Amp such that
HO: A is_associated_to 0.I by AMP;
Hi: 0.I divides A by HO,Def3;
consider D being Element of the carrier of I such that
H2: 0.I*D = A by H1,Defil;
H3: A = 0.I by H2,VECTSP_2:26;
thus thesis by H3;
end;
o
File defined by parts 15a, 17ab, 18ab, 19abc, 20ab, 124, 134, 138, 142a, 143, 145a, 146

We carry on with the existence proof of the mode AmpleSet. Remember that this is
an ample set which contains the multiplicative identity of the corresponding integral
domain.

(existence proof of AmpleSet 139) =

existence
proof
HO: now (Defining AmpleSet 69c)
H2: 1.I € A’
proof
Mi: 1.I € {1.I} by ENUMSET1:4;
thus thesis by M1,BO0LE:def 2;
end;
reconsider A’ as non empty set by H2;
H3: for x being Element of A’ holds x = 1.I or x € A
proof
let y be Element of A’;
M3: now per cases by BOOLE:def 2;
case A: y € {z where z is Element of A: z <> x};
Al: ex zz being Element of A st y = zz & zz <> x by A;
thus thesis by A1l;
case B: y € {1.1};
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thus thesis by B,ENUMSET1:3;

end; :: cases
thus thesis by M3;
end;

H4: A’ is non empty Subset of the carrier of I
proof
M1: now let x be Any;
M2: now assume M3: x € A’;
M4: x € the carrier of I
proof
M4a: now per cases by M3,H3;
case A: x = 1.1;
thus thesis by A;
case B: x € A;
thus thesis by B;
end; :: cases
thus thesis by M4a;
end;
thus x € A’ implies x € the carrier of I by M4;
end; :: M2
thus x € A’ implies x € the carrier of I by M2;
end; :: M1
thus thesis by M1,TARSKI:def 3;
end;
reconsider A’ as non empty Subset of the carrier of I by H4;
H5: for a being Element of the carrier of I ex z being Element of
st z is_associated_to a
proof
let a be Element of the carrier of I;
MO: now per cases;
case A: a is_associated_to 1.I;
Al: 1.T is_associated_to a by A,L2;
thus ex z being Element of A’ st z is_associated_to a
by A1,H2;
case B: a is_not_associated_to 1.I;
consider z being Element of A such that
Bl: z is_associated_to a by Def8a;
B3: z <> x
proof
assume M1: z = x;
M2: z is_associated_to 1.I by M1,H1;
M3: a is_associated_to z by B1,L2;
M4: a is_associated_to 1.I by M3,M2,L2;
thus thesis by M4,B;
end;
B4: z € {zz where zz is Element of A : zz <> x}
by B3;
B5: z € A’ by B4,BO0OLE:def 2;
thus ex z being Element of A’ st z is_associated_to a

by B1,B5;
end; :: cases
thus thesis by MO;

end;
H6: for z,y being Element of A’ holds
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z <> y implies z is_not_associated_to y
proof
let z,y be Element of A’;
assume MO: z <> y;
M1: now per cases;
case A: z =1.T &y =1.1;
thus thesis by A,MO;
case B: z = 1.I & y <> 1.1;
Bl: y € A by B,H3;
B2: not(y € {1.I}) by B,ENUMSET1:3;
B4: y € {zz where zz is Element of A: zz <> x}
by B2,BOOLE:def 2;
Bba: ex zz being Element of A st y = zz & zz <> x by B4;
B5: y <> x by Bba;
B6: x is_associated_to z by B,H1;
assume B7: z is_associated_to y;
B8: x is_associated_to y by B6,B7,L2;
B10: x is_not_associated_to y by Def8a,B5,B1;
thus thesis by B10,B8;
case C: z <> 1.I &y =1.1;
Cl: z € A by C,H3;
C2: not(z € {1.I}) by C,ENUMSET1:3;
C4: z € {zz where zz is Element of A: zz <> x}
by C2,BO0LE:def 2;
Cba: ex zz being Element of A st z = zz & zz <> x by C4;
C5: z <> x by Cba;
C6: x is_associated_to y by C,H1;
C6a: y is_associated_to x by C6,L2;
assume C7: z is_associated_to y;

C8: z is_associated_to x by C6a,C7,L2;
C10: z is_not_associated_to x by C5,C1,Def8a;
thus thesis by C10,C8;
case D: z <> 1.I & y <> 1.1;
Di: z € A by D,H3;
D2: y € A by D,H3;
thus thesis by MO,D1,D2,Def8a;

end; :: cases
thus thesis by M1;
end;

H7: A’ is AmpSet of I by H5,H6,Def8a;
thus thesis by H2,HT7;

end; :: HO

thus thesis by HO;
end;

end;

o
Definition referenced in part 69b.

Now we present some further code concerning multiplicative ample sets, namely the
proof of theorem AMPS5 stating that multiplicative ample sets are also closed with respect
to division.
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"gcd.miz" 142a =

(Definition of multiplicative AmpleSet 70a, ... )
<
File defined by parts 15a, 17ab, 18ab, 19abc, 20ab, 124, 134, 138, 142a, 143, 145a, 146

(proof of AMP5 142b) =

proof
let Amp be AmpleSet of I;
assume HO: Amp is_multiplicative;
let x,y be Element of Amp;
assume H1l: y divides x & y <> 0.I;
M: now per cases;
case A: x <> 0.1;
consider d being Element of the carrier of I such that
H2: d = x/y;
H2a: x = y*d by H2,H1,Def5;
consider d’ being Element of Amp such that
H3: d’ is_associated_to d by AMP;
H3a: d is_associated_to d’ by H3,L2;
consider u being Element of the carrier of I such that
H4: u is_unit & d*u = d’ by H3a,L11;
H5: u*x = u*x(y*d) by H2a
.= y*(d*u) by VECTSP_1:def 16
.= y*xd’ by H4;
Hba: y*d’ € Amp by HO,Def25;
H6: u*x € Amp by Hba,H5;
H7: x is_associated_to u*x
proof
M1: x divides x by L1;
M2: x divides u*x by M1,L6a;
M3: u divides 1.I by H4,Def2;
consider e being Element of the carrier of I such that
M4: uxe = 1.I by M3,Defl;
M5: (u*x)*e = e*(u*x)
(exu)*x by VECTSP_1:def 16
1.I%x by M4
= X by VECTSP_2:1;
M6: uxx divides x by M5,Defl;
thus thesis by M2,M6,Def3;
end;
H8: 1.I*x = x by VECTSP_2:1
uxx by H7,H6,AMP1;
H9: u = 1.I by H8,IDOM1,A;
H10: d’ = d*u by H4
.= d*1.I by H9
.=d by VECTSP_2:1;
thus thesis by H10,H2;
case B: x = 0.1;
consider d being Element of the carrier of I such that
MO: d = x/y;
MOa: x = y*d by MO,H1,Def5;
Mi: xxy = 0.I*y by B
.= 0.1 by VECTSP_2:26;
Mla: x = 0.I by VECTSP_2:15,M1,H1;
M2: d = 0.I by VECTSP_2:15,M1a,H1,M0a;
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M3: 0.I is Element of Amp by AMPO;
thus thesis by MO,M3,M2;

end; :: cases
thus thesis by M;
end;

o
Definition referenced in part 70b.

We conclude this section with some properties of the normal form modulo an ample
set. We also present the correctness proof according to the mode NF we left out at the
end of section 4.2.

"gcd.miz" 143 =
(Definition of Normal Form 71a)

theorem

NF1:for Amp being AmpleSet of I holds
NF(0.I,Amp) = 0.I & NF(1.I,Amp) = 1.1
proof

let Amp be AmpleSet of I;

HO: 1.I is_associated_to 1.I by L2;
Hi: 1.I € Amp by Def8;

H2: NF(1.I,Amp) = 1.I by HO,H1,Def20;
H3: 0.I is_associated_to 0.I by L2;
H4: 0.I is Element of Amp by AMPO;
H5: NF(0.I,Amp) = 0.I by H3,H4,Def20;
thus thesis by H2,H5;

end;

theorem

for Amp being AmpleSet of I

for a being Element of the carrier of I holds
a € Amp iff a = NF(a,Amp)

proof

let Amp be AmpleSet of I;

let a be Element of the carrier of I;

K1: now assume HO: a € Amp;

H1: a is_associated_to a by L2;

H2: a = NF(a,Amp) by HO,H1,Def20;

thus a € Amp implies a = NF(a,Amp) by H2;

end; :: K1
thus thesis by K1,Def20;
end;

o
File defined by parts 15a, 17ab, 18ab, 19abc, 20ab, 124, 134, 138, 142a, 143, 145a, 146

(correctness proof of normal form 144) =

existence
proof
K: now let Amp be AmpleSet of I;
let x be Element of the carrier of I;
consider z being Element of Amp such that
HO: z is_associated_to x by AMP;
thus ex zz being Element of the carrier of I st
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zz € Amp & zz is_associated_to x by HO;
end; :: K
thus thesis by K;
end;
uniqueness
proof
let z1,z2 be Element of the carrier of I such that
HO: z1 € Amp & zl is_associated_to x &
z2 € Amp & z2 is_associated_to x;
HOa: z1 is Element of Amp &
z2 is Element of Amp by HO;
H1l: x is_associated_to z2 by HO,L2;
H2: z1 is_associated_to z2 by HO,H1,L2;
H3: z1 = z2 by HOa,H2,AMP1;
thus thesis by H3;
end;
end;
o
Definition referenced in part 71a.

A.3 Lemmata about Gcd Domains

In this section we give the MI1ZAR proofs of the lemmata about the greatest common
divisor function we need to establish the theorem of Brown and Henrici presented in
section 2.3. The definition of gcd domains can be found in section 4.3, the one of the
greatest common divisor function in section 2.3.

"gcd.miz" 145a =

(Definition of gcdDomain 71b, ... )
reserve I for gcdDomain;
o
File defined by parts 15a, 17ab, 18ab, 19abc, 20ab, 124, 134, 138, 142a, 143, 145a, 146

Let us begin with the correctness  that is existence and uniqueness  proof of the
greatest common divisor function in arbitrary ged domains.

(correctness proof of gcd function 145b) =

existence
proof
consider u being Element of the carrier of I such that
H1: u divides x &
u divides y &
(for zz being Element of the carrier of I
st (zz divides x & zz divides y)
holds zz divides u) by Def7;
consider z being Element of Amp such that
H2: z is_associated_to u by AMP;
H3: z divides u by H2,Def3;
H4: z divides x by H3,H1,L1;
H5: z divides y by H3,H1,L1;
H6: for zz being Element of the carrier of I
st (zz divides x & zz divides y) holds zz divides z
proof
let zz be Element of the carrier of I;
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assume M1: zz divides x & zz divides y;
M2: zz divides u by M1,H1;
M3: u divides z by H2,Def3;
M4: zz divides z by M2,M3,L1;
thus thesis by M4;
end;
thus thesis by H4,H5,H6;
end;
uniqueness
proof
K1: now let z1 be Element of the carrier of I such that
H1: z1 € Amp &
z1 divides x &
z1 divides y &
(for z being Element of the carrier of I
st (z divides x & z divides y)
holds z divides z1);
let z2 be Element of the carrier of I such that
H2: z2 € Amp &
z2 divides x &
z2 divides y &
(for z being Element of the carrier of I
st (z divides x & z divides y)
holds z divides z2);
H3: z1 is_associated_to z2
proof
Mi: z1 divides x & zl divides y by Hi;
M2: z1 divides z2 by M1,H2;
M3: z2 divides x & z2 divides y by H2;
M4: z2 divides zl by M3,H1;
thus thesis by M2,M4,Def3;

end;
thus z1 = z2 by H1,H2,H3,AMP;
end; :: K1
thus thesis by Ki;
end;
end;

o
Definition referenced in part 24.

What follows next are the above mentioned lemmata about the greatest common divisor
function. We proved 13 lemmata  including the five theorems we already presented
in section 2.3.

"gcd.miz" 146 =
(Definition of ged function 24)

theorem

LO:for Amp being AmpleSet of I

for a,b being Element of the carrier of I holds
gcd(a,b,Amp) divides a & gcd(a,b,Amp) divides b by Def4;

theorem
L4:for Amp being AmpleSet of I
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for a,b,c being Element of the carrier of I holds

c divides gcd(a,b,Amp) implies (c divides a & c divides b)
proof

let Amp be AmpleSet of I;

let A,B,C be Element of the carrier of I;

assume H1: C divides gcd(A,B,Amp);

consider D being Element of the carrier of I such that
H2: C*D = gcd(A,B,Amp) by H1,Defl;

H3: gcd(A,B,Amp) divides A by LO;

consider E being Element of the carrier of I such that
H4: gcd(A,B,Amp)*E = A by H3,Defl;

H5: C*(DxE) = (CxD)*E by VECTSP_1:def 16
.= gcd(A,B,Amp)*E by H2
= A by H4;

H6: C divides A by H5,Defl;

H7: gcd(A,B,Amp) divides B by LO;

consider E being Element of the carrier of I such that
H8: gcd(A,B,Amp)*E = B by H7,Defl;

H9: Cx(D*E) = (C*D)*E by VECTSP_1:def 16
= gcd(A,B,Amp)*E by H2
=B by HS8;

H10: C divides B by H9,Defl;
thus thesis by H6,H10;
end;

theorem
L13:for Amp being AmpleSet of I
for a,b being Element of the carrier of I holds
gcd(a,b,Amp) = gecd(b,a,Amp)
proof
let Amp be AmpleSet of I;
let A,B be Element of the carrier of I;
consider D being Element of the carrier of I such that
Hi: D = gcd(A,B,Amp);
H11: D € Amp by Def4,H1;
H2: D divides B & D divides A by H1,LO;
H3: for z being Element of the carrier of I
st (z divides B & z divides A)
holds (z divides D) by H1,Def4;
H4: D = gcd(B,A,Amp) by H11,H2,H3,Def4;
thus gcd(A,B,Amp) = gcd(B,A,Amp) by H1,H4;
end;

theorem

GCD1:for Amp being AmpleSet of I

for a being Element of the carrier of I holds
gcd(a,0.I,Amp) = NF(a,Amp) &
gcd(0.I,a,Amp) = NF(a,Amp)

proof

let Amp be AmpleSet of I;

let A be Element of the carrier of I;

HO: NF(A,Amp)is_associated_to A by Def20;
Hi: NF(A,Amp) divides A by HO,Def3;

H2: NF(A,Amp)*0.I = 0.I by VECTSP_2:26;
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H3: NF(A,Amp) divides 0.I by H2,Defl;

H4: for z being Element of the carrier of I
st (z divides A & z divides 0.I)
holds z divides NF(A,Amp)
proof
let z be Element of the carrier of I;
assume MO: z divides A & z divides 0.1;
M1: A divides NF(A,Amp) by HO,Def3;
thus thesis by M1,MO,L1;
end;

H5: NF(A,Amp) € Amp by Def20;

H6: gcd(A,0.I,Amp) = NF(A,Amp) by H1,H3,H4,H5,Def4;

thus thesis by H6,L13;

end;

theorem

GCDO:for Amp being AmpleSet of I holds
gcd(0.I1,0.1,Amp) = 0.1

proof

let Amp being AmpleSet of I;

