
Mizar Correctness Proofs of Generic FractionField Arithmetic �Christoph SchwarzwellerWilhelm-Schickard-Institute for Computer ScienceSand 13, D-72076 T�ubingenschwarzw@informatik.uni-tuebingen.de24th July 1998AbstractWe propose the Mizar system as a theorem prover capable of verifyinggeneric algebraic algorithms on an appropriate abstract level. The mainadvantage of the Mizar theorem prover is its special proof script languagethat enables textbook style presentation of proofs, hence allowing proofs inthe language of algebra.UsingMizar we were able to give a rigorous machine assisted correctnessproof of a generic version of the Brown/Henrici arithmetic in the �eld offractions over arbitrary gcd domains.1 IntroductionOver the last several years generic programming has received more and more at-tention. Many programming languages nowadays include generic concepts likepolymorphism in functional programming languages, overloading or templates inC++; or they are even completely designed as a generic language like SuchThat[7]. Also generic libraries have been developed like the Ada Generic Library or theStl. On the other hand the widespread use of generic concepts more and moreentails the need for a thorough formal machine assisted veri�cation of generic al-gorithms | especially to improve the reliability of generic libraries. This paper�This paper is based on the author's Ph.D-thesis[8], supervised by R�udiger Loos.1

deals with the veri�cation of generic algorithms in the �eld of computer algebra.SuchThat is a programming language that enables generic programming inthe �eld of computer algebra. SuchThat is a procedural language and can beseen as a successor of Aldes [4] from which it adopted its statement parts. Themain feature of SuchThat is the possibility to express the speci�cation of an algo-rithm (and hence the minimal conditions under which the algorithm works) in thelanguage itself. To achieve this, SuchThat contains declarations that enable theuser to introduce parametrized and attributed algebraic structures. Subsequently,algorithms are written based on these structures.We consider the algorithm of Brown and Henrici concerning addition of frac-tions over gcd domains as an example. Let I be an integral domain, and let Q bethe set of fractions over I. Based on algorithms for arithmetic operations in I oneobtains algorithms for arithmetics in Q. To be able to choose a unique representa-tive from each equivalence class of Q, we assume that I is a gcd domain; that is, anintegral domain in which for any two elements a greatest common divisor exists.We also assume that there is a constructor fract to build a fraction out of elementsof I and selectors num and denom that decompose a fraction into numerator anddenominator respectively.The algorithm accepts normalized fractions as input, returning the result againas a normalized fraction. The point is that the normalized result is achieved not byexecuting ordinary addition of fractions followed by a normalization step, but byintegrated greatest common divisor computations. First, this allows singling outtrivial cases and, more important second, taking advantage of the normalizationof the inputs to achieve normalization of the output by, in general, cheaper gcd-computations. In SuchThat the algorithm is written as follows."BrHenAdd.sth" 2 �global: let I be gcdDomain;let Q be Fractions of I;let Amp be multiplicative AmpleSet of I.Algorithm: t := BHADD(r,s)Input: r,s 2 Q such that r,s is_normalized_wrt Amp.Output: t 2 Q such that t~r+s & t is_normalized_wrt Amp.Local: let 0,1,r1,r2,s1,s2,d,e,r2',s2',t1,t2,t1',t2' 2 I;let 0 2 Q; 2

