
De�ning Power Series and Polynomials inMizarPiotr Rudnicki�University of Alberta, Canadaemail: piotr@cs.ualberta.caChristoph SchwarzwellerUniversity of T�ubingen, Germanyemail: schwarzw@informatik.uni-tuebingen.deAndrzej TrybulecyUniversity of Bia lystok, Polandemail: trybulec@math.uwb.edu.pl14th September 2000
Abstract. We report on the construction of formal multivariate powerseries and polynomials in the Mizar system. First, we present how the al-gebraic structures are handled and how we inherited the past developmentsfrom the Mizar library. The Mizar library evolves and past contributions arerevised and (usually) generalized. Our work on formal power series causeda number of such revisions. It seems that revising past developments withan intent to generalize them is a necessity when building a data base of for-malized mathematics. And this poses a question: how much generalizationis best?�Supported by NSERC Grant OGP9207.ySupported by NSERC Grant OGP9207 and NATO CRG 951368.1

21 IntroductionMathematics, especially algebra, uses dozens of structures; groups, rings,vector spaces, to name few of the most basic ones. These structures areclosely connected to each other giving raise to inheritance. For example,each ring is a group with respect to its addition and hence every theoremabout groups trivially holds for rings also. Furthermore there is a trendtowards introducing more general structures: semi-rings as a generalizationof rings, modules as a generalization of vector spaces, etc. Again, theoremsabout a structure are trivially true for any structure derived from it. Thederived structure inherits everything from its ancestors.In mechanized proof-checking systems the issues of inheritance have tobe made explicit. It is by far non trivial to build a proof-checker for whichtheorems for groups apply also to rings. Generalizations, as mentionedabove, may result in building a sizeable graph of inheritance and onlyextensive practice can say how good is a particular solution. The issue isfurther complicated by inertia induced through the existing developmentsin a proof-checking environment. On the one hand, one would like to inheritas much as possible from the past, on the other hand one wants to changethe past if it turns out to be inconvenient for the task at hand. And thetask at hand is usually too big to start everything from scratch.In this paper we describe the construction of formal multivariate powerseries and polynomials in the Mizar system [4], during which we had todeal with these problems. We discuss the tools Mizar o�ers to build alge-braic structures; tools, we believe, providing a
exible mechanism allowingthe kind of inheritance omnipresent in mathematics. Generalization is amore complex task. Of course one can easily derive rings from semi-rings;however, there is a challenge when the rings have been already introducedin the past and one aims at introducing semi-rings. The question is whatto do with the theorems about rings already proven and stored in a library.A number of them will hold for semi-rings also. Stating and proving themagain would not only be a tedious job but would blow up the library. Alter-natively, the library has to be revised as a whole. We discuss some issuesof generalizations and library revisions.2 De�ning Algebraic Domains in MizarThe Mizar construction of formal multivariate polynomials aimed at de�n-ing the ring of polynomials over a minimal algebraic domain which wouldpermit such a construction. The de�nition of an algebraic domain isfounded on a structure mode providing the primitive notions, and next,

3the axioms for a speci�c class of structures are de�ned as properties of theunderlying structure mode.In our case, the structure mode of interest is doubleLoopStr, de�ned in[3]. Figure 1 illustrates the relationship of doubleLoopStr to other struc-ture modes1. The bottom de�nition introduces the following constructors:� The structure mode doubleLoopStr, that may be used to qualifyvariables, e.g. let S be doubleLoopStr or form predicates, e.g. Tis doubleLoopStr. However, T for which the above holds, may haveother �elds besides those listed in the de�nition, if the type of T isderived from doubleLoopStr.� The attribute strict which when used as strict doubleLoopStrgives the type of structures that have no additional �elds besides theones mentioned in the de�nition. The attribute symbol strict isheavily overloaded as every de�nition of a structure mode de�nes anew attribute denoted by this symbol.� The aggregate functor that is used to construct aggregates of theform doubleLoopStr(#c,a,m,u,z#), where c is a set, a and m binaryoperations on c, u and z two �xed elements of c. Structures denotedby aggregates are strict.� The forgetful functor which when used as the doubleLoopStr of Screates a strict structure from S (provided S has a type widening todoubleLoopStr). This functor denotes the aggregate:doubleLoopStr (# the carrier of S,the add of S, the mult of S,the unity of S, the Zero of S #)If S is strict doubleLoopStr, then S = the doubleLoopStr of S.The mode doubleLoopStr is derived from LoopStr and multLoopStr 0.This means that type doubleLoopStr widens to both, or in other words isa subtype of both LoopStr and multLoopStr 0.Typically, a structure de�nition introduces also some selector functorsto access its �elds. The selector functors are introduced in the �rst struc-ture de�nition in which the selector is used. The structure mode 1-sortedde�nes the selector functor the carrier of. It may be used for any1-sorted structure, e.g. ZeroStr, LoopStr, doubleLoopStr. The selec-tor functor the Zero of is introduced by ZeroStr and the selector functorthe add of by LoopStr. In the case of multLoopStr 0 no new selectors are1See [1], [8] and [3] to learn more about these structures.