H2: gcd(0.1,0.I,Amp) = NF(0.I,Amp) by GCD1;
H3: NF(0.I,Amp) = 0.I by NF1;

thus thesis by H2,H3;

end;

theorem
GCD2:for Amp being AmpleSet of I
for a being Element of the carrier of I holds
ged(a,1.I,Amp) = 1.I & gcd(1.I,a,Amp) 1.1
proof
let Amp be AmpleSet of I;
let A be Element of the carrier of I;
HO: 1.I € Amp by DefS8;
H1: 1.I divides 1.I by L1;
H2: 1.I*A = A by VECTSP_2:1;
H3: 1.I divides A by H2,Defl;
H4: for z being Element of the carrier of I
st (z divides A & z divides 1.I)
holds z divides 1.1;
H5: gcd(A,1.I,Amp) = 1.I by HO,H1,H3,H4,Def4;
thus thesis by H5,L13;
end;

theorem

L12:for Amp being AmpleSet of I

for a,b being Element of the carrier of I holds
gcd(a,b,Amp) = 0.I iff (a = 0.I & b = 0.I)

proof

let Amp be AmpleSet of I;

let A,B be Element of the carrier of I;

HO: (A = 0.I & B =0.I) implies gcd(A,B,Amp) = 0.I

proof
assume HO: A

(0.I) & B = (0.1I);
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H3: gcd(A,B,Amp) = NF(A,Amp) by HO,GCD1;
H4: NF(A,Amp) = (0.I) by HO,NF1;
thus thesis by H4,H3;
end;
K: now assume H1: gcd(A,B,Amp) = (0.I);
H2: (0.I) divides A & (0.I) divides B by H1,Def4;
consider D being Element of the carrier of I such that
H3: 0.I*D = A by H2,Defil;
H4: A = 0.1 by H3,VECTSP_2:26;
consider E being Element of the carrier of I such that
H5: 0.I*E = B by H2,Defl;
H6: B = 0.1 by H5,VECTSP_2:26;
thus gcd(A,B,Amp) = 0.I implies (A = 0.I & B = 0.I)
by H4,H6;
end;
thus thesis by HO,K;
end;

theorem
L14:for Amp being AmpleSet of I
for a,b,c being Element of the carrier of I holds
b is_associated_to c implies
(gcd(a,b,Amp) is_associated_to gcd(a,c,Amp) &
gcd(b,a,Amp) is_associated_to gecd(c,a,Amp))
proof
let Amp be AmpleSet of I;
let A,B,C be Element of the carrier of I;
assume H1: B is_associated_to C;
H2: B divides C by H1,Def3;
H3: gcd(A,B,Amp) divides B & gcd(A,B,Amp) divides A by LO;
H4: gcd(A,B,Amp) divides C by H2,H3,L1;
H6: gcd(A,B,Amp) divides gcd(A,C,Amp) by H4,H3,Def4;
H7: gcd(A,B,Amp) = gcd(B,A,Amp) by L13;
H8: gcd(A,C,Amp) = gcd(C,A,Amp) by L13;
H9: gcd(B,A,Amp) divides gcd(C,A,Amp) by H6,H7,HS8;
H10: C divides B by H1,Def3;
H11: gcd(A,C,Amp) divides C by LO;
H12: gcd(A,C,Amp) divides B by H10,H11,L1;
H13: gcd(A,C,Amp) divides A by LO;
H14: gcd(A,C,Amp) divides gcd(A,B,Amp) by H13,H12,Def4;
H15: gcd(C,A,Amp) divides gcd(B,A,Amp) by H7,H8,H14;
H16: gcd(A,B,Amp) is_associated_to gcd(A,C,Amp) by H6,H14,Def3;
H17: gcd(B,A,Amp) is_associated_to gcd(C,A,Amp) by H9,H15,Def3;
thus thesis by H16,H17;
end;

(gcd theorems 25)
(Brown/Henrici theorem 23b)
(o
File defined by parts 15a, 17ab, 18ab, 19abc, 20ab, 124, 134, 138, 142a, 143, 145a, 146
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We conclude this section with the M1ZAR proofs of the remaining four theorems about
the greatest common divisor function that we gave in section 2.3. Note that the proofs
directly correspond to the ones that were given in [Col74].

(proof of theorem TO 151la) =

proof

let Amp be AmpleSet of I;

let A,B,C be Element of the carrier of I;

consider D being Element of the carrier of I such that
Hi: D = gcd(gcd(A,B,Amp),C,Amp);

consider E being Element of the carrier of I such that
H2: E = gcd(A,gcd(B,C,Amp) , Amp) ;

H3: D divides gcd(A,B,Amp) & D divides C by H1,LO;
H4: D divides A & D divides B & D divides C by H3,L4;
H5: D divides A & D divides gcd(B,C,Amp) by H4,Def4;
H6: D divides E by H2,H5,Def4;

H7: E divides gcd(B,C,Amp) & E divides A by H2,LO;
H8: E divides B & E divides C & E divides A by H7,L4;
H9: E divides C & E divides gcd(A,B,Amp) by H8,Def4;

H10: E divides D by H1,H9,Def4;
H11: D is_associated_to E by H6,H10,Def3;
H12: D is Element of Amp by H1,Defé4;
H13: E is Element of Amp by H2,Def4;
H14: D = E by H11,H12,H13,AMP;
thus thesis by H1,H2,H14;
end;
<
Definition referenced in part 25.

(proof of theorem T1 151b) =

proof
let Amp be AmpleSet of I;
let A,B,C be Element of the carrier of I;
M: now per cases;
case A: C <> 0.I;
consider D being Element of the carrier of I such that
Hi: D = gcd(A,B,Amp);
K: now per cases;
case Al: D <> 0.1;
consider E being Element of the carrier of I such that
H2: E = gcd(A*C,B*C,Amp) ;
H3: D divides A & D divides B by H1,Def4;
H4: C*D divides A*C & C*D divides B*C by H3,L3;
H5: C*D divides gcd(A*C,BxC,Amp) by H4,Def4;
H6: CxD divides E by H5,H2;
consider F being Element of the carrier of I such that
H7: E = (C*D)*F by H6,Defl;
H8: E divides A*C & E divides B*C by H2,LO;
H10: (C*D)#F divides A*C & (C*D)*F divides B*C by H8,H7;
H12: D*F divides A & D*F divides B
proof
consider G being Element of the carrier of I such that
M1: ((C*D)#F)*G = A*C by H10,Defl;

119



M2: (C*(D*F))*G

((C#D)*F)*G by VECTSP_1l:def 16
.= C*A by Mi;
M3: C*(D+F) divides C*A by M2,Defl;
M4: D*F divides A by M3,L9,A;
consider G being Element of the carrier of I such that
M5: ((C*D)*F)*G = B*C by H10,Defl;
M6: (C*(D*F))*G = ((C*#D)*F)*G by VECTSP_1:def 16
.= C*B by M5;
M7: C*(D+F) divides C*B by M6,Defl;
M8: Dx*F divides B by M7,L9,A;
thus thesis by M4,M8;
end;
H13: D*F divides gcd(A,B,Amp) by H12,Def4;
H14: D*F divides D by H13,H1;
H15: F divides 1.I
proof
M1: D = D*1.I by VECTSP_2:1;
M2: D*F divides D*1.I by M1,H14;
thus thesis by M2,L9,A1;
end;
H16: F is_unit by H15,Def2;
H18: ex f being Element of the carrier of I
st (f is_unit & (C#D)*f = E) by H7,H16;
H19: CxD is_associated_to E by H18,L11;
H20: E is_associated_to C*D by H19,L2;
thus gcd (A*C,B*C,Amp) is_associated_to C*gcd(A,B,Amp)
by H20,H1,H2;
case A2: D = 0.1;
Ni: gcd(A,B,Amp) = 0.I by A2,H1;
N2: A =0.I & B =0.I by N1,L12;
N3: C*gcd(A,B,Amp) = 0.I by N1,VECTSP_2:26;
N4: gcd (A*C,B*C, Amp)
= gcd(0.I%C,0.I*C,Amp) by N2
.= gcd(0.I,0.I*C,Amp) by VECTSP_2:26

.= gcd(O.I,O.I,Amp) by VECTSP_2:26
.= 0.1 by GCDO
.= C*gcd(A,B, Amp) by N3;

N5: gcd (A*C,B*C, Amp) 1.1
= gcd(A*C,B*C,Amp) by VECTSP_2:1
.= C*gcd(A,B, Amp) by N4;

N6: gcd(A*C,B*C,Amp) divides C*gcd(A,B,Amp) by N5,Defil;
N7: (C*gcd(A,B,Amp))*1.1
C*gcd (A,B, Amp) by VECTSP_2:1
gcd (A*C,B*C, Amp) by N4;
N8: C*gcd(A,B,Amp) divides gcd(A*C,B*C,Amp) by N7,Defl;
thus gcd (A*C,B*C,Amp) is_associated_to C*gcd(A,B,Amp)
by Def3,N6,N8;
end; :: cases K
thus gcd (A*C,B*C,Amp) is_associated_to C#gcd(A,B,Amp) by K;
case B: C = 0.1;
Hi: AxC = 0.I by B,VECTSP_2:26;
H2: BxC = 0.I by B,VECTSP_2:26;
H3: gcd (A*C,B*C, Amp)
= gcd(0.1,0.1,Amp) by H1,H2
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end;

0.I by GCDO

0.I*gcd(A,B,Amp) by VECTSP_2:26

C*gcd (A,B, Amp) by B;

H4:  gcd(A*C,B*C,Amp)*1.1

gcd (A*C, (B*C) ,Amp) by VECTSP_2:1

C*gcd (A,B, Amp) by H3;

H5: gcd(A*C,B*C,Amp) divides C*gcd(A,B,Amp) by H4,Defl;

H6: (C*gcd(A,B,Amp))*1.I

C*gcd (A,B, Amp) by VECTSP_2:1

gcd (A*C,B*C, Amp) by H3;

H7: C*gcd(A,B,Amp) divides gcd(A*C,B*C,Amp) by H6,Defl;

thus gcd (A*C,B*C,Amp) is_associated_to C*gcd(A,B,Amp)
by H5,H7,Def3;

cases M

thus thesis by M;

end;

<o

Definition referenced in part 25.

(proof of theorem T2 153) =

proof

let
let

Amp be AmpleSet of I;
A,B,C be Element of the carrier of I;

assume H1: gcd(A,B,Amp) = 1.I;

H2:
H3:

H4:
H5:
H6:

H7a:

HT:

H8:

H9:

H10:

Hi1:
H12:
H13:
H14:
H15:

gcd (A*C,B#C,Amp) is_associated_to C*gcd(A,B,Amp) by T1;
C*gcd(A,B,Amp) = C*1.I by H1

.= C by VECTSP_2:1;
gcd (A*C,B*C,Amp) is_associated_to C by H2,H3;
C is_associated_to gcd(A*C,B*C,Amp) by H4,L2;
gcd(A,C,Amp) is_associated_to gcd(A,gcd(A*C,B*C,Amp) ,Amp)
by H5,L14;
gcd (A, ged (A*C,B*C, Amp) ,Amp) =
gecd(ged (A, A*C, Amp) ,B*C,Amp) by TO;
gcd(A,gcd (A*C,B*C, Amp) ,Amp) is_associated_to
gcd(gcd (A,A*C,Amp) ,B*C,Amp) by H7a,L2;
gcd(A,C,Amp) is_associated_to gcd(gcd(A,A*C,Amp) ,B*C,Amp)
by H6,H7,L2;
gcd(A,A*C,Amp) is_associated_to A
proof
Mi: A = A*x1.I & A is_associated_to A by L2,VECTSP_2:1;
M2: A is_associated_to A*1.I by M1;
M3: gcd(A,A*C,Amp) is_associated_to gcd(A*1.I,A*C,Amp) by M2,L14;
M4: gcd(A*1.I,A*C,Amp) is_associated_to A*gcd(1.I,C,Amp) by T1;
M5: Axgcd(1.I,C,Amp) = A*1.I by GCD2

.= A by VECTSP_2:1;

M6: gcd(A*1.I,A*C,Amp) is_associated_to A by M5,M4;
thus thesis by M6,M3,L2;
end;
gcd(gcd (A, A*C,Amp) ,B*xC,Amp) is_associated_to gcd(A,B*C,Amp)
by HO,L14;
gcd(A,C,Amp) is_associated_to gcd(A,B*C,Amp) by H8,H10,L2;
gcd (A,B*C,Amp) is_associated_to gcd(A,C,Amp) by H11,L2;
gcd(A,B*C,Amp) is Element of Amp by Def4;
gcd(A,C,Amp) is Element of Amp by Def4;
gcd (A,B*C,Amp) = gcd(A,C,Amp) by H12,H13,H14,AMP;
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thus thesis by H15;
end;

o

Definition referenced in part 25.

(proof of theorem T4 154) =

proof
let Amp be AmpleSet of I;
let A,B,C be Element of the carrier of I;
consider D being Element of the carrier of I such that
Hi: D = gcd(A,C,Amp);
H2: D divides A & D divides C by H1,Def4;
H2b: D is Element of Amp by H1,Def4;
consider E being Element of the carrier of I such that
H3: D+*E = A by H2,Defl;
consider F being Element of the carrier of I such that
H4: DxF = C by H2,Defl;
H5: D divides A+B*C
proof
M1: Dx(E+F*B) = D*E+D*(F*B) by VECTSP_2:1
D*E+(D*F)*B by VECTSP_1:def 16
.= A+BxC by H3,H4;
thus thesis by M1,Defl;
end;
H6: for z being Element of the carrier of I
st (z divides A+B*C & z divides C)
holds z divides D
proof
let Z be Element of the carrier of I;
assume M1: Z divides A+B*C & Z divides C;
Mia: Z divides C by Mi;
consider X being Element of the carrier of I such that
M2: Z+*X = C by M1,Defl;
consider Y being Element of the carrier of I such that
M3: Z*Y = A+B*C by M1,Defil;
M4:  Z* (Y+(-(B*X)))
= ZxY+Z* (- (B*X)) by VECTSP_2:1
.= Z*Y+(-(Zx(X*B))) by VECTSP_2:28
.= Z*Y+(-((Z*X)*B)) by VECTSP_1:def 16
.= (A+B*C)+(-(C*B)) by M2,M3
.= A+(B*C+(-(C*B))) by VECTSP_2:1
.= A+0.I by VECTSP_2:1
.= A by VECTSP_2:1;
M5: Z divides A by M4,Defil;
M6: Z divides D by Mla,M5,H1,Def4;
thus thesis by M6;
end;
H7: D = gcd(A+B*C,C,Amp) by H2,H2b,H5,H6,Def4;
thus thesis by H1,H7;
end;

o
Definition referenced in part 25.
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A.4 Lemmata about Fractions

We start with the file QF . VOC which intorduces new vocabulary items for fractions and
their constructors.

"qf .voc" 156a =

<o

MFraction
MFractions

R"
Ris_normalized_wrt
Onum

Odenom

Ofract

The rest of this section contains some remaining proofs about fractions over integral
domains, as well as the definition of fraction multiplication with the corresponding
theorem concerning the multiplicative unity of fractions.

(proof of fraction’s constructor equation 156b) =

o

proof

let I be domRing;

let u be Fraction of I;

consider a,b being Element of the carrier of I such that

Hi: uw = [a,b] & b <> 0.I by Defb2;

H2: fract(a,b) [a,b] by Defb4,H1

.= u by H1;

H3: a = u‘l by H1,MCART_1:def 1
.= num(u) by Defb5;

H4: b = u‘2 by H1,MCART_1:def 2
.= denom(u) by Def53;

thus thesis by H2,H3,H4;

end;

Definition referenced in part 79a.