(1) [r = 0 or s = 0]if r = 0 then {t := s; return};if s = 0 then {t := r; return}.(2) [get numerators and denominators]r1 := num(r); r2 := denom(r); s1 := num(s); s2 := denom(s).(3) [r and s in I]if (r2 = 1 and s2 = 1) then {t := fract(r1+s1,1); return}.(4) [r or s in I]if r2 = 1 then {t := fract(r1*s2+s1,s2); return};if s2 = 1 then {t := fract(s1*r2+r1,r2); return}.(5) [general case]d := gcd(r2,s2);if d = 1 then {t := fract(r1*s2+r2*s1,r2*s2); return};r2' := r2/d; s2' := s2/d;t1 := r1*s2'+s1*r2'; t2 := r2*s2';if t1 = 0 then {t := 0; return};e := gcd(t1,d); t1' := t1/e; t2' := t2/e;t:= fract(t1',t2'). 2�File de�ned by parts 2, 3, 11.For completeness we also give the SuchThat speci�cations of the necessary sub-algorithms. Note that for the veri�cation of Brown/Henrici addition we onlyneed these so-called prototypes rather than the full subalgorithms. ConsequentlyBrown/Henrici addition will be correct for every set of subalgorithms ful�lling thesespeci�cations regardless of how these algorithms are written in detail."BrHenAdd.sth" 3 �Algorithm: r1 := num(r)Input: r 2 Q.Output: r1 2 I such that r1 = num(r). 2Algorithm: r2 := denom(r)Input: r 2 Q.Output: r2 2 I such that r2 6= 0 & r2 = denom(r). 2Algorithm: r := fract(r1,r2)Input: r1,r2 2 I such that r2 6= 0.Output: r 2 Q such that r = fract(r1,r2). 23

Algorithm: d := /(r1,r2)Input: r1,r2 2 I such that r2 6= 0 & r2 divides r1.Output: d 2 I such that d = r1/r2. 2Algorithm: c := gcd(a,b)Input: a,b 2 I.Output: c 2 I such that c 2 Amp & c = gcd(a,b). 2�File de�ned by parts 2, 3, 11.SuchThat is currently a preprocessor to C++. The static semantic checks ofthe SuchThat translator include extended typechecking, overload resolution andcontrolled instantiation of structure parameters. SuchThat programs can beinstantiated with special domains in the usual way. For example the Brown/Henricialgorithm can be instantiated with the integers, polynomial rings or the Gaussianintegers.The correctness of this algorithm depends on fundamental properties of great-est common divisors. In the following we will show how to prove them (and thecorrectness of the algorithm) rigorously with machine assistance.2 The Mizar SystemMizar [6] is a theorem prover based on natural deduction. Starting from theaxioms of set theory1, up to now about 20,000 theorems from such di�erent �eldsof mathematics as topology, algebra, category theory and many others have beenproven and stored in a library. From our point of view one of the main contri-bution of the Mizar system is its special proof script language. This languageis declarative and associates the natural deduction steps with English constructs,thus allowing to write proofs close to textbook style.In addition Mizar includes a kind of mathematical type system: The user cande�ne so-called modes, that is mathematical structures and objects he wants toargue about (for example integral domain or domRing, as it is called in Mizar,is such a mode). Consequently, we can writelet I be domRing;let a be Element of the carrier of I;1To be more precise, Mizar uses the axioms of a variant of ZFC set theory due to Tarski.4

Now domRing is de�ned as a commutative ring which satis�es the following predi-cate, in Mizar called attribute.definitionlet R be comRing;attr R is domRing�like meansfor x; y being Element of the carrier of R holdsx � y = 0:R implies x = 0:R or y = 0:R;end;As a consequence it inherits all properties of (commutative) rings | especially,all already proven theorems concerning rings are applicable to I. So, if we alreadyhave proven the following theoremT : for R being Ringfor x being Element of R holdsx * 0:R = 0:R;where T is a label, we only have to writea � 0:I = 0:I by T;to prove a � 0 = 0 in an integral domain I.But this is just the platform we need to reason about generic algebraic algo-rithms: We argue in abstract algebraic domains, we use only formal parametersthat hold for every possible instantiation. Hence we prove the algorithms correcton the appropriate abstract algebraic level.Due to its natural proof script language, Mizar is well suitable not only to for-malize mathematics, but also for scientists writing generic (algebraic) algorithms:They can prove the correctness of their algorithms in Mizar in almost the sameway they would prove them without machine assistance and need not in additionto go deeply into a proof logic or the strategies of a special theorem prover.In the following we give a short introduction to the Mizar language by usingparts of our Mizar article GCD.miz as illustrations.1 Each Mizar article startswith an environment which introduces mathematical concepts one wants to use in1For more information on the Mizar language and the Mizar system see the Mizar homepage at http://mizar.org/. 5