(proof of denom 156c) =

<o

proof

let I be domRing;

let u be Fraction of I;
HO: u‘2 <> 0.I by N;
thus thesis by HO,Defb3;
end;

Definition referenced in part 79b.

(proof of F1 157a) =

proof

let I be domRing;

let u be Fraction of I ;

let a,b be Element of the carrier of I;

assume HO: b <> 0.I;

Hi: fract(a,b) = u implies (a = num(u) & b = denom(u))
proof

assume M1: fract(a,b) = u;
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M2: u =[a,b] by M1,Defb4,HO;
M3: num(u) = u‘l by Defb55

.= a by M2,MCART_1:def 1;
M4: denom(u) = u‘2 by Defb3
b by M2,MCART_1:def 2;
thus thesis by M3,M4;
end;

H2: (a = num(u) & b = denom(u)) implies fract(a,b) = u
proof
assume M1: a = num(u) & b = denom(u);
consider a’,b’ being Element of the carrier of I such that
M6: u = [a’,b’] & b’ <> 0.I by Defb2;

M3: a’ = u‘l by M6,MCART_1:def 1
= a by M1,Defb5b;

M4: b’ = u‘2 by M6,MCART_1:def 2
=b by M1,Def53;

M5: u = [a,b] by M6,M3,M4;
thus thesis by HO,Defb54,M5;
end;

thus thesis by H1,H2;

end;

o
Definition referenced in part 80a.

(proof of F2 157b) =

proof
let I be domRing;
let r,s be Fraction of I;
let r1,r2,s1,s2 be Element of the carrier of I;
assume HO: rl = num(r) & r2 = denom(r) & s1 = num(s) & s2 = denom(s);
H3: r+s = [r‘lxs‘2+s‘1*r‘2, r‘2+s‘2] by Def70
= [r1*s2+s1*xr‘2, r‘2*s‘2] by HO,Def53
.= [r1*s2+s‘1*r‘2, r‘2*s2] by HO,Def53

= [rf1*s2+s‘1*xr‘2, r2%s2] by HO,Def53
.= [r‘1*s2+s‘1*r2, r2*s2] by HO,Def53
.= [ri*s2+s‘1*r2, r2*s2] by HO,Defb55
.= [r1*s2+sl1*r2, r2*s2] by HO,Defb5;

H4: num(r+s) = (r+s)‘l & denom(r+s) = (r+s) ‘2 by Def53,Defb5;
thus thesis by H3,H4,MCART_1:def 1,MCART_1:def 2;
end;

<

Definition referenced in part 81b.

(proof of fraction addition 158a) =

proof
let I be domRing;
let u,v be Fraction of I;
HO: u+v [uf1xv 2+v‘1*u‘2,u‘2xv‘2] by Def70
.= [num(u)*v‘2+v‘1*u‘2,u‘2%v‘2] by Defbb
.= [num(u)*v‘2+num(v)*u‘2,u‘2*v‘2] by Defb55
.= [num(u)*denom(v)+num(v)*u‘2,u‘2*v‘2] by Defb53
.= [num(u) *denom(v) +num(v) *u‘2,u‘2*denom(v)] by Defb53
.= [num(u)*denom(v)+num(v) *denom(u) ,u‘2*denom(v)] by Def53
= [num(u)*denom(v)+num(v)*denom(u) ,denom(u)*denom(v)] by Def53;
Hi: denom(u) <> 0.I & denom(v) <> 0.I by TT;
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H2: denom(u)*denom(v) <> 0.I by H1,VECTSP_2:15;
thus thesis by HO,H2,Defb4;
end;

<

Definition referenced in part 81a.

What follows is the definition of fraction multiplication. Note that it is almost the
same as the corresponding definition for fraction addition.

"BrHenAdd .miz" 158b =
definition
let I be domRing;
let u,v be Fraction of I;
func u*v -> Fraction of I means :Def80:
it = [u‘1*vl,u‘2*xv‘2];
existence
proof
Hi: u‘2 <> 0.I & v‘2 <> 0.I by N;
H2: u‘2*v‘2 <> 0.I by H1,VECTSP_2:15;
consider a being Element of the carrier of I such that
H6: a = u‘l*v‘l;
consider b being Element of the carrier of I such that
H7: b = u‘2%v‘2;
consider u being Element of [:the carrier of I,the carrier of I:]
such that H3: u = [a,b];
H5: ex a,b being Element of the carrier of I st
u = [a,b] & b <> 0.I by H3,H2,H7;
H4: u is Fraction of I by H5,Defb2;
thus thesis by H3,H4,H6,HT7;
end;
uniqueness;
end;

theorem

for I being domRing

for u,v being Fraction of I holds

u*v = [num(u)*num(v),denom(u)* denom(v)]

proof

let I be domRing;

let u,v be Fraction of I;

HO: u*v = [u‘l*v‘l,u‘2%v‘2] by Def80

[num(u) *v¢1,u‘2*v‘2] by Defb55

[num(u) *num(v) ,u‘2*v‘2] by Defb55
[num(u) *num(v) ,u‘2*denom(v)] by Defb3
.= [num(u)*num(v) ,denom(u) *denom(v)] by Def53;
thus thesis by HO;

end;

o

File defined by parts 75ab, 76a, 77ab, 78, 79ab, 80ab, 81ab, 82ab, 83, 84ab, 85abc, 86ab, 87ab,
88abc, 89, 90abc, 91, 158b, 159, 160, 165, 174.

We conclude with stating and proving theorems about the additive and multiplicative
unity of fractions. The proofs are easy done by substituting the definition of 0.Q resp.
1.Q in the definition of fraction addition resp. fraction multiplication.

125



"BrHenAdd .miz" 159 =

theorem

for I being domRing

for Q being Fractions of I

for u being Fraction of I holds
u+0.Q =u&0.Q+u=nu

proof

let I be domRing;

let Q be Fractions of I;

let u be Fraction of I;

HO: 0.I <> 1.I by VECTSP_1:31;

Hi: (0.Q) ‘1 = (fract(0.I,1.I))‘1 by Def74
= [0.1,1.1]°1 by HO,Def54
.= 0.I by MCART_1:def 1;
H2: (0.Q) ‘2 = (fract(0.I,1.I))‘2 by Def74
= [0.1I,1.1]°2 by HO,Def54
=1.1I by MCART_1:def 2;

consider a,b being Element of the carrier of I such that
H3: u = [a,b] & b <> 0.I by Defb2;

H4: a = u‘l & b = u‘2 by H3,MCART_1:def 1,MCART_1:def 2;
H5: u+0.Q = [u‘1%(0.Q) ‘2+(0.Q) ‘1*u‘2,u‘2*(0.Q) ‘2] by Def70

.= [u‘1*(0.Q) ‘2+0.I*u‘2,u‘2*(0.Q) ‘2] by H1

= [u‘1*1.I+0.I*u‘2,u‘2*1.I] by H2

= [u1*1.I+0.I,u‘2*1.1I] by VECTSP_2:26

= [uf1*1.T,u‘2%1.1] by VECTSP_2:1

= [u‘1,u2%1.1] by VECTSP_2:1

= [u‘1,u‘2] by VECTSP_2:1;
H6: 0.Q+u = [(0.Q) ‘1*u‘2+u‘1%*(0.Q) ‘2,(0.Q) ‘2*u‘2] by Def70

.= [0.I*xu‘2+u‘1*(0.Q) ‘2, (0.Q) ‘2*xu‘2] by H1

.= [0.I*u‘2+u‘1%1.1,1.I*u‘2] by H2

.= [0.I+u‘1*1.I,1.I*xu‘2] by VECTSP_2:26

= [u1*1.I,1.I*u‘2] by VECTSP_2:1

= [u1,u‘2%1.1] by VECTSP_2:1

.= [u‘1,u‘2] by VECTSP_2:1;
thus thesis by H3,H4,H5,H6;

end;

o
File defined by parts 75ab, 76a, 77ab, 78, 79ab, 80ab, 81ab, 82ab, 83, 84ab, 85abc, 86ab, 87ab,
88abc, 89, 90abc, 91, 158b, 159, 160, 165, 174.

"BrHenAdd .miz" 160 =

theorem

for I being domRing

for Q being Fractions of I

for u being Fraction of I holds
u* 1.0 =u & 1.Q *u=nu

proof

let I be domRing;

let Q be Fractions of I;

let u be Fraction of I;

HO: 0.I <> 1.I by VECTSP_1:31;

Hi: (1.Q)‘1 = (fract(1.I,1.I))‘1 by Def75

= [1.1,1.11°1 by HO,Def54

= 1.1 by MCART_1:def 1;
H2: (1.Q)‘2 = (fract(1.I,1.I))‘2 by Def75
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<

[1.1,1.11°2 by HO,Def54

= 1.1 by MCART_1:def 2;
consider a,b being Element of the carrier of I such that
H3: u = [a,b] & b <> 0.I by Defb2;
H4: a = u‘l & b = u‘2 by H3,MCART_1:def 1,MCART_1:def 2;
H5: ux1.Q = [u‘1*(1.Q)‘1,u‘2%(1.Q) ‘2] by Def80

= [uf1*1.T,u‘2%(1.Q) ‘2] by H1

.= [u1*%1.T,u‘2%1.1] by H2

.= [u‘1,u2%1.1] by VECTSP_2:1

.= [u‘l1,u‘2] by VECTSP_2:1;
H6: 1.Q*u = [(1.Q) “1*u‘1l,(1.Q) ‘2*u‘2] by Def80

= [1.I*xu‘1,(1.Q) ‘2*u‘2] by H1

.= [1.I*%u‘1,1.I*u‘2] by H2

= [u‘l,u‘2*1.1] by VECTSP_2:1

.= [u‘1,u‘2] by VECTSP_2:1;
thus thesis by H3,H4,H5,H6;

end;

File defined by parts 75ab, 76a, 77ab, 78, 79ab, 80ab, 81ab, 82ab, 83, 84ab, 85abc, 86ab, 87ab,

88abc, 89, 90abc, 91, 158b, 159, 160, 165, 174.

A.5 Remaining Verification Conditions

Here we list the verification conditions for generic Brown/Henrici addition we left out
in section 4.1. Note again that these theorems are automatically constructed by our
verification condition generator.

We start with the theorems directly connected to the output t of the generic Brown/
Henrici addition algorithm.

"BrHenAdd-theorems.txt" 161 =

(implies (and (is-normalized-wrt r Amp) (is-—normalized-wrt s Amp)
(=1 0) (=t s))
(and (" t (+ r s)) (is-normalized-wrt t Amp)))

(implies (and (is-normalized-wrt r Amp) (is-—normalized-wrt s Amp)
(not (= r 0)) (=50) (=t 1))
(and (" t (+ r s)) (is-normalized-wrt t Amp)))

(implies (and (is-normalized-wrt r Amp) (is-normalized-wrt s Amp)
(not (= r 0)) (not (= s 0)) (= rl (num r)) (= r2 (denom r))
(not (= r2 0)) (= s1 (num s)) (= s2 (denom s)) (not (= s2 0))
(not (and (= r2 1) (= s2 1))) (= r2 1)
(= t (fract (+ (x rl s2) sl1) s2)))
(and (" t (+ r s)) (is-normalized-wrt t Amp)))

(implies (and (is-normalized-wrt r Amp) (is-—normalized-wrt s Amp)
(not (= r 0)) (not (= s 0)) (= rl (num r)) (= r2 (denom r))
(not (= r2 0)) (= s1 (num s)) (= s2 (denom s)) (not (= s2 0))
(not (and (= r2 1) (= s2 1))) (not (= r2 1)) (= s2 1)
(= t (fract (+ (x sl r2) r1) r2)))
(and (" t (+ r s)) (is-normalized-wrt t Amp)))
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(implies (and (is-normalized-wrt r Amp) (is-—normalized-wrt s Amp)
(not (= r 0)) (not (= s 0)) (= rl (num r)) (= r2 (denom r))
(not (= r2 0)) (= s1 (num s)) (= s2 (denom s)) (not (= s2 0))
(not (and (= r2 1) (= s2 1))) (not (= r2 1)) (not (= s2 1))
(\in d Amp) (= d (gcd r2 s2)) (not (=4 1))
(=12 (/r2d) (=52 (/s2d) (=t10) (=1t 0)
(= t1 (+ (x r1 s27) (% s1 r2’))) (= t2 (x r2 s27)))

(and (" t (+ r s)) (is-normalized-wrt t Amp)))

(implies (and (is-normalized-wrt r Amp) (is-—normalized-wrt s Amp)
(not (= r 0)) (not (= s 0)) (= rl (num r)) (= r2 (denom r))
(not (= r2 0)) (= s1 (num s)) (= s2 (denom s)) (not (= s2 0))
(not (and (= r2 1) (= s2 1))) (not (= r2 1)) (not (= s2 1))
(\in d Amp) (= d (gcd r2 s2)) (not (=d 1)) (= r2’ (/ r2 d))
(=82 (/ s2d)) (= t1 (+ (x r1 s2’) (x s1 r2’)))
(= t2 (% r2 52°)) (not (= t1 0)) (\in e Amp) (= e (gcd t1 d))
(= t1° (/ t1 e)) (= t2° (/ t2 e)) (= t (fract tl’ t2’)))

(and (" t (+ r s)) (is-normalized-wrt t Amp)))

o
File defined by parts 59ab, 161, 162.

The following theorems are due to the procedure calls of the Brown/Henrici algorithm,
namely due to the fract and the / function. They state that these calls are correct
with respect to the input specification of the corresponding subalgorithms.

"BrHenAdd-theorems.txt" 162 =

(implies (and (is-normalized-wrt r Amp) (is-—normalized-wrt s Amp)
(not (= r 0)) (not (= s 0)) (= rl (num r)) (= r2 (denom r))
(not (= r2 0)) (= s1 (num s)) (= s2 (denom s)) (not (= s2 0))
(= r21) (=s21))
(not (=1 0)))

(implies (and (is-normalized-wrt r Amp) (is-—normalized-wrt s Amp)
(not (= r 0)) (not (= s 0)) (= rl (num r)) (= r2 (denom r))
(not (= r2 0)) (= s1 (num s)) (= s2 (denom s)) (not (= s2 0))
(not (and (= r2 1) (= s2 1))) (not (= r2 1)) (not (= s2 1))
(\in d Amp) (= d (gecd r2 s2)) (= 4d 1))
(not (= (* r2 s2) 0)))

(implies (and (is-normalized-wrt r Amp) (is-normalized-wrt s Amp)
(not (= r 0)) (not (= s 0)) (=r1 (num r)) (= r2 (denom r))
(not (= r2 0)) (= s1 (num s)) (= s2 (denom s)) (not (= s2 0))
(not (and (= r2 1) (= s2 1))) (not (= r2 1)) (not (= s2 1))
(\in d Amp) (= d (gcd r2 s2)) (not (= d 1)))
(and (not (= d 0)) (d divides r2)))

(implies (and (is-normalized-wrt r Amp) (is-normalized-wrt s Amp)
(not (= r 0)) (not (= s 0)) (=r1 (num r)) (= r2 (denom r))
(not (= r2 0)) (= s1 (num s)) (= s2 (denom s)) (not (= s2 0))
(not (and (= r2 1) (= s2 1))) (not (= r2 1)) (not (= s2 1))
(\in d Amp) (= d (gcd r2 s2)) (not (=d 1)) (= r2’ (/ r2 d)))
(and (not (= d 0)) (d divides s2)))
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(implies (and (is-normalized-wrt r Amp) (is-—normalized-wrt s Amp)
(not (= r 0)) (not (= s 0)) (=rl1 (num r)) (= r2 (denom r))
(not (= r2 0)) (= s1 (num s)) (= s2 (denom s)) (not (= s2 0))
(not (and (= r2 1) (= s2 1))) (not (= r2 1)) (not (= s2 1))
(\in d Amp) (= d (gcd r2 s2)) (not (=d 1)) (= r2’ (/ r2 d))
(=82 (/ 52 d)) (= t1 (+ (*x r1 s2’) (* s1 r2’)))
(= t2 (% r2 52’)) (not (= t1 0)) (\in e Amp) (= e (gcd t1 d)))
(and (not (= e 0)) (e divides t1)))
o
File defined by parts 59ab, 161, 162.

For completion we also present the prototypes of the occurring subalgorithms, which
are necessary for the verification condition generator to construct the above given
theorems for generic Brown/Henrici addition.

"prototypes.txt" 163 =

(prototype
(+ r s out t)
(input (\in r I) (\in s I))
(output (\in t I)
(with (= t (+ r s)))))

(prototype
(* r s out t)
(input (\in r I) (\in s I))
(output (\in t I)
(with (= t (* r s)))))

(prototype
(num r out ri1)
(input (\in r Q))
(output (\in r1 I)
(with (= r1 (num 1))) ))

(prototype
(denom r out r2)
(input (\in r Q))
(output (\in r2 I)
(with (= r2 (denom r)) (not(= r2 0)) )) )

(prototype
(fract r s out t)
(input (\in r I) (\in s I)
(with (not(= s 0)) ))
(output (\in t Q) (with (= t (fract r s))) ))

(prototype
(/ r s out t)
(input (\in r I) (\in s I)
(with (not(= s 0)) (s divides r) ))
(output (\in t I) (with (=t (/ r s))) ))
<
File defined by parts 42a, 163.
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A.6 Proofs of the Remaining Verification Conditions

For completion we start with the necessary environment making the file BrHenAdd .miz
to a correct M1ZAR article accepted by the M1ZAR proof checker.

(BrHenAdd environment 164) =

environ

vocabulary
COORD,VECTSP_1,VECTSP_2,LINALG_1,REAL_1,GCD,QF;
notation
STRUCT_O,RLVECT_1,MCART_1,VECTSP_1,DOMAIN_1,ZFMISC_1,
VECTSP_2,GCD;

constructors

GCD,DOMAIN_1,VECTSP_1,ALGSTR_2;

theorems

TARSKI,MCART_1,VECTSP_1,VECTSP_2,GCD;
definitions

STRUCT_O;

clusters

STRUCT_O,ZFMISC_1;

begin

reserve X,Y,Z for set;

reserve I for domRing;

reserve a,b,c,d for Element of the carrier of I;
(lemmata for Brown/Henrici 131)

<
Definition referenced in part 75a.

Finally, here we present the MIzZAR proofs of the verification conditions we did not
prove in section 4.5. Note that these proofs follow the same scheme as the ones pre-
sented in the text. We start with theorems concerning the output t of the algorithm.
The main job is to show that the theorem of Brown and Henrici if necessary at
all is applicable, thus proving that t again is normalized. Showing t ~ r + s is
straightforward.

"BrHenAdd .miz" 165 =

theorem

(Amp is_multiplicative &

r is_normalized_wrt Amp & s is_normalized_wrt Amp &
r=0.Q&t=-s)

implies (t ~ r+s & t is_normalized_wrt Amp)

proof

M: now assume

HO: s is_normalized wrt Amp & r = 0.Q & t = s;

H1: 1.G <> 0.G by VECTSP_1:def 21;

H2: r = fract(0.G,1.G) by HO,Def74;

H4: 0.G = num(r) & 1.G = denom(r) by H2,H1,F1;
H5: r‘l = 0.G by H4,Defb5;

H6: r‘2 = 1.G by H4,Defb3;

H3: r+s = [r‘lxs‘2+s‘1*r‘2, r‘2+s‘2] by Def70
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H4:

H5:

= [0.Gxs‘2+s‘1#r‘2, r‘2xs‘2] by H5

= [0.G*s‘2+s‘1%1.G, 1.G*s‘2] by H6

= [0.G+s‘1*1.G, 1.G*s‘2] by VECTSP_2:26

= [s“1*1.G, 1.G*s°2] by VECTSP_2:1

= [s‘1, 1.G*s‘2] by VECTSP_2:1

.= [s¢1, s2] by VECTSP_2:1;
num(r+s) = (r+s)‘l by Defbb

.=s‘1 by H3,MCART_1:def 1;

denom(r+s) = (r+s)‘2 by Defb3

= s‘2 by H3,MCART_1:def 2;
H6: num(t)*denom(r+s) = s‘lxdenom(r+s) by HO,Defb5
= s‘1xs‘2 by H5
= num(r+s)* s‘2 by H4
= num(r+s)*denom(t) by HO,Defb3;

H7:

£ ~

(r+s) by H6,Def76;

thus thesis by HT7;

end;

thus thesis by M;

end;

theo

: M

rem

(Amp is_multiplicative &
r is_normalized_wrt Amp & s is_normalized_wrt Amp &

not(r = 0.Q) & s =0.Q & t =1r)
implies (t ~ r+s & t is_normalized_wrt Amp)
proof
M: now assume
HO: r is_normalized_wrt Amp & s = 0.Q & t = r;
Hi: 1.G <> 0.G by VECTSP_1:def 21;
H2: s = fract(0.G,1.G) by HO,Def74;
H4: 0.G = num(s) & 1.G = denom(s) by H2,H1,F1;
H5: s‘1 = 0.G by H4,Defb5;
H6: s‘2 = 1.G by H4,Defb3;
H3: r+s = [r‘lxs‘2+s‘1*r‘2, r‘2xs‘2] by Def70
= [r‘1*s‘2+0.G*r‘2, r‘2*s‘2] by H5
= [r‘1*1.G+0.G*r‘2, r‘2*1.G] by H6
= [r1*1.G+0.G, r‘2%1.G] by VECTSP_2:26
= [r‘1*1.G, r‘2*1.G] by VECTSP_2:1
= [r‘1, r‘2*1.G] by VECTSP_2:1
= [r‘1, r‘2] by VECTSP_2:1;
H4: num(r+s) = (r+s)‘l by Defb5
=r‘l by H3,MCART_1:def 1;
H5: denom(r+s) = (r+s)‘2 by Defb3
.=r‘2 by H3,MCART_1:def 2;
H6: num(t)*denom(r+s) = r‘l*denom(r+s) by HO,Defb5
= r‘lxr‘2 by H5
= num(r+s)* r‘2 by H4
.= num(r+s)*denom(t) by HO,Defb3;
H7: t ~ (r+s) by H6,Def76;

thus thesis by H7;

end;

thus thesis by M;

end;

: M
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theorem

(Amp is_multiplicative &

r is_normalized_wrt Amp & s is_normalized_wrt Amp &
not(r = 0.Q) & not(s = 0.Q) &

rl = num(r) & r2 = denom(r) & r2 <> 0.G &

s1 = num(s) & s2 = denom(s) & s2 <> 0.G &
not(r2 = 1.6 & s2 = 1.G) &r2 =1.G &

t = fract(rilxs2+s1,s2))

implies (t ~ r+s & t is_normalized_wrt Amp)
proof

M: now assume

HO: s is_normalized wrt Amp & rl = num(r) & r2 = denom(r) &

s1 = num(s) & s2 = denom(s) & s2 <> 0.G &
r2 = 1.G & t = fract(ri*s2+s1,s2);

Hib: s2 € Amp by HO,Def73;

Hi: denom(t) = s2 by HO,F1;

H2: num(t) = ril*s2+sl by HO,F1;

H3: denom(t) € Amp by Hib,H1;

H4:  gcd(ri*s2+s1,s2,Amp)
gecd(s1,s2,Amp) by GCD:39

1.G by HO,Def73;
H5: t is_normalized_wrt Amp by H4,H3,H2,H1,Def73;

H7: num(r+s) = rlxs2+sil*r2 by HO,F2
.= rl*s2+s1*1.G by HO
.= rl*s2+sl by VECTSP_2:1;
H8: denom(r+s) = r2*s2 by HO,F2
.= 1.Gxs2 by HO

.= 82 by VECTSP_2:1;

H9: num(t)*denom(r+s) = (rl*s2+sl)*denom(r+s) by H2
= (r1*s2+s1)*s2 by H8
= num(r+s)*s2 by H7
= num(r+s)*denom(t) by H1;

H10: t ~ (r+s) by H9,Def76;

thus thesis by H10,H5;

end; :: M

thus thesis by M;
end;

theorem

(Amp is_multiplicative &

r is_normalized_wrt Amp & s is_normalized_wrt Amp &
not(r = 0.Q) & not(s = 0.Q) &

rl = num(r) & r2 = denom(r) & r2 <> 0.G &

sl = num(s) & s2 = denom(s) & s2 <> 0.G &

not(r2 = 1.G & s2 =1.G) &r2 <> 1.6 &s2=1.G¢&

t = fract(sl*r2+ri,r2))

implies (t ~
proof
M: now assume
HO: r is_normalized_wrt Amp & rl = num(r) & r2 = denom(r) &

r2 <> 0.G & s1 = num(s) & s2 = denom(s) &

r+s & t is_normalized_wrt Amp)
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s2 = 1.G & t = fract(sl*r2+rl, r2);
Hib: r2 € Amp by HO,Def73;
Hi: denom(t) = r2 by HO,F1;
H2: num(t) = sl#r2+rl by HO,F1;
H3: denom(t) € Amp by Hib,H1;
H4: gcd (s1xr2+r1,r2, Amp)
ged(rl,r2, Amp) by GCD:39
1.G by HO,Def73;
H5: t is_normalized_wrt Amp by H4,H3,H2,H1,Def73;

H7: num(r+s) = rlxs2+sil*r2 by HO,F2
.= r1x1.G+sl*r2 by HO
.= rl+sl*r2 by VECTSP_2:1;
H8: denom(r+s) = r2*s2 by HO,F2
.= r2%1.G by HO

.= r2 by VECTSP_2:1;

H9: num(t)*denom(r+s) = (sl*r2+rl)*denom(r+s) by H2
= (sl#r2+rl)#*r2 by H8
= num(r+s)*r2 by H7
= num(r+s)*denom(t) by H1;

H10: t ~ (r+s) by H9,Def76;

thus thesis by H10,H5;
end; :: M

thus thesis by M;

end;

theorem

(Amp is_multiplicative &

r is_normalized_wrt Amp & s is_normalized_wrt Amp &
not(r = 0.Q) & not(s = 0.Q) &

rl = num(r) & r2 = denom(r) & r2 <> 0.G &

sl = num(s) & s2 = denom(s) & s2 <> 0.G &

not(r2 = 1.6 & s2 = 1.G) & r2 <> 1.G & s2 <> 1.G &
d € Amp & d = gcd(r2,s2,Amp) & d <> 1.G &

r2’ = r2/d & s2’ = s2/d &

tl = ri*s2’+s1*r2’ & t2 = r2*s2’ & t1 = 0.G & t = 0.Q)
implies (t ~ r+s & t is_normalized_wrt Amp)

proof

M: now assume

HO: r1l = num(r) & r2 = denom(r) & r2 <> 0.G &
sl = num(s) & s2 = denom(s) & s2 <> 0.G &

d = gcd(r2,s2,Amp) & d <> 1.G &
r2’ = r2/d & s2’ = s2/d &
tl = ri*s2’+sl*r2’ & t2
tl = 0.G &t = 0.Q;
H2a: 1.G <> 0.G by VECTSP_1:def 21;
H2: t = fract(0.G,1.G) by HO,Def74;
H4: 0.G = num(t) & 1.G = denom(t) by H2,H2a,F1;
H3: denom(t) € Amp by H4,GCD:21;
Hi: gcd(num(t) ,denom(t),Amp) = 1.G by H4,GCD:32;
H7: t is_normalized_wrt Amp by H1,H3,Def73;

r2*s2’ &

H9: gcd(r2,s2,Amp) <> 0.G by HO,GCD:33;
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Hi0a: gcd(r2,s2,Amp) divides r2 by GCD:27;
H10: gcd(r2,s2,Amp) divides sl*r2 by H10a,GCD:7;
Hila: gcd(r2,s2,Amp) divides s2 by GCD:27;
H11: gcd(r2,s2,Amp) divides rl*s2 by GCD:7,Hlla;
H13: gcd(r2,s2,Amp) divides ril*s2+slxr2 by H10,H11,L1;
H8: ri1xs2+sl1*r2 = 0.G
proof
M3: 0.G
r1*(s2/gcd(r2,s2,Amp) ) +s1*(r2/gcd(r2,s2,Amp)) by HO
= (r1#s2)/gcd(r2,s2,Amp) +s1*(r2/gcd(r2,s2,Amp)) by H9,H11la,L3
(r1*s2)/gecd(r2,s2,Amp) +(s1*r2) /gcd(r2,s2,Amp) by H9,H10a,L3
.= (r1*s2+s1%*r2)/gcd(r2,s2,Amp) by H9,H11,H10,L2;
thus thesis by H13,H9,M3,GCD:8;

end;
H14: num(r+s) = 0.G by H8,HO,F2;
H16: num(t)*denom(r+s) = 0.G*denom(r+s) by H4
.= 0.G by VECTSP_2:26
.= 0.G*1.G by VECTSP_2:26
.= num(r+s)*1.G by H14

.= num(r+s)*denom(t) by H4;
H17: t ~ (r+s) by H16,Def76;

thus thesis by H17,H7;
end; :: M

thus thesis by M;

end;

theorem

(Amp is_multiplicative &

r is_normalized_wrt Amp & s is_normalized_wrt Amp &
not(r = 0.Q) & not(s = 0.Q) &

rl = num(r) & r2 = denom(r) & r2 <> 0.G &

sl = num(s) & s2 = denom(s) & s2 <> 0.G &

not(r2 = 1.6 & s2 = 1.G) & r2 <> 1.G & s2 <> 1.G &
d € Amp & d = gcd(r2,s2,Amp) & d <> 1.G &

r2’ = r2/d & s2’ = s2/d &

tl = ri*s2’+sl*r2’ & t2 = r2*s2’ &

tl <> 0.G & e € Amp & e = gcd(tl,d,Amp) &

t1’ = tl/e & t2’ = t2/e & t = fract(t1’,t2’))
implies (t ~
proof

assume HO: Amp is_multiplicative &

r+s & t is_normalized_wrt Amp)

r is_normalized_wrt Amp & s is_normalized_wrt Amp &
not(r = 0.Q) & not(s = 0.Q) &
rl = num(r) & r2 = denom(r) & r2 <> 0.G &
s1 = num(s) & s2 = denom(s) & s2 <> 0.G &
not(r2 = 1.G & s2 = 1.G) & r2 <> 1.G & s2 <> 1.G &
d € Amp & d = gcd(r2,s2,Amp) & d <> 1.G &
r2’ =r2/d & s2’ = s2/d &
tl = ri*s2’+sl*r2’ & t2 = r2*s2’ &
tl <> 0.G & e € Amp & e = gcd(tl,d,Amp) &
t1’ = tl/e & t2’ = t2/e & t = fract(tl1’,t2’);
Hi: t2’ <> 0.G by HO,BH14;
H2: gcd(rl,r2,Amp) = 1.G & gcd(sl,s2,Amp) = 1.G by HO,Def73;
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H4:
H5:

H6:

HT:
H8:

H9:

H10:

Hi1:

t1’ = num(t) & t2’ = denom(t) by HO,H1,F1;
num(t) = t1/gcd(tl,d,Amp) by HO,H4
.= t1/gcd(r1*s2’+s1%r2’ ,gcd(r2,s2,Amp) ,Amp) by HO
.= t1/gcd(r1*(s2/gcd(r2,s2,Amp)) +si1*(r2/gcd(r2,s2,Amp)),
ged(r2,s2,Amp) ,Amp) by HO
.= (r1*(s2/gcd(r2,s2,Amp) ) +s1*(r2/gcd(r2,s2,Amp))) /
ged(ri1x(s2/gcd(r2,s2,Amp) ) +s1*(r2/gecd(r2,s2,Amp)),
gcd(r2,s2,Amp) ,Amp) by HO;
denom(t) = t2/gcd(t1,d,Amp) by HO,H4
t2/gcd (r1*s2’+s1*r2’ ,gcd(r2,s2,Amp) ,Amp) by HO
t2/gcd (r1*(s2/gcd(r2,s2,Amp) ) +s1*(r2/gecd(r2,s2,Amp)),
gecd(r2,s2,Amp) , Amp) by HO
(r2*(s2/gcd(xr2,s2,Amp))) /
ged(rix(s2/gcd(r2,s2,Amp) ) +s1*(r2/ged (r2,s2,Amp)),
gcd(r2,s2,Amp) , Amp) by HO;
ged(r2,s2,Amp) <> 0.G by HO,GCD:33;
gcd(rix(s2/gcd(r2,s2,Amp)) +s1*(r2/gcd(r2,s2,Amp)),
gecd(r2,s2,Amp) ,Amp) <> 0.G by H7,GCD:33;
gcd(rix(s2/gcd(r2,s2,Amp)) +s1*(r2/gecd(r2,s2,Amp)),
r2*(s2/gcd(r2,s2,Amp)) ,Amp)
= gcd(rix(s2/gecd(r2,s2,Amp))+s1*(r2/gcd(r2,s2,Amp)),
gecd(r2,s2,Amp) ,Amp) by HO,H2,GCD:40;
gcd (num(t) ,denom(t) ,Amp) = 1.G by H5,H6,H8,H9,GCD:38;

r2 € Amp & s2 € Amp by HO,Def73;

reconsider r2,s2 as Element of Amp by H11;

H12:
H13:
H18:

gcd(r2,s2,Amp) € Amp by GCD:def 12;
ged(r2,s2,Amp) divides s2 by GCD:def 12;
gecd(r2,s2,Amp) <> 0.G by HO,GCD:33;

reconsider z1 = gcd(r2,s2,Amp) as Element of Amp by H12;

H14:

s2/z1 € Amp by HO,H13,H18,GCD:24;

reconsider z2 = s2/gcd(r2,s2,Amp) as Element of Amp by H14;

H15:

r2*z2 € Amp by HO,GCD:def 9;

reconsider z3 = r2*(s2/gcd(r2,s2,Amp)) as Element of Amp by H15;
reconsider z4 = gcd(ri*(s2/gcd(r2,s2,Amp))+si*(r2/gcd(r2,s2,Amp)),

H16:
H23:
H17:

H19:
H20:
H21:

H24:
H27:
H28:
H29:
H32:

gcd(r2,s2,Amp) ,Amp) as Element of Amp by GCD:def
z4 <> 0.G by H18,GCD:33;
ged(r2,s2,Amp) divides r2 by GCD:def 12;
z4 divides z3
proof
M1: z4 divides gcd(r2,s2,Amp) by GCD:def 12;
M3: z4 divides r2 by M1,H23,GCD:2;
thus thesis by M3,GCD:7;
end;
z3/z4 € Amp by HO,H16,H17,GCD:24;
denom(t) € Amp by H19,H6;
t is_normalized_wrt Amp by H20,H10,Def73;

gcd(r2,s2,Amp) divides ril*s2 by H13,GCD:7;
ged(r2,s2,Amp) divides sl*r2 by H23,GCD:7;
ged(r2,s2,Amp) divides ((ril*s2)*r2) by H24,GCD:7;
gcd(r2,s2,Amp) divides ((s1*r2)*r2) by H27,GCD:7;
((r1*(s2/gcd(r2,s2,Amp))) +
(s1*(r2/gcd(r2,s2,Amp))) ) *(r2*s2)
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H33a:

H37:

H38:

((r1*(s2/gcd(r2,s2,Amp)) ) * (r2*s2))
((s1*(r2/gcd(r2,s2,Amp))) *(r2*s2))
(((r1*s2)/gcd(r2,s2,Amp) ) * (r2%s2))
((s1*(r2/gcd(r2,s2,Amp)) ) * (r2%s2))
(((r1*s2)/gcd(r2,s2,Amp) ) *(r2*s2))
(((s1*r2)/gcd(r2,s2,Amp) ) * (r2*s2))
((((r1*s2)/gcd(r2,s2,Amp) ) *r2) *s2)
(((s1¥r2)/gcd(r2,s2,Amp) ) *(r2*s2))
((((r1*s2)/gcd(r2,s2,Amp) ) *r2) *s2)
((((s1%r2)/gcd(r2,s2,Amp) ) *r2) *s2)
((((r1*s2)*r2)/gcd(r2,s2,Amp) ) *s2)
((((s1%r2)/gcd(r2,s2,Amp) ) *r2) *s2)
((((r1*s2)*r2)/gcd(r2,s2,Amp) ) *s2)
((((s1*r2)*r2)/gcd(r2,s2,Amp) ) *s2)
((((r1*s2)*r2)*s2)/gcd(r2,s2,Amp))
((((s1*r2)*r2)/gcd(r2,s2,Amp) ) *s2)
((((r1*s2)*r2)*s2)/gcd(r2,s2,Amp))
((((s1*r2)*r2)*s2)/gcd(r2,s2,Amp))

+

+

+

+

+

+

+

+

+

by
by
by
by
by
by
by
by

by

VECTSP_2:1

H18,H13,L3

H18,H23,L3

VECTSP_1:def

VECTSP_1:def

H18,H24,13

H18,H27,L3

H18,H28,L3

H18,H29,L3;

gcd(r2,s2,Amp) divides (r2*s2) by H23,GCD:7;
H33: gcd(r2,s2,Amp) divides ((r2#s2)#*rl) by H33a,GCD:7;
H34: gcd(r2,s2,Amp) divides ((r2*s2)*sl1) by H33a,GCD:7;
(r2*(s2/gcd(r2,s2,Amp))) *((ri*s2)+(s1*r2))

((r2*(s2/gcd(r2,s2,Amp))) *(ri*s2))
((r2*(s2/gcd(r2,s2,Amp)) ) *(s1*r2))
(((r2*(s2/gcd(r2,s2,Amp))) *rl) *s2)
((r2*(s2/gcd(r2,s2,Amp))) *(s1*r2))
(((r2*(s2/gcd(r2,s2,Amp))) *rl) *s2)
(((r2*(s2/gcd(r2,s2,Amp))) *s1) *r2)
((((r2*s2)/gcd(r2,s2,Amp) ) *rl) *s2)
(((r2x(s2/gcd(r2,s2,Amp))) *s1) *r2)
((((r2*s2)/gcd(r2,s2,Amp) ) *rl) *s2)
((((r2*s2)/gcd(r2,s2,Amp)) *s1) *r2)
((((r2#s2)*r1) /gcd(r2,s2,Amp) ) *s2)
((((r2*s2)/gcd(r2,s2,Amp) ) *s1) *r2)
((((r2*s2)*r1) /gcd(r2,s2,Amp) ) *s2)
((((r2#s2)*s1) /gcd(r2,s2,Amp) ) *r2)
((((r2*s2)*r1) *s2) /gcd(r2,s2,Amp))
((((r2*s2)*s1)/gcd(r2,s2,Amp) ) *r2)
((((r2#s2)*r1)*s2)/gcd(r2,s2,Amp))
((((r2*s2)*s1)*r2) /gcd(r2,s2,Amp))
((((r1*s2)*r2)*s2)/gcd(r2,s2,Amp))
((((r2*s2)*s1)*r2) /gcd(r2,s2,Amp))
((((r1*s2)*r2)*s2)/gcd(r2,s2,Amp))
((s1*((r2*s2)*r2))/gcd(r2,s2,Amp))
((((r1*s2)*r2)*s2)/gcd(r2,s2,Amp))
((s1*((r2*r2)*s2))/gcd(r2,s2,Amp))
((((r1*s2)*r2)*s2)/gcd(r2,s2,Amp))
(((s1*(r2xr2))*s2)/gcd(r2,s2,Amp))
((((r1*s2)*r2)*s2)/gcd(r2,s2,Amp))
((((s1*r2)*r2)*s2)/gcd(r2,s2,Amp))

((r1*(s2/gcd(r2,s2,Amp))) +
(s1x(r2/gcd(r2,s2,Amp)) ) ) * (r2*s2)
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+

+

+

+

+

+

+

+

+

+

+

+

+

+

by
by
by
by
by
by
by
by
by
by
by
by
by

by

VECTSP_2:1

VECTSP_1:def

VECTSP_1:def

H18,H13,L3

H18,H13,L3

H18,H33a,L3

H18,H33a,L3

H18,H33,L3

H18,H34,L3

VECTSP_1:def

VECTSP_1:def

VECTSP_1:def

VECTSP_1:def

VECTSP_1:def

16

16

16

16

16

16

16

16

16;



H39:

H40:

H42:

H43:

H44:

H46:

H49:

H50:

thus
end;

<o

= (r2*(s2/gcd(r2,s2,Amp))) *((ri*s2)+(s1*r2)) by H32,H37;
gecd ((r1*(s2/gcd(r2,s2,Amp)) )+ (s1*(r2/gecd(r2,s2,Amp))),
gecd(r2,s2,Amp) , Amp)
<> (0.G) by GCD:33,H18;
gcd ((r1*(s2/gcd(r2,s2,Amp)) )+ (s1*(r2/gecd(r2,s2,Amp))),
gcd(r2,s2,Amp) ,Amp) divides
((r1x(s2/gcd(r2,s2,Amp)))+(s1*(r2/gcd(r2,s2,Amp))))
by GCD:def 12;
ged ((r1*(s2/gcd(r2,s2,Amp) ) ) +(s1*(r2/gecd(r2,s2,Amp))),
gcd(r2,s2,Amp) , Amp)
divides gcd(r2,s2,Amp) by GCD:def 12;
ged ((r1*(s2/gcd(r2,s2,Amp) ) ) +(s1*(r2/gecd(r2,s2,Amp))),
gcd(r2,s2,Amp) , Amp)
divides r2 by H23,H42,GCD:2;
ged ((r1*(s2/gcd(r2,s2,Amp) ) ) +(s1*(r2/gecd(r2,s2,Amp))),
gcd(r2,s2,Amp) , Amp)
divides (r2*(s2/gcd(r2,s2,Amp))) by H43,GCD:7;
(((r1x(s2/gcd(r2,s2,Amp)) ) +(s1*(r2/gcd(r2,s2,Amp)))) /
gcd ((r1*(s2/gecd(r2,s2,Amp)) )+ (s1*(r2/gcd(r2,s2,Amp)) ),
gecd(r2,s2,Amp) ,Amp))
* (r2*s2)
= (((ri1x(s2/gcd(r2,s2,Amp)))+(s1*(r2/gcd(r2,s2,Amp)))) =*
(r2xs2)) /
ged ((r1*(s2/gcd(r2,s2,Amp) ) ) +(s1*(r2/gcd(r2,s2,Amp))),
gecd(r2,s2,Amp) ,Amp) by H39,H40,L3
.= ((r2#(s2/gcd(r2,s2,Amp) ) ) * ((r1*s2)+(s1*r2))) /
ged ((r1*(s2/gcd(r2,s2,Amp) ) ) +(s1*(r2/gcd(r2,s2,Amp))),
gcd(r2,s2,Amp) ,Amp) by H38
.= ((r2x(s2/gcd(r2,s2,Amp))) /
ged ((r1*(s2/gcd(r2,s2,Amp) ) ) +(s1*(r2/gcd(r2,s2,Amp))),
gcd(r2,s2,Amp) , Amp) )
*((ri1xs2)+(s1*r2)) by H39,H44,L3;
num(t)*denom(r+s)
= num(t)*(r2*s2) by HO,F2
.= (((r1x(s2/gcd(r2,s2,Amp)) ) +(s1*(r2/gcd(xr2,s2,Amp)))) /
ged ((r1*(s2/gcd(r2,s2,Amp) ) ) +(s1*(r2/gcd(r2,s2,Amp))),
gecd(r2,s2,Amp) ,Amp))
*(r2*s2) by H5
.= ((r2*x(s2/gcd(r2,s2,Amp))) /
gecd ((r1*(s2/gcd(r2,s2,Amp)) ) +(s1*(r2/gecd(r2,s2,Amp))),
gecd(r2,s2,Amp) ,Amp))
*((rixs2)+(s1*r2)) by H46
denom(t) *((r1*s2)+(s1*r2)) by H6
denom(t) *num(r+s) by HO,F2;
t ~ (r+s) by H49,Def76;

thesis by H21,H50;

File defined by parts 75ab, 76a, 77ab, 78, 79ab, 80ab, 81ab, 82ab, 83, 84ab, 85abc, 86ab, 87ab,
88abc, 89, 90abc, 91, 158b, 159, 160, 165, 174.

We conclude with the remaining theorems concerning correctness of the occurring
procedure calls, namely of the subalgorithms / and fract. Note that all proofs are
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done by simply referencing a suitable theorem.