the rest of the article. This is done by referencing other Mizar articles in whichthe desired concepts have been de�ned. In our case:"GCD.miz" 6a �environvocabularyBOOLE,VECTSP_1,VECTSP_2,REAL_1,LINALG_1,SFAMILY,GCD;notationTARSKI,BOOLE,STRUCT_0,RLVECT_1,SETFAM_1,VECTSP_1,VECTSP_2;constructorsALGSTR_1;theoremsTARSKI,BOOLE,WELLORD2,SUBSET_1,ENUMSET1,VECTSP_1,VECTSP_2;�File de�ned by parts 6ab, 7.The second part of a Mizar article is called the text proper. It includes newmathematical de�nitions and theorems as well as proofs for those. Based on thevocabulary introduced in the environment one can de�ne new mathematical con-cepts in a very natural way. For example, to introduce the concept of divisibilityin integral domains one can write"GCD.miz" 6b �reserve I for domRing;reserve a,b,c for Element of the carrier of I;definitionlet I; let a,b,c;pred a divides b means :Def1:ex c being Element of the carrier of I st b = a*c;end;definitionlet I; let a,b,c;pred a is_associated_to b means :Def2:a divides b & b divides a;antonym a is_not_associated_to b;end;�File de�ned by parts 6ab, 7. 6

In addition one can de�ne functions in Mizar, for example the division func-tion over integral domains. In contrast to introducing predicates this requires acorrectness proof, that is an existence and a uniqueness proof. @proof is a niceconstruct that enables the user to postpone required proofs and to concentrate onthe implications of the de�nitions.1"GCD.miz" 7 �definitionlet I; let a,b,c;assume d: b divides a & b <> 0.I;func a/b -> Element of the carrier of I means :Def5:it*b = a; :: it stands for the value of a/b.correctness @proof end;end;�File de�ned by parts 6ab, 7.Unfortunately, the algebraic domains necessary to show correctness of Brown/Henrici arithmetics, namely gcd domains and fractions, were not included in theMizar library so far. So we �rst had to prove about 40 theorems about divisibility,gcd domains and fractions before we could start the entire correctness proof.3 Verifying Generic Algebraic AlgorithmsTo prove correct generic algebraic algorithms, or to be more precise SuchThatalgorithms, we �rst decompose the given algorithm using the Hoare calculus. Weconsider the algorithm with its input/output speci�cation as a Hoare triple, onwhich we apply Hoare's rules in a backward manner. The key is that this allowsus to eliminate the whole program code out of the given triple, that is, we end upwith pure algebraic theorems. So we get a set of algebraic theorems1 implying thecorrectness of this algorithm on the appropriate abstract level independent of anyparticular instantiation.We implemented in Scheme a veri�cation condition generator following thisapproach (see [8]). Of course this generator needs user support to compute acomplete veri�cation condition set, for example loop invariants must be provided1Of course theMizar Library Committee will not accept an article from which not all @proof'sare removed.1In fact this is a so-called veri�cation condition set, see for example [2].7