"BrHenAdd .miz" 174 =

theorem
(Amp is_multiplicative &

r is_normalized_wrt Amp & s is_normalized_wrt Amp &
not(r = 0.Q) & not(s = 0.Q) &

rl = num(r) & r2
s1 = num(s) & s2
r2 =1.G & s2 =
implies not(1.Q =

denom(r) & r2
denom(s) & s2
.G)

.Q) by VECTSP_1:def 21;

0.G &
0.G &

O =

theorem

(Amp is_multiplicative &

r is_normalized_wrt Amp & s is_normalized_wrt Amp &
not(r = 0.Q) & not(s = 0.Q) &

rl = num(r) & r2 = denom(r) & r2 <> 0.G &

s1 = num(s) & s2 = denom(s) & s2 <> 0.G &

not(r2 = 1.G & s2 = 1.G) & r2 <> 1.G & s2 <> 1.G &
d € Amp & d = gcd(r2,s2,Amp) & d = 1.G)

implies r2*s2 <> 0.G by VECTSP_2:15;

theorem

(Amp is_multiplicative &

r is_normalized_wrt Amp & s is_normalized_wrt Amp &
not(r = 0.Q) & not(s = 0.Q) &

rl = num(r) & r2 = denom(r) & r2 <> 0.G &

s1 = num(s) & s2 = denom(s) & s2 <> 0.G &

not(r2 = 1.6 & s2 = 1.G) & r2 <> 1.G & s2 <> 1.G &

d € Amp & d = gcd(r2,s2,Amp) & d <> 1.G)

implies (d <> 0.G & d divides r2) by GCD:def 12,GCD:33;

theorem

(Amp is_multiplicative &

r is_normalized_wrt Amp & s is_normalized_wrt Amp &
not(r = 0.Q) & not(s = 0.Q) &

rl = num(r) & r2 = denom(r) & r2 <> 0.G &

s1 = num(s) & s2 = denom(s) & s2 <> 0.G &

not(r2 = 1.G & s2 = 1.G) & r2 <> 1.G & s2 <> 1.G &

d € Amp & d = gcd(r2,s2,Amp) & d <> 1.G & r2’ = r2/d)
implies (d <> 0.G & d divides s2) by GCD:def 12,GCD:33;

theorem

(Amp is_multiplicative &

r is_normalized_wrt Amp & s is_normalized_wrt Amp &
not(r = 0.Q) & not(s = 0.Q) &

rl = num(r) & r2 = denom(r) & r2 <> 0.G &

s1 = num(s) & s2 = denom(s) & s2 <> 0.G &

not(r2 = 1.G & s2 = 1.G) & r2 <> 1.G & s2 <> 1.G &
d € Amp & d = gcd(r2,s2,Amp) & d <> 1.G &

r2’ =r2/d & s2’ = s2/d &

tl = ri*s2’+sl*r2’ & t2 = r2*s2’ &

t1 <> 0.G & e € Amp & e = gcd(tl,d,Amp))

implies (e <> 0.G & e divides t1) by GCD:def 12,GCD:33;
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File defined by parts 75ab, 76a, 77ab, 78, 79ab, 80ab, 81ab, 82ab, 83, 84ab, 85abc, 86ab, 87ab,
88abc, 89, 90abc, 91, 158b, 159, 160, 165, 174.
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Appendix B

Additional SCHEME Code

This chapter contains further SCHEME code of the verification condition generator we
did not include in the description in chapter three. Note that listing the code here
enables the extraction of the generator’s complete source code from this document
using STWEB.

B.1 Some Further Main Functions

We start with some of the more important procedures the generator uses. Procedure
insert-pred-before is a direct counterpart of insert-pred-after we presented in
section 3.3. We use it to annotate sequences.

"annotations.scm" 177 =

(define (insert-pred-before symbol)
(lambda (prog . theme)
(if (equal? symbol ’all)
(if (empty? prog)
prog
(if (equal? (car prog) ’begin)
(let ((rest
((insert-pred-before ’all) (cddr prog))))
(append (list ’begin (cadr prog))
rest))
(let ((rest
((insert-pred-before ’all) (cdr prog))))
(begin
(set! prednr (+ prednr 1))
(append (list prednr (car prog))
rest))) ))
(do ((format (get formats (get-key prog))
(cdr format))
(pr prog (cdr prog))
(ergprog ’() (append ergprog (list (car pr)) )))
((equal? (car format) symbol)
(begin
(set! prednr (+ prednr 1))
(append ergprog (list prednr pr))))
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(if (empty? format)
(error ’insert-pred-before: symbol ’does ’not
’appear ’in ’format ’of prog)) )) ))
<o
File defined by parts 45a, 46b, 48b, 49a, 177.

Procedure is-invariant? is due to our rule concerning procedure calls: Together with
procedure is-free it tests whether the given variables occur in the given formula.

"guesses.scm" 178 =
(define (is-invariant? formula vars)
(cond ((empty? vars) #t)
((is—-free (car vars) formula) #f)
(else
(is-invariant? formula (cdr vars))) ))

(define (is-free obj formula)

(define (is-free-h obj formula)
(cond ((empty? formula) #f)
((equal? formula obj) #t)
((and (not(list? formula))
(not (member formula logicals-list))
(not (equal? formula obj))) #f)
((1ist? formula)
(or (is-free-h obj (car formula))
(is-free-h obj (cdr formula))))
(else #f) ))

(let ((form (expand formula)))
(if (equal? form ’7) #t
(is-free-h obj form))))
o
File defined by parts 55ab, 56ac, 178.

Procedure construct is used in every stage of the generator. It gets an abstract scheme
and another object  an algorithm, an annotated algorithm or a formula  as input.
Out of the abstract scheme it builds the result by filling in certain parts of the scheme
with the corresponding parts of the given object.

Because of its widespread use we describe this procedure in more detail: An abstract
scheme consists of keywords. Some keywords like ’proc, ’inv or the keywords
contained in the vocabulary list voc-1list allow an immediate result. Keywords
contained in symbol-list action for instance  are replaced by using the format
definition of the given object: Procedure look-up computes the object’s statement
corresponding to the given keyword. The third category of keywords consists of proce-
dures contained in construct-1list — for example inputspec or outputparam. These
procedures are simply evaluated giving the desired result.

We use procedure construct for instance to compute current Hoare triples out of the
abstract ones given by the activities.
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"utilities.scm" 179 =
(define (construct obj scheme)
(cond ((equal? scheme ’proc) obj)
((or (empty? scheme) (is-prednr? scheme)
(member scheme key-list) (member scheme voc-list)
(member scheme proc-list) (member scheme var-list)
(member scheme logicals-list)) scheme)
((equal? scheme ’pre) (car obj))
((or (equal? scheme ’post)
(equal? scheme ’intermed))
(caddr obj))
((equal? scheme ’inv) (caddr (cadr obj)))
((equal? scheme ’first) (cadr obj))
((member scheme symbol-list) (lookup scheme obj))
((member scheme construct-list)
(apply (eval (list scheme)) (list obj)))
((and (1ist? scheme)
(member (car scheme) construct-list))
(apply (eval scheme) (list obj)))

((1ist? scheme)
(cons (construct obj (car scheme))

(construct obj (cdr scheme))))
(else (error ’procedure ’construct:
scheme ’is ’unknown))))
o
File defined by parts 179, 180ab, 181, 183c, 194ab, 195, 196ab, 197, 198.

Procedure lookup gets a symbol and a program as input. It takes the format definition
of the given program and checks, whether the symbol appears within it. If the symbol
is found, lookup returns the corresponding part of the program.

"utilities.scm" 180a =

(define (lookup symbol prog)

(define (lookup-h symbol prog format)
(do ((pr (if (is-annotated? prog) (cadr prog) prog)
(if (and (not(empty? (cdr pr)))
(number? (cadr pr))
(not (empty? (cddr pr))))
(cddr pr) (cdr pr)))
(form format (cdr form)))
((or (equal? (car form) symbol)
(empty? (cdr form)))
(if (equal? (car form) symbol)
(car pr) #£f)) ))

(let ((format (get formats (get-key prog)) ))
(if (equal? (car format) (get-key prog))
(let ((result (lookup-h symbol prog format)))
(if result result
(error ’procedure ’lookup: symbol
’does ’not ’appear ’in
(get formats (get-key prog)))))

(do ((form format (cdr form)))
((fits? prog (car form))
(let ((result (lookup-h symbol prog (car form))))
(if result result
(error ’procedure ’lookup: symbol ’does
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'not ’appear ’in (car form)) )))
(if (empty? (cdr form))
(error ’procedure ’lookup: symbol
’does ’not ’appear ’in
(get formats (get-key prog))) )))))
o
File defined by parts 179, 180ab, 181, 183c, 194ab, 195, 196ab, 197, 198.

Procedure get-actual looks for the format definition fitting to the given program.
Note that for instance the if-statement has more than one possible format.

"utilities.scm" 180b =

(define (get-actual formats prog)
(let ((format (get formats (get-key prog))))
(if (1ist? (car format))
(do ((forms format (cdr forms)))
((equal? (length (car forms)) (length prog))
(car forms))
(if (empty? forms)
(error ’procedure ’get-actual:
’no ’format ’for prog)))
format)))
o
File defined by parts 179, 180ab, 181, 183c, 194ab, 195, 196ab, 197, 198.

To handle procedure calls we have to substitute formal parameters by actual parame-
ters. In addition we need substitution for some rules of the Hoare calculus, for instance
for the assignment-rule. We decided to separate stating that a substitution has to take
place and actually executing a substitution. This allows the constructed abstract the-
orems to include terms like (subst 0 (x y) (u v)) where 0 is an abstract predicate,
hence to get a complete list of verification conditions independent of whether specific
predicates can be constructed for the current algorithm.

Consequently, we get a procedure subst and a procedure do-subst — which does
nothing more than executing substitutions in a given formula by applying procedure
subst.

"utilities.scm" 181 =
(define (do-subst formula)
(cond ((or (empty? formula)
(not(list? formula))) formula)
((and (1ist? formula)
(equal? (car formula) ’subst))
(apply subst (do-subst (cdr formula))))
(else (cons (do-subst (car formula))
(do-subst (cdr formula)))) ))

(define (subst formula vars terms)
(define (subst-h formula var term)

(cond
((or (null? formula) (and (not(list? formula))
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o

(not (equal? formula var)))) formula)
((equal? formula var) term)
;; the following allows using function calls like (set! x (f y)).
((and (1ist? formula) (equal? (car formula) ’=)
(1ist? (caddr formula)) (not(list? (cadr formula)))
(member (caaddr formula) proc-list)
(not (member (caaddr formula) operator-list)))
(let ((form
(get-outputspec
(get-prototype (caaddr formula) spec-list))))
(if (member* (caaddr formula) form)
(cons ’= (subst-h (cdr formula) var term))
(subst-h
(subst (get-outputspec
(get-prototype (caaddr formula) spec-list))
(append (input-vars (caaddr formula))
(output-vars (caaddr formula)))
(append (cdaddr formula)
(list (cadr formula))))
var term))))
((and (1ist? formula)
(member (car formula) proc-list)
(not (member (car formula) operator-list)))
(let ((form
(get-outputspec
(get-prototype (car formula) spec-list))))
(if (member* (car formula) form)
(cons (car formula)
(subst-h (cdr formula) var term))
(subst-h (subst (get-outputspec
(get-prototype (car formula) spec-list))
(append (input-vars (car formula))
(output-vars (car formula)))
(cdr formula))
var term))))
(else (cons (subst-h (car formula) var term)
(subst-h (cdr formula) var term)))))

(let ((form (simple formula)))
(if (list? vars)
(if (and (1list? terms) (equal? (length vars) (length terms)))
(let ((res (subst-h form (car vars) (car terms))))
(if (empty? (cdr vars)) res

(subst res (cdr vars) (cdr terms))))

(error ’subst: vars ’and terms ’are ’not ’correct
’for form))

(subst-h formula vars terms))))

File defined by parts 179, 180ab, 181, 183c, 194ab, 195, 196ab, 197, 198.

We conclude this section with the procedures concerning the format check. Note that
annotated algorithms’ format is not checked once again, because we assume that an-
notated algorithms are due to the first stage of the generator and hence already have
been checked for correct format.
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(get key of prog 183a) =
(if (empty? prog)
(error ’procedure ’get-key: prog ’'has ’no ’key)
(let ((key (get-key prog)))
o
Definition referenced in part 39b.

(check format of prog 183b) =

(check-format prog (get formats key))
o
Definition referenced in part 39b.

"utilities.scm" 183c =

(define (check-format prog format)

(define (check-format-h prog format)
(cond ((and (not(equal? (length prog) (length format)))
(not (member ’* format))) #f)
((or (empty? prog)
(equal? format ’(* *))
(equal? format ’(x))) #t)
((equal? (car format) (car prog))
(check-format-h (cdr prog) (cdr format)))
((or (member (car format) symbol-list)
(member (car prog) proc-list))
(check-format-h (cdr prog) (cdr format)))
(else #£f) ))

(cond ((is-annotated? prog) #t)
((1ist? (car prog)) #t)
((empty? format)
(error ’procedure ’check-format:
prog ’has ’wrong ’format))

((equal? (car format) (get-key prog))
(if (not (check-format-h prog format))

(error ’procedure ’check-format:

prog ’has ’wrong ’format)))

(else (if (not (check-format-h prog (car format)))

(check-format prog (cdr format)))) ))
(o
File defined by parts 179, 180ab, 181, 183c, 194ab, 195, 196ab, 197, 198.

B.2 Table Initialization

In this section we present the necessary initialization of tables. This includes the
different kinds of activities as well as some lists of necessary keywords. We start with
defining access functions due to the alist-package of the SLib.
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"initialize-tables.scm" 184a =
(define put (alist-associator equal?))
(define remove (alist-remover equal?))
(define (get table key)
(let ((result ((alist-inquirer equal?) table key)))

(if result result
(error ’procedure ’get: key ’has ’no ’entry))))

(define (insert-newconstruct name format annotation . generation)
(set! formats (put formats name format))
(set! annotations (put annotations name annotation))
(if (not(empty? generation))
(set! generations (put generations name (car generation))))
(set! key-list (cons name key-list)))
o
File defined by parts 35c, 184ab, 185ab, 186b.

The following lists include keywords concerning activities representing Hoare rules,
logical operations, procedure calls as well as keywords due to the input/output speci-
fications of our example algorithms.!

"initialize-tables.scm" 184b =
(set! key-list
’ (subst proc is-invariant-for is-free?))
(set! logicals-list
’(true false not and or implies))
(set! symbol-list
’(condition action actionl action2 var term))
(set! construct-list
’ (inputspec outputspec formalparam actualparam outputparam))
(set! operator-list
7 (+ %))
(set! voc-list
>(= ” \in is_normalized_wrt delta < is_associated_to
divides gcd Amp))

<
File defined by parts 35c, 184ab, 185ab, 186b.

Now rules for annotating algorithms and generating theorems are inserted. Most of
these rules have already been presented in chapter three.

"initialize-tables.scm" 185a =
(insert rules 36¢, ... )
(while rule 54b)
(assignment rule 53)
(procedure call rule 54c)
(return rule 54a)
(set! guesses (put guesses ’begin ’((rec ’all))))
(set! guesses (put guesses ’return ’none))

o
File defined by parts 35c, 184ab, 185ab, 186b.

The following lists are automatically constructed out of the file prototypes.txt,
namely a list of the specifications of available subalgorithms, a list of occurring subal-
gorithm’s names and a list of the occurring variable’s identifiers.

IThis keywords could also have been constructed out of the input files; compare for instance the
construction of the list of variables below.
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"initialize-tables.scm" 185b =
(set! spec-list ’())
(let ((current-input-port (open-input-file "prototypes.txt")))
(do ((obj (read current-input-port)
(read current-input-port)))
((eof-object? obj) (close-input-port current-input-port))
(set! spec-list (append spec-list (list obj))) ))
(make proc-list 185c¢)
(read variables 186a)

<
File defined by parts 35c, 184ab, 185ab, 186b.

(make proc-list 185c) =
(set! proc-list ’(g))
(do ((sp-list spec-list (cdr sp-list)))
((empty? sp-list) proc-list)
(set! proc-list
(cons (oper (car sp-list))
proc-list)))

<
Definition referenced in part 185b.

(read variables 186a) =
(set! var-list ’())
(do ((specs spec-list (cdr specs)))
((empty? specs) #t)
(let ((1st (append
(cdr (get-headline (car specs)))
(get-internal-vars (car specs)))))
(do ((spec 1lst (cdr spec)))
((empty? spec) #t)
(if (and (not(equal? (car spec) ’out))
(not (member (car spec) var-list)))
(set! var-list (cons (car spec) var-list))) )))

<
Definition referenced in part 185b.

We conclude with the initialization the necessary array for holding the predicates.
Note that the natural numbers we introduced in the first stage of the generator when
annotating an algorithm serve as the index for the corresponding specific predicate.
We use the array-package of the SLIB.

"initialize-tables.scm" 186b =

(require ’array)

(set! predicate-list ’dummy)
(set! get-pred ’dummy)
(set! put-pred ’dummy)

(define (initialize-predlist n)
(begin
(set! predicate-list (make-array ’#* n))
(set! get-pred
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(lambda (index)
(array-ref predicate-list index)))
(set! put-pred
(lambda (index object)
(array-set! predicate-list object index)))
(do ((nr O (+ nr 1)))
((= nr n) #t)
(put-pred nr ’7)) ))
o
File defined by parts 35c¢, 184ab, 185ab, 186b.

B.3 Handling Prototypes

In this section we present access functions for prototypes. They all are easy realized
using hardly more than car and cdr.

"prototypes.scm" 187 =

(define (get-prototype operator spec-list)
(cond ((empty? spec-list)
(error ’Unknown ’operator: operator))
((equal? (caadar spec-list) operator)
(car spec-list))
(else
(get-prototype operator (cdr spec-list)))))

(define (get-headline prototype)
(cadr prototype))

(define (get-whole-input-spec prototype)
(if (equal? (caaddr prototype) ’internal)
(cdaddr (cdr prototype))
(cdaddr prototype)))

(define (get-whole-output-spec prototype)
(if (equal? (caaddr prototype) ’internal)
(cdar (cddddr prototype))
(cdr (cadddr prototype))))

(define (get-internal-vars prototype)
(if (equal? (caaddr prototype) ’internal)
(do ((1st (cdaddr prototype) (cdr 1lst))
(res ’() (append res (list (cadar 1st)))))
((empty? 1lst) res))
> (out)))

(define (get-internals prototype)
(if (equal? (caaddr prototype) ’internal)
(caddr prototype)
(error ’procedure (caadr prototype) ’has ’no ’internals.)))
(define (get-inputspec prototype)
(let ((input-spec (get-whole-input-spec prototype)))
(if (equal? (car (last-el input-spec)) ’with)
(if (> (length (cdr (last-el input-spec))) 1)
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(cons ’and (cdr (last-el input-spec)))
(cadr (last-el input-spec)))
>true)))

(define (get-outputspec prototype)
(let ((output-spec (get-whole-output-spec prototype)))
(if (equal? (car (last-el output-spec)) ’with)
(if (> (length (cdr (last-el output-spec))) 1)
(cons ’and (cdr (last-el output-spec)))
(cadr (last-el output-spec)))
’true)))

File defined by parts 187, 188, 189, 190a.

The following procedures allow us to compute the specification of a given algorithm.
Note that in absence of the argument annotated-prog the result is not the specification
of a subalgorithm, but the one of the originally algorithm given by the input file.

"prototypes.scm" 188 =

<o

(define (inputspec . annotated-prog)
(lambda (proc)
(if (empty? annotated-prog)
(get-inputspec program-spec)
(get-inputspec
(get-prototype (oper proc) spec-list)))))

(define (outputspec . annotated-prog)
(lambda (proc)
(if (empty? annotated-prog)
(get-outputspec program-spec)
(get-outputspec
(get-prototype (oper proc) spec-list)))))

(define (internals annotated-prog)
(get-internals
(get-prototype (oper annotated-prog) spec-list)))

(define (head annotated-prog)
(head-line (oper annotated-prog)))

(define (inputparam annotated-prog)
(input-vars (oper annotated-prog)))

(define (outputparam annotated-prog)
(output-vars (oper annotated-prog)))

File defined by parts 187, 188, 189, 190a.

We conclude this section with some procedures concerning formal and actual para-
meters of given subalgorithms. Note that the first group of algorithms gets an anno-
tated algorithm as input, whereas the second group only gets an algorithm name.

"prototypes.scm" 189 =
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(define (actualout proc)
(lambda (annotated-prog)
(if (and (1ist? (cadr annotated-prog))
(equal? (caadr annotated-prog) ’call))
(let ((vars ((actualparam ’proc) annotated-prog))
(formout (output-vars (oper annotated-prog))))
(do ((res vars (cdr res)))
((= (length res) (length formout)) res)))
(1ist (cadadr annotated-prog))) ))

(define (actualparam proc)
(lambda (annotated-prog)
(if (and (1ist? (cadr annotated-prog))
(equal? (caadr annotated-prog) ’call))
(cddadr annotated-prog)
(append (cdaddr (cadr annotated-prog))
(list (cadadr annotated-prog))))))

(define (formalparam proc)
(lambda (annotated-prog)
(append (input-vars (oper annotated-prog))
(output-vars (oper annotated-prog)))))

o
File defined by parts 187, 188, 189, 190a.

"prototypes.scm" 190a =

(define (headline operator)
(cadr (get-prototype operator spec-list)))

(define (input-vars operator)
(let ((prototype (get-prototype operator spec-list)))
(do ((var-list (cdadr prototype) (cdr var-list))
(input-v ’() (append input-v (list (car var-list))) ))
((equal? (car var-list) ’out) input-v))))

(define (output-vars operator)
(let ((prototype (get-prototype operator spec-list)))
(do ((var-list (cdadr prototype) (cdr var-list)))
((equal? (car var-list) ’out) (cdr var-list)))))

<
File defined by parts 187, 188, 189, 190a.

B.4 Input and Output
This section contains SCHEME code due to reading the input files as well as writing into
the output files. We only use the standard input and output procedures of SCHEME

(see for example [CL91]) using ports.

We start with the SCHEME code for reading the input file. The following assigns the
given program to proglist.
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(read input file 190b) =

(let ((current-input-port (open-input-file inputfile)))
(let ((obj (read current-input-port)))
(if (not(is-prototype? obj))
(set! proglist (append proglist (list obj)))))
(do ((obj (read current-input-port)
(read current-input-port)))
((eof-object? obj) (close-input-port current-input-port))
(set! proglist (append proglist (list obj))) ))
o
Definition referenced in parts 48b, 52a, 56ac.

The next piece of code handles the prototype given by the input file: First, the speci-
fication is assigned to program-spec. Then the subalgorithm list (proc-list), the
specification list (spec-1ist) and the list of variables (var-1ist) are updated.

(read program specs 190c) =
(let ((current-input-port (open-input-file inputfile)))
(set! program-spec (read current-input-port))
(set! proc-list (cons (oper program-spec) proc-list))
(set! spec-list (cons program-spec spec-list))
(let ((vars (append (cdr (get-headline program-spec))
(get-internal-vars program-spec))))
(do ((var vars (cdr var)))
((empty? var) #t)
(if (and (not(equal? (car var) ’out))
(not (member (car var) var-list)))
(set! var-list (cons (car var) var-list))) ))
(close-input-port current-input-port))
(o
Definition referenced in part 48b.

The rest of this section contains the SCHEME code concerning writing into the output
files.

(open output file 191a) =

(let ((current-output-port (open-output-file outputfile)))
(o
Definition referenced in parts 49a, 52a, 56¢, 192b.

(write block 191b) =

(write block current-output-port)
o
Definition referenced in part 49b.

(close output file 191c) =

(close-output-port current-output-port)
(o
Definition referenced in parts 49b, 56¢, 192b.

The following writes the constructed abstract theorems into the output file. Note that
side conditions are not checked for correctness, but only listed in the output file.
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(write+close output file 192a) =

(do ((theorems (reverse theorem-list) (cdr theorems)))
((empty? theorems)
(begin (write (car theorems) current-output-port)
(newline current-output-port)
(newline current-output-port)))
(newline current-output-port)
(newline current-output-port)
(newline current-output-port)
(do ((side-conds (reverse side-cond-list) (cdr side-conds)))
((empty? side-conds) (close-output-port current-output-port))

(begin (write (car side-conds) current-output-port)
(newline current-output-port)
(newline current-output-port)))
o
Definition referenced in part 52b.

During writing the constructed specific theorems into the output file, we do two further
things: We simplify the given theorems using procedure simple and we check whether
the computed side conditions hold; this concerns theorems starting with the phrase
’is-invariant-for.

(write theorems 192b) =

(open output file 191a)
(do ((nr 0 (+ nr 1)))
((= nr (+ prednr 1)) (newline current-output-port))
(begin
(write (get-pred nr) current-output-port)
(newline current-output-port)
(newline current-output-port)))
(newline current-output-port)
(newline current-output-port)
(do ((theorems proglist (cdr theorems)))
((empty? theorems) (close output file 191c) )
(let ((form (expand (car theorems))))
(cond ((equal? (caar theorems) ’implies)
(begin
(if (equal? form ’7?)
(write (car theorems) current-output-port)
(write (simple (do-subst form))
current-output-port))
(newline current-output-port)
(newline current-output-port)))
((equal? (caar theorems) ’is-invariant-for)
(begin
(if (equal? form ’7)
(write (car theorems) current-output-port)
(if (not(is-invariant?
(cadr form) (caddr form)))
(write (list ’not form °’!)
current-output-port)))
(newline current-output-port)
(newline current-output-port)))

(else
(error ’unknown ’kind ’of ’theorem:
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(car form))) ))) )
3
Definition referenced in part 56a.

We also compute a missing-1list: It holds the numbers of the abstract predicates left
without a specific counterpart.

(guesses message 193a) =
(set! missing-list ’())
(do ((nr 0 (+ nr 1)))
((equal? nr prednr) (if (not(empty? missing-list))
(begin
(display "predicate(s) ")
(write (reverse missing-list))
(display " fail!") (newline))))
(if (equal? (get-pred nr) °’7)
(set! missing-list (cons nr missing-list)) ))
o
Definition referenced in part 56b.

The following piece of code is to read over the computed predicates during the call of
make-trivial-theorems.

(handle predicates 193b) =
(do ((nr 0 (+ nr 1)))
((= nr (+ prednr 1)) (newline current-output-port))
(set! proglist (cdr proglist)))
(o
Definition referenced in part 56¢.

B.5 Additional Functions

We conclude with some technical procedures completing our verification condition gene-
rator. Note again that the use of StWeb allows extracting the source code of the
generator out of this document.

"utilities.scm" 194a =
(define (empty? prog)
(null? prog))

(define (oper obj)
(cond ((is-annotated? obj)
(if (and (1ist? (cadr obj))
(equal? (caadr obj) ’call))

(cadadr obj)
(caaddr (cadr obj))))

((is-prototype? obj) (caadr obj))

(else (error ’procedure ’oper: obj ’is ’unknown))))

(define (is-prototype? obj)
(and (1ist? obj) (equal? (car obj) ’prototype)))
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(define (is-annotated? prog)
(or (and (number? (car prog)) (not(empty? (cdr prog))))
(and (1list? (car prog))
(member (caar prog) logicals-list))))

(define (is-not-already-specific obj)
(and (number? obj) (equal? (get-pred obj) ’7)))

o
File defined by parts 179, 180ab, 181, 183c, 194ab, 195, 196ab, 197, 198.

"utilities.scm" 194b =
(define (get-key prog)
(if (is-annotated? prog)
(get-key (cadr prog))
(if (1ist? (car prog))
(caar prog) (car prog))))

(define (is-prednr? obj)
(or (number? obj) (equal? obj ’7?)))

(define (without-last lst)
(cond ((or (not(list? 1lst)) (empty? 1lst))
(error ’procedure ’cdr-without-last ’needs ’nonempty ’lst))
((empty? (cddr 1st)) (list (car 1lst)))
(else (cons (car 1st) (without-last (cdr 1st)) )) ))

(define (last-el 1st)
(cond ((empty? 1lst)
(error ’procedure ’last-el ’needs ’non ’empty ’list))
((empty? (cdr 1lst)) (car 1lst))
(else (last-el (cdr 1st)))))

(define (member* obj list)
(cond ((or (empty? list)
(and (not(list? list))
(not(equal? obj list)))) #f)
((equal? obj list) #t)
((member obj list) #t)
(else (or (member* obj (car list))
(member* obj (cdr 1list))))))

(define (is-sequence-without-begin? obj)
(and (1ist? obj) (not(member (car obj) logicals-list))))
o
File defined by parts 179, 180ab, 181, 183c, 194ab, 195, 196ab, 197, 198.

"utilities.scm" 195 =

(define (fits? prog format)
(if (or (equal? (get-key prog) ’if)
(equal? (get-key prog) ’return))

(if (is-annotated? prog)
(equal? (length (cadr prog)) (length format))
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(equal? (length prog) (length format)))
#t))

(define (actual? activity prog)
(if (equal? (get-key prog) ’if)
(if (is-annotated? prog)
(if (or (> (length (cadr prog)) 3)
(equal? (car activity) ’set-predicate)) #t
(equal? (cadr (cadadr activity)) ’actionl))
(if (> (length prog) 3) #t
(equal? (eval (cadr activity)) ’actionl)))
#t))
o
File defined by parts 179, 180ab, 181, 183c, 194ab, 195, 196ab, 197, 198.

We carry on with two further procedures concerning the check whether a variable is
free in a given object.

"utilities.scm" 196a =

(define (is-not-free obj formula)
(not (is-free obj formula)))

(define (is-included obj annotated-prog)
(or (member (1list obj) (caddr (cadr annotated-prog)))
(do ((1st (caddr (cadr annotated-prog)) (cdr 1lst)))
((or (empty? 1st)
(and (1ist? (car 1lst))
(equal? (caar 1lst) obj)))
(not (empty? 1st))))))

o

File defined by parts 179, 180ab, 181, 183c, 194ab, 195, 196ab, 197, 198.

What follows are the procedures that realize the test whether a given theorem is trivial.
We included tests for implication, negation and equality.

"utilities.scm" 196b =

(define (is-trivial theorem)
(cond ((equal? theorem ’true) #t)

((equal? theorem ’false) #f)

((not(list? theorem)) #f)

(else

(let ((key (get-key theorem)))

(cond

((equal? key ’implies) (is-trivial-imply? theorem))
((equal? key ’=) (equal? (cadr theorem) (caddr theorem)))
((equal? key ’and) (is-trivial-and? theorem))

(else #£))) )))

(define (is-trivial-and? theorem)
(if (empty? theorem) #t

(do ((args (cdr theorem) (cdr args))
(res #t (if (is-trivial (car args)) res #f)))
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((empty? args) res))))

(define (is-trivial-imply? theorem)
(let ((ass (cadr theorem))
(concl (caddr theorem)))
(cond ((or (empty? concl) (equal? ass concl)
(equal? ass ’false) (equal? concl ’true)) #t)
((not(1ist? concl))
(or (equal? ass concl) (is-trivial concl)
(and (list? ass) (member concl ass))))
((and (1ist? concl)
(or (member (car concl) logicals-list)
(member (car concl) voc-list)
(member (car concl) operator-list)))
(if (equal? (car concl) ’and)
(if (empty? (cdr concl)) #t
(let ((res (is-trivial-imply?
(list ’implies ass (cadr concl)))))
(if res
(is-trivial-imply?
(list ’implies ass (cons ’and (cddr concl))))
#£)))
(or (equal? ass concl) (is-trivial concl)
(and (1ist? ass) (member concl ass)))))
(else
(and (is-trivial-imply?
(list ’implies ass (car concl)))
(is-trivial-imply?
(list ’implies ass (cdr concl))))) )))
o
File defined by parts 179, 180ab, 181, 183c, 194ab, 195, 196ab, 197, 198.

Procedure simple transforms a constructed theorem into a more readable form. To
give an example, (not(not A)) is replaced by A.