by the user. For the Brown/Henrici addition algorithm the generator constructs15 theorems, in this case all without user interaction. We give an example theoremwhich is already transformed into the Mizar language: It states that t computedin step (5) of the algorithm, where d = gcd(r2,s2) = 1, indeed is normalized andequivalent to r+s. The Mizar proof of this theorem can be found in the appendix."BrHenArith.miz" 8a �theorem(Amp is_multiplicative &r is_normalized_wrt Amp & s is_normalized_wrt Amp ¬(r = 0.Q) & not(s = 0.Q) &r1 = num(r) & r2 = denom(r) & r2 <> 0.G & r2 <> 1.G &s1 = num(s) & s2 = denom(s) & s2 <> 0.G & s2 <> 1.G ¬(r2 = 1.G & s2 = 1.G) & d 2 Amp & d = 1.G &d = gcd(r2,s2,Amp) & d = 1.G &t = fract(r1*s2+r2*s1,r2*s2))implies (t ~ r+s & t is_normalized_wrt Amp)hproof of the theorem 15, . . . i�File de�ned by parts 8ab, 9ab, 10, 12.To prove these automatically constructed theorems we also have to introduce theconcepts used in the algorithm; that is in addition to the algebraic domains | gcddomains and fractions | we must de�ne in Mizar ample sets (or sets of repre-sentatives) over integral domains and the predicates ~ and is_normalized_wrt aswell as functions representing the subalgorithms of section one. Again we only givesome examples, mainly to show how to de�ne mathematical objects in the Mizarlanguage."BrHenArith.miz" 8b �definitionlet I be domRing;mode AmpSet of I -> non empty Subset of the carrier of I means(for a being Element of the carrier of Iex z being Element of it st z is_associated_to a) &(for x,y being Element of it holdsx <> y implies x is_not_associated_to y);existence @proof end;end; 8

definitionlet I be domRing;attr I is gcd-like means(for x,y being Element of the carrier of Iex z being Element of the carrier of I stz divides x &z divides y &(for zz being Element of the carrier of Ist (zz divides x & zz divides y) holds zz divides z));end;�File de�ned by parts 8ab, 9ab, 10, 12.A gcd domain is simply an integral domains whith the just de�ned attributegcd-like. But before we can introduce mode gcdDomain in this way we haveto prove the existence of such an object1 in a so-called cluster de�nition."BrHenArith.miz" 9a �definitioncluster gcd-like domRing;existence @proof end;end;definitionmode gcdDomain is gcd-like domRing;end;�File de�ned by parts 8ab, 9ab, 10, 12.Now having introduced gcd domains in Mizar it is easy to de�ne the remainingconcepts e.g. the predicate is_normalized_wrt."BrHenArith.miz" 9b �definitionlet G be gcdDomain;let u be Fraction of G;let Amp be AmpleSet of G;1Mizar does not allow empty modes. 9

pred u is_normalized_wrt Amp means :Def20:gcd(num(u),denom(u),Amp) = 1.G &denom(u) 2 Amp;end;�File de�ned by parts 8ab, 9ab, 10, 12.Proving the veri�cation conditions requires as the main part the proof of the so-called theorem of Brown and Henrici [1], which shows how the sum of two normal-ized fractions can be computed in a normalized form with the reduction to lowestterms interleaved with the computation of the numerator and denominator of thesum. r1 resp. s1 are the numerators and r2 resp. s2 the denominators of theoccurring fractions."BrHenArith.miz" 10 �theoremfor Amp being AmpleSet of Ifor r1,r2,s1,s2 being Element of the carrier of I holds(gcd(r1,r2,Amp) = 1.I & gcd(s1,s2,Amp) = 1.I &r2 <> 0.I & s2 <> 0.I)impliesgcd(r1*(s2/gcd(r2,s2,Amp))+s1*(r2/gcd(r2,s2,Amp)),r2*(s2/gcd(r2,s2,Amp)),Amp) =gcd(r1*(s2/gcd(r2,s2,Amp))+s1*(r2/gcd(r2,s2,Amp)),gcd(r2,s2,Amp),Amp)@proof end;�File de�ned by parts 8ab, 9ab, 10, 12.We will not give the Mizar proof of this theorem here; it can be found in [8].We only mention that the entire correctness proof (that is the introduction of gcddomains and ample sets is not included) took about 1000 lines of Mizar code.Note again, that the veri�cation proofs are done on an abstract algebraic level,hence that they are independent of any particular instantiation.It is obvious that the subtraction algorithm follows by the same token as theaddition algorithm. For multiplication Henrici and Brown provide the followingalgorithm: 10

"BrHenAdd.sth" 11 �global: let I be gcdDomain;let Q be Fractions of I;let Amp be multiplicative AmpleSet of I.Algorithm: t := BHMULT(r,s)Input: r,s 2 Q such that r,s is_normalized_wrt Amp.Output: t 2 Q such that t~r*s & t is_normalized_wrt Amp.Local: let 1,r1,r2,s1,s2,d,e,r1',r2',s1',s2' 2 I;let 0 2 Q;(1) [r = 0 or s = 0]if r = 0 or s = 0 then {t := 0; return}.(2) [get numerators and denominators]r1 := num(r); r2 := denom(r); s1 := num(s); s2 := denom(s).(3) [r and s in I]if (r2 = 1 and s2 = 1) then {t := fract(r1*s1,1); return}.(4) [r or s in I]if r2 = 1 then {d := gcd(r1,s2); r1' := r1/d;t := fract(r1'*s1,s2); return};if s2 = 1 then {d:= gcd(s1,r2); r1' := r1/d;t := fract(r1'*s1,r2); return}.(5) [general case]d := gcd(r2,s2); e := gcd(s1,r2);r1' := r1/d; r2' := r2/e;s1' := s1/e; s2' := s2/d;t:= fract(r1'*s1',r2'*s2'). 2�File de�ned by parts 2, 3, 11.The overall goal is the same as for addition: to make use of the normalization ofthe inputs to simplify and, in general, speed up the normalization of the output.Division of fractions is reduced to multiplication by the inverse fraction which doesnot introduce additional complexity.The correctness proof of this algorithm is similar to the one of the additionalgorithm. It is based on the following theorem which is also due to Brown andHenrici: 11

"BrHenArith.miz" 12 �theoremfor Amp being AmpleSet of Ifor r1,r2,s1,s2 being Element of the carrier of I holds(gcd(r1,r2,Amp) = 1.I & gcd(s1,s2,Amp) = 1.I &r2 <> 0.I & s2 <> 0.I)impliesgcd((r1/gcd(r1,s2,Amp))*(s1/gcd(s1,r2,Amp)),(r2/gcd(s1,r2,Amp))*(s2/gcd(r1,s2,Amp)),Amp) = 1.I;@proof end;�File de�ned by parts 8ab, 9ab, 10, 12.Our veri�cation condition generator constructs 12 theorems for the multiplicationalgorithm. Again each theorem is either straightforward or is proved by showingthat the theorem of Brown and Henrici is applicable in this case.To summarize, using Mizar we were able to give complete veri�cation proofsof fraction �eld arithmetic based on Brown/Henrici's algorithms. Furthermore wedid this in a generic way so that correctness is ensured for fractions over arbitrarygcd domains.4 Conclusions and Further WorkWe have presented a new approach to bringing machine assistance into the �eldof generic programming. Thereby we focused on generic algebraic algorithms andtheir veri�cation. Using the Mizar system we succeeded in verifying generic ver-sions of Brown/Henrici arithmetic and of Euclid's algorithm on the appropriatealgebraic level; thus our proofs are independent of any particular instantiation andhold for all gcd-domains.The emphasis is on the fact that algebraic proof in Mizar can be directlywritten in the language of algebra and need not to be transformed into a moreor less completely di�erent proof language. In addition we provided a veri�cationcondition generator, which computes from a given SuchThat algorithm and user-supplied lemmata the theorems necessary to establish its correctness.Another point concerns the instantiation of SuchThat algorithms. Consideragain the Brown/Henrici addition algorithm. If it is called for example with the12