"utilities.scm" 197 =

(define (simple theorem)
(if (not(list? theorem)) theorem
(let ((key (get-key theorem)))
(cond ((equal? key ’not)
(if (and (1list? (cadr theorem))
(equal? (caadr theorem) ’not))
(simple (cadadr theorem))
(list ’not (simple (cadr theorem)))))
((equal? key ’implies)
(cond ((equal? (simple (cadr theorem)) ’true)
(simple (caddr theorem)))
((equal? (simple (cadr theorem)) ’false)
>true)
((equal? (simple (caddr theorem)) ’true)
’true)

((equal? (simple (caddr theorem)) ’false)
(simple (list ’not (cadr theorem))))
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(else
(list ’implies (simple (cadr theorem))
(simple (caddr theorem))))))
((equal? key ’and)
(do ((args (cdr theorem) (cdr args))
(res (list ’and)
(let ((arg (simple (car args))))
(cond ((equal? arg ’true) res)
((equal? arg ’false)
(list ’false))
((and (1ist? arg)
(equal? (get-key arg) ’and))
(append res (cdr arg)))
(else (append res (list arg)))) )))
((empty? args) (if (member ’false res) ’false
(if (= (length res) 2)
(cadr res)
res))) ))
(else theorem)))))

<
File defined by parts 179, 180ab, 181, 183c, 194ab, 195, 196ab, 197, 198.

Procedure expand gets a formula as input. This formula may still contain abstract
predicates. The procedure replaces these predicates by using the already mentioned
array that holds the computed conjectures for the abstract predicates.

"utilities.scm" 198 =

(define (expand formula)

(define (expand-h formula)
(cond ((or (empty? formula) (member formula key-list)
(member formula logicals-list) (member formula voc-list)
(member formula proc-list) (member formula var-list))
formula)
((and (list? formula)
(member (car formula) operator-list))
(list (car formula)
(expand-h (cadr formula))
(expand-h (caddr formula))))
((and (list? formula)
(equal? (car formula) ’=)
(not (1ist? (caddr formula)))) formula)
;; the following allows function calls like (set! x (f y)).
((and (list? formula)
(equal? (car formula) ’=)
(not (list? (cadr formula)))
(1ist? (caddr formula))
(member (caaddr formula) proc-list)
(not (member (caaddr formula) operator-list)))

(subst (get-outputspec
(get-prototype (caaddr formula) spec-list))
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(append (input-vars (caaddr formula))
(output-vars (caaddr formula)))

(append (cdaddr formula)

(1ist (cadr formula)))))
((and (1ist? formula) (equal? (car formula) ’subst))

(cons ’subst
(cons (expand-h (cadr formula))

(cddr formula))))
((is-prednr? formula)
(if (equal? (get-pred formula)
(expand-h (get-pred formula))))

1?) )?

((1ist? formula)
(cons (expand-h (car formula))
(expand-h (cdr formula))))
(else (error ’procedure ’expand: formula ’is ’unknown))))

(let ((form (expand-h formula)))
(if (member* ’7 form) ’7
(simple form))))

o
File defined by parts 179, 180ab, 181, 183c, 194ab, 195, 196ab, 197, 198.
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Appendix C

Indices

C.1 Files

"annotations.scm" Defined by parts 45a, 46b, 48b, 49a, 177.

"BrHenAdd-theorems.txt" Defined by parts 59ab, 161, 162.

"BrHenAdd.miz" Defined by parts 75ab, 76a, 77ab, 78, 79ab, 80ab, 8lab, 82ab, 83, 84ab, 85abc,
86ab, 87ab, 88abc, 89, 90abc, 91, 158b, 159, 160, 165, 174.

"BrHenAdd.sth" Defined by parts 8ab.

"eucl-annotations.txt" Defined by part 42b.

"eucl-pretheorems.txt" Defined by part 43.

"eucl-procedure.txt" Defined by parts 41bc.

"eucl-theorems.txt" Defined by part 44.

"eucl.miz" Defined by parts 92b, 93, 94, 96abc, 97abc, 98abcd, 99abc.

"eucl.sth" Defined by parts 5, 6ab.

"eucl.voc" Defined by part 92a.

"gcd.miz" Defined by parts 15a, 17ab, 18ab, 19abc, 20ab, 124, 134, 138, 142a, 143, 145a, 146.

"gcd.voc" Defined by part 122.

"guesses.scm" Defined by parts 55ab, 56ac, 178.

"initialize-tables.scm" Defined by parts 35c, 184ab, 185ab, 186b.

"kernel.scm" Defined by parts 35ab, 39b, 40ab.

"prototypes.scm" Defined by parts 187, 188, 189, 190a.

"prototypes.txt" Defined by parts 42a, 163.

"qf.voc" Defined by part 156a.

"theorems.scm" Defined by parts 50ac, 51c, 52a.

"utilities.scm" Defined by parts 179, 180ab, 181, 183c, 194ab, 195, 196ab, 197, 198.

C.2 DMacros

(BrHenAdd environment 164) Referenced in part 75a.
(Brown/Henrici theorem 23b) Referenced in part 146.

(Defining AmpleSet 69c) Referenced in part 139.

(Definition of AmpleSet 60a, 69b) Referenced in part 138.

(Definition of Normal Form 71a) Referenced in part 143.

(Definition of association classes 60b) Referenced in part 134.
(Definition of ged function 24) Referenced in part 146.

(Definition of gcdDomain 71bc) Referenced in part 145a.

(Definition of multiplicative AmpleSet 70ab) Referenced in part 142a.
(Euclidean domain is gcd domain 103ab) Referenced in part 96b.
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(ann-rec all 47a) Referenced in part 46b.
(ann-rec special 47b) Referenced in part 46b.
(annotate main loop 49b) Referenced in part 49a.
(assignment rule 53) Referenced in part 185a.
(cases of theorem L11, if 22a) Referenced in part 21b.
(check format of prog 183b) Referenced in part 39b.
(check other formats 48a) Referenced in part 47b.
(close output file 191c) Referenced in parts 49b, 56¢c, 192b.
(correctness proof of Classes 137) Referenced in part 60b.
(correctness proof of Class 135) Referenced in part 60b.
(correctness proof of ged function 145b) Referenced in part 24.
(correctness proof of normal form 144) Referenced in part 71a.
(environment 15b) Referenced in part 15a.
(example lemma 20c) Referenced in part 124.
(existence proof for Euclidean domains 95ab) Referenced in part 94.
(existence proof of AmpSet 61, 62abc, 63ab) Referenced in part 60a.
(existence proof of AmpleSet 139) Referenced in part 69b.
(existence proof of fractions 76b) Referenced in part 76a.
(existence proof of gcdDomain 72a) Referenced in part 7lc.
(function call 50b) Referenced in part 50a.

(gcd theorems 25) Referenced in part 146.
(gen-rec all 51a) Referenced in part 50c.

(gen-rec special 51b) Referenced in part 50c.

(get key of prog 183a) Referenced in part 39b.
(guesses message 193a) Referenced in part 56b.
(handle predicates 193b) Referenced in part 56c.
<insert rules 36¢, 38b, 39a, 41a) Referenced in part 185a.
(insert-pred-after all 45b) Referenced in part 45a.
(insert-pred-after special 46a) Referenced in part 45a.

(lemma for Euclidean algorithm 133) Referenced in part 92b.

(lemmata for Brown/Henrici 131) Referenced in part 164.

(make proc-list 185¢) Referenced in part 185b.

(make-guesses main loop 56b) Referenced in part 56a.

(make-theorems main loop 52b) Referenced in part 52a.

(open output file 191a) Referenced in parts 49a, 52a, 56¢, 192b.
(procedure call generations 38a) Referenced in part 38b.

(procedure call rule 54c) Referenced in part 185a.

(proof of AMP5 142b) Referenced in part 70b.

(proof of B11 109a) Referenced in part 106b.

(proof of B1 111b) Referenced in part 105a.

(proof of B63 111c) Referenced in part 109c.

(proof of B6 109bc) Referenced in part 109a.

(proof of B7 110ab, 111a) Referenced in part 109a.

(proof of Brown/Henrici theorem 27b, 28abc, 29a) Referenced in part 23b.
(proof of F1 157a) Referenced in part 80a.

(proof of F2 157b) Referenced in part 81b.

(proof of HO 68c) Referenced in part 68b.

(proof of H11 29b) Referenced in part 28b.

(proof of H14 30b) Referenced in part 28c.

(proof of H1 69a) Referenced in part 68b.

(proof of H2b 68a) Referenced in part 66a.

(proof of H2 100a) Referenced in part 99b.

(proof of H3 100b) Referenced in part 99b.

(proof of H5 112) Referenced in part 111c.
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(proof of H7 30a) Referenced in part 28a.

(proof of K2 65a) Referenced in part 62a.

(proof of K3 65b) Referenced in part 62a.

(proof of Kba 65c) Referenced in part 62b.

(proof of K6a 66abc, 67a) Referenced in part 63a.

(proof of K6 68b) Referenced in part 63a.

(proof of K7 63c) Referenced in part 63b.

(proof of K8 64ab) Referenced in part 63b.

(proof of M4 67b) Referenced in part 66a.

(proof of N 104a) Referenced in part 103b.

(proof of case A 104b) Referenced in part 104a.

(proof of case B 105ab, 106abc, 108abc) Referenced in part 104a.
(proof of denom 156c) Referenced in part 79b.

(proof of fraction addition 158a) Referenced in part 81a.
(proof of fraction’s constructor equation 156b) Referenced in part 79a.
(proof of ged-like, case A, label A5 73c, 74) Referenced in part 73b.
(proof of gcd-like, case A 73b) Referenced in part 72b.

(proof of ged-like, case B 73a) Referenced in part 72b.

(proof of ged-like 72b) Referenced in part 72a.

(proof of theorem L11, if, case A 22b) Referenced in part 22a.
(proof of theorem L11, if, case B 23a) Referenced in part 22a.
(proof of theorem L11, if 21b) Referenced in part 20d.

(proof of theorem L11, only if 21a) Referenced in part 20d.
(proof of theorem L11 20d) Referenced in part 20c.

(proof of theorem T0 151a) Referenced in part 25.

(proof of theorem T1 151b) Referenced in part 25.

(proof of theorem T2 153) Referenced in part 25.

(proof of theorem T3 26abc, 27a) Referenced in part 25.
(proof of theorem T4 154) Referenced in part 25.

(read input file 190b) Referenced in parts 48b, 52a, 56ac.
(read program specs 190c) Referenced in part 48b.

(read variables 186a) Referenced in part 185b.

(return rule 54a) Referenced in part 185a.

(text proper 16, 123) Referenced in part 15a.

(while annotations 36a) Referenced in part 36c.

(while generations 36b) Referenced in part 36c.

(while rule 54b) Referenced in part 185a.

(write block 191b) Referenced in part 49b.

(write theorems 192b) Referenced in part 56a.

(write+close output file 192a) Referenced in part 52b.

C.3 Procedure Names

actual?: 39b, 195.

actualout: 51c, 189.

actualparam: 38a, 50b, 54c, 184b, 189.
ann-rec: 40a, 46b, 47a.

annotate: 35a, 40b, 47ab, 49ab.

annotations: 35a, 35¢c, 36¢, 40a, 184a.
check-format: 183b, 183c.

construct: 40b, 50ab, 51labc, 55ab, 179, 184b.
construct-list: 179, 184b.

do-activities: 3bab, 39b.
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do-subst: 181, 192b.

empty?: 39b, 45b, 46a, 47a, 48a, 49b, 51a, 52b, 55ab, 56bc, 177, 178, 179, 180ab, 181, 183ac,
184a, 185c, 186a, 187, 188, 190c, 192ab, 193a, 194a, 194h, 196ab, 197, 198.

expand: 178, 192b, 198.

fits?: 180a, 195.

formalparam: 38a, 54c, 184b, 189.

formats: 35c, 46a, 47b, 48a, 177, 180ab, 183b, 184a.

gen-rec: 40a, 50c.

generate-theorems: 35b, 50b, 5lab, 52b.

generations: 35b, 35¢, 36¢, 38b, 40a, 184a.

get: 8a, 39b, 46a, 47b, 48a, 50a, 51a, 55b, 177, 180ab, 181, 183abc, 184a, 186ab, 187, 188,
190ac, 192b, 193a, 194ab, 195, 196b, 197, 198.

get-actual: 47b, 180b.

get-headline: 186a, 187, 190c.

get-inputspec: 187, 188.

get-internal-vars: 186a, 187, 190c.

get-internals: 187, 188.

get-key: 46a, 47h, 50a, 5la, 55b, 177, 180ab, 183ac, 194b, 195, 196b, 197.

get-outputspec: 181, 187, 188, 198.

get-pred: 186b, 192b, 193a, 194a, 198.

get-prototype: 181, 187, 188, 190a, 198.

get-whole-input-spec: 187.

get-whole-output-spec: 187.

guess: 35b, 40a, 55b, 56b.

guess-rec: 40a, 55b.

guesses: 35b, 35¢, 40a, 53, 54abc, 56ab, 185a.

head: 188.

headline: 186a, 187, 190a, 190c.

initialize-predlist: 52b, 186b.

input-vars: 181, 188, 189, 190a, 198.

inputparam: 188.

inputspec: 38a, 56a, 184b, 187, 188.

insert-newconstruct: 36¢, 38b, 39a, 41a, 184a.

insert-pred-after: 36a, 45a, 45b, 46a.

insert-pred-before: 39a, 177.

internals: 187, 188.

is-annotated?: 180a, 183c, 194a, 194b, 195.

is-free: 178, 184h, 196a.

is-included: 54a, 196a.

is-invariant-for: 38a, Hlc, 184b, 192b.

is-invariant?: 178, 192b.

is-not-free: 53, 196a.

is-prednr?: 179, 194b, 198.

is-prototype?: 190b, 194a.

is-sequence-without-begin?: 39b, 194b.

is-trivial: 56¢, 196b.

is-trivial-and?: 196b.

is-trivial-imply?: 196b.

key-list: 179, 184a, 184b, 198.

last-el: 187, 194b.

logicals-list: 178, 179, 184b, 194ab, 196h, 198.

lookup: 179, 180a.

make-annotated: 48b.

make-guesses: 56a.
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make-nontrivial-theorems: 56c¢.

make-theorems: 52a.

member*: 181, 194b, 198.

missing-list: 193a.

oper: 50b, 185c, 188, 189, 190c, 194a.

operator-list: 181, 184b, 196h, 198.

output-vars: 181, 188, 189, 190a, 198.

outputparam: 38a, 184b, 188.

outputspec: 38a, 39a, 54c, 56a, 181, 184h, 187, 188, 198.
predicate-list: 186b.

proc-list: 179, 181, 183c, 185b, 185¢c, 190c, 198.
proglist: 48b, 49b, 52ab, 56abc, 190b, 192b, 193b.
program-spec: 188, 190c.

put: 53, b4abc, 55a, H6a, 184a, 185a, 186b, 192a.
put-pred: 55a, 56a, 186b.

rec: 36ab, 39a, 40a, 46b, 47a, 48a, 50c, 54ab, 55b, 185a.
remove: 184a.

set-predicate: 53, 54abc, 55a, 195.

side-cond-1list: Hlc, H2a, 192a.

simple: 181, 192b, 197, 198.

simulate: 40b, 41a.

spec-list: 181, 185b, 185c, 186a, 187, 188, 190ac, 198.
subst: 38a, 39a, 43, 53, 54c, 181, 184b, 192h, 198.
symbol-list: 179, 183c, 184b.

theorem-is: 36b, 38a, 39a, 50a.

theorem-list: 50a, 52a, 192a.

var-list: 179, 186a, 190ac, 198.

voc-list: 179, 184b, 196b, 198.

without-last: 194b.
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