integers, then an obvious correctness condition is that the integers constitute a gcddomain. In addition assume that a (generic) Euclidean algorithm shall be used as asubalgorithm to compute greatest common divisors. The corresponding prototyperequires a gcd domain which gives us another condition, namely that Euclideandomains are gcd domains. This kind of correctness conditions arising for the useof generic algebraic algorithms also can be handled with the Mizar system andform the basis of the algebraic type checks inSuchThat .Mizar's original purpose was to bring mathematics | including the necessaryproof techniques | onto the computer and to build a library of mathematicalknowledge. In fact, so far the library is nothing more than a collection of articlesaccepted by the Mizar proof checker: Reusing the knowledge is not supported aswell as it needs to be for our purpose. Consequently, to build a veri�cation systemfor generic algebraic algorithms around the Mizar system requires some furtherwork. In this context we like to mention two points.� First of all, we need a tool for searching the Mizar library. At the beginningof a veri�cation we have to look at which kinds of algebraic domains are al-ready included in the library and which theorems about these domains havebeen proven.We did some experiments using Glimpse [5], a powerful indexing and querysystem: After indexing the �les | the Mizar abstracts in our case | it al-lows one to look through these �les without the need of specifying �le names.It enables the user to look for arbitrary keywords, for instance gcdDomain,VectorSpace or finite-dimensional.� Though the Mizar system provides a proof script language capable of ex-pressing algebraic structures appropriately, reasoning about these structuressometimes is a bit cumbersome. For example to prove equations in integraldomains we had to do each little step using explicitly the domain's axioms.To handle equational reasoning there are well known better methods, forinstance rewriting systems; for a couple of algebraic domains there even ex-ist canonical rewrite systems. It seems promising to extend Mizar by suchprocedural proof techniques.Writing generic algebraic algorithms is a diÆcult but rewarding task: One has tolook for abstract algebraic domains suitable for the method one wants to imple-13

ment; in addition using the constructed generic algorithms with particular instan-tiations again raises non trivial algebraic questions.Consequently, writing correct generic algebraic algorithms requires a carefulway of dealing with the underlying mathematical structures. We hope that ourwork is a �rst step to support a rigorous development of provable correct genericalgebraic algorithms.Acknowledgements: I like to acknowledge the exposition to the subject andthe supervision of my thesis by R�udiger Loos. The hint to the Mizar system camefrom Sibylle Schupp and David Musser, both at RPI. Finally I have to thank forthe hospitality of the Mizar group in Bia lystok { in particular Andzrej Trybulec {in summer 1998.References[1] George E. Collins, Algebraic Algorithms, chapter two: Arithmetics, Lec-ture manuscript, 1974.[2] Antoni Diller, Z { An Introduction to FormalMethods, 2nd ed., Wiley,New York, 1994.[3] D. Knuth, Literate Programming, The Computer Journal 27(2), 97-111,1984.[4] R�udiger Loos and George E. Collins, Revised Report on the AlgorithmDescription Language ALDES, Technical Report WSI-92-14, Wilhelm-Schickard-Institut f�ur Informatik, 1992.[5] Udi Manber and Burra Gopal, GLIMPSE | A Tool toSearch Entire File Systems, available by anonymous ftp byhttp://glimpse.cs.arizona.edu.[6] Piotr Rudnicki, An Overview of the Mizar Project, available by anony-mous ftp from http://web.cs.ualberta.ca:80/~piotr/Mizar, June1992.[7] Sibylle Schupp, Generic Programming | SuchThat one can build anAlgebraic Library, Ph.D. thesis, University of T�ubingen, 1996.14

[8] Christoph Schwarzweller, Mizar Veri�cation of Generic Algebraic Algo-rithms, Ph.D. thesis, University of T�ubingen, 1997.[9] Andrzej Trybulec, Some Features of the Mizar Language, available byanonymous ftp from http://web.cs.ualberta.ca:80/~piotr/Mizar,July 1993.A Proof of the theoremIn this appendix we present the Mizar proof of the theorem given in section three.We do so for two reasons: First we want to give an impression of how naturallyproofs can be formulated in the Mizar language. Also we want to show howdocumenting proofs using literate programming tools (see [3]) can make even longproofs readable. The complete correctness proof of the example algorithm can befound in [8].Note that the use of literate programming allows extraction of the Mizar proofsfrom our document giving the corresponding Mizar article. In general this leadsto a proper Mizar article that can serve as input to the Mizar checker.We start the proof establishing that gcd(r1,r2,Amp) = and gcd(s1,s2,Amp)both equal 1.G, which follows from the de�nition of is_normalized_wrt.hproof of the theorem 15i �proofM: now assumeH0: Amp is_multiplicative &r is_normalized_wrt Amp & s is_normalized_wrt Amp &r1 = num(r) & r2 = denom(r) & r2 <> 0.G &s1 = num(s) & s2 = denom(s) & s2 <> 0.G &d = gcd(r2,s2,Amp) & d = 1.G &t = fract(r1*s2+r2*s1,r2*s2);H3: r2*s2 <> 0.G by H0,VECTSP_2:15;H1: denom(t) = r2*s2 by H0,H3,F1;H2: num(t) = r1*s2+r2*s1 by H0,H3,F1;H4: gcd(r1,r2,Amp) = 1.G & gcd(s1,s2,Amp) = 1.Gby H0,Def73;�De�nition de�ned by parts 15, 16ab, 17.De�nition referenced in part 8a. 15

To show gcd(num(t),denom(t),Amp) = 1.G we apply the theorem of Brown andHenrici | which is stated as theorem GCD:40. This is done by extending the termgcd(r1*s2+r2*s1,r2*s2,Amp) | which in fact is nothing else than the requiredgcd(num(t),denom(t),Amp) | to the form the theorem requires. After this appli-cation the assumption gcd(r2,s2,Amp) = 1.G allows us to infer that the originalterm also equals 1.G.hproof of the theorem 16ai �H5: gcd(r1*s2+r2*s1,r2*s2,Amp)= gcd(r1*(s2/1.G)+r2*s1,r2*s2,Amp) by GCD:10.= gcd(r1*(s2/1.G)+s1*(r2/1.G),r2*s2,Amp) by GCD:10.= gcd(r1*(s2/1.G)+s1*(r2/1.G),r2*(s2/1.G),Amp) by GCD:10.= gcd(r1*(s2/gcd(r2,s2,Amp))+s1*(r2/gcd(r2,s2,Amp)),r2*(s2/gcd(r2,s2,Amp)),Amp) by H0.= gcd(r1*(s2/gcd(r2,s2,Amp))+s1*(r2/gcd(r2,s2,Amp)),gcd(r2,s2,Amp),Amp) by GCD:40,H4,H0.= 1.G by H0,GCD:32;�De�nition de�ned by parts 15, 16ab, 17.De�nition referenced in part 8a.Next we show that denom(t) = r2*s2 is an element of the ample set Amp. Thisfollows from the assumption that r and s are normalized fractions. Note that weneed Amp to be multiplicative to conclude r2*s2 2 Amp at level H6.hproof of the theorem 16bi �H8: r2 2 Amp & s2 2 Amp by H0,Def73;reconsider r2,s2 as Element of Amp by H8;H6: r2*s2 2 Amp by H0,GCD:def 9;H7: t is_normalized_wrt Amp by H6,H5,H2,H1,Def73;�De�nition de�ned by parts 15, 16ab, 17.De�nition referenced in part 8a.It remains to show that t~r+s. To do so, we only have to take into considerationthat num(r+s) = r1*s2+s1*r2 and denom(r+s) = r2*s2 hold and to substitute r2= 1.G and s2 = 1.G respectively to get the desired equation num(t)*denom(r+s)= num(r+s)*denom(t). 16

hproof of the theorem 17i �H9: num(t)*denom(r+s) = (r1*s2+r2*s1)*denom(r+s) by H2.= (r1*s2+r2*s1)*(r2*s2) by H0,F2.= num(r+s)*(r2*s2) by H0,F2.= num(r+s)*denom(t) by H1;H13: t ~ (r+s) by H9,Def76;thus thesis by H13,H7;end; :: Mthus thesis by M;end;�De�nition de�ned by parts 15, 16ab, 17.De�nition referenced in part 8a.

17