4 struct 1-sorted(# carrier -> set #);
���������

�>
struct (1-sorted) ZeroStr(# carrier -> set,Zero -> Element of the carrier #);6struct (ZeroStr) LoopStr(# carrier -> set,add -> BinOp of the carrier,Zero -> Element of the carrier #);

HHHHYstruct (1-sorted) HGrStr(# carrier -> set,mult -> BinOp of the carrier #);6struct (HGrStr) multLoopStr(# carrier -> set,mult -> BinOp of the carrier,unity -> Element of the carrier #);6XXXXXXXXXXXXXXXXy struct (ZeroStr, multLoopStr) multLoopStr 0(# carrier -> set,mult -> BinOp of the carrier,unity -> Element of the carrier,Zero -> Element of the carrier #);XXXXXXXXy ��������:struct (LoopStr, multLoopStr 0) doubleLoopStr(# carrier -> set,add -> BinOp of the carrier,mult -> BinOp of the carrier,unity -> Element of the carrier,Zero -> Element of the carrier #);Figure 1. Derivation of doubleLoopStrintroduced, mult and unity are inherited from HGrStr and multLoopStr,respectively. In the case of doubleLoopStr also all selector functors areinherited.ZeroStr is a common ancestor of LoopStr and multLoopStr 0. In thisway we ensure that carrier and Zero are the same in both. The de�nitionof ZeroStr introduces Zero as a new selector, carrier is inherited from1-sorted that is common ancestor for most structures in the Mizar library(MML).If S is de�ned to satisfy S = doubleLoopStr(#c,a,m,u,z#) then

5the 1-sorted of S = 1-sorted(#c#)the ZeroStr of S = ZeroStr(#c,z#)the LoopStr of S = LoopStr(#c,a,z#)the multLoopStr_0 of S = multLoopStr_0(#c,m,u,z#)the doubleLoopStr of S = doubleLoopStr(#c,a,m,u,z#)that is the doubleLoopStr of S = S.The order of selectors in a structure de�nition serves syntactic purposesonly and it can be chosen arbitrarily (with obvious restriction that a selectors1 that occurs in the type of a selector s2 must be put before s2). Thestructures in Mizar are not tuples but rather partial functions on selectorsand selectors must not be identi�ed with just a place in the aggregatefunctor.A structure mode de�nes a backbone on which algebraic domains arebuilt. The desired properties of an algebraic domain are introduced usu-ally one at a time through de�ning appropriate attributes. For example,associativity of addition is formulated ([8]) as:definitionlet S be non empty LoopStr;attr S is add-associative meansfor a,b,c being Element of the carrier of Sholds (a + b) + c = a + (b + c);end;(a + b is a shorter notation for (the add of S).[a,b]; this notation isusually de�ned right after the selector functor is introduced, see [8].) Theattribute add-associative is de�ned for the structure mode LoopStr,in which the selector add is introduced. Through inheritance|the modedoubleLoopStr widens to the mode LoopStr as the latter is an ancestor ofthe former|the attribute is available for objects of mode doubleLoopStr.Using separate attributes, various properties of algebraic domains arede�ned. These attributes can then be combined into clusters:definitioncluster add-associative right_zeroed right_complementableAbelian commutative associative left_unitalright_unital distributive Field-like non degenerated(non empty doubleLoopStr);existenceproofDemonstrate the existence of an object with all listed attributes.end;end;

6The attributes in the cluster above were introduced for various structuremodes, all inherited by doubleLoopStr. For example, empty is de�ned for1-sorted, Abelian for LoopStr, commutative for HGrStr. The attributedistributive is de�ned for doubleLoopStr as it could not have beende�ned earlier.The existence proof in the cluster de�nition is necessary to avoid emptymodes that are not allowed in Mizar. Once we have proven the existenceof an object with a cluster of attributes, we can introduce a mode of thedesired algebraic domain:definitionmode Field isadd-associative right_zeroed right_complementableAbelian commutative associative left_unitalright_unital distributive Field-like non degenerated(non empty doubleLoopStr);end;The mode Field is an abbreviation for a doubleLoopStr having the at-tributes given in its de�nition. Note that through inheritance the de�nitionof Field just combines various notions; most of them exist on their ownmerit. A de�nition of a Ring could share the same backbone structure withField and its attributes could be a subset of Field's attributes. Thereforeeach theorem about a Ring would be applicable to a Field.Conditional clusters is another Mizar mechanism through which we ob-tain reuse of theorems. A conditional cluster expresses the fact that a Mizarobject that enjoys some attributes also enjoys another ones. For example,the rather trivial fact that a commutative binary operator with a right zeroalso possesses a left zero, can be expressed as follows:definitioncluster Abelian right_zeroed -> left_zeroed (non empty LoopStr);coherenceproofDemonstrate that the desired implication holds.end;end;Once the above conditional cluster has been registered, predicates and func-tions de�ned for left_zeroed LoopStr are now also available for all otherobjects whose type widens to Abelian right_zeroed LoopStr. Also, the-orems proven for left_zeroed LoopStr are now applicable to Abelianright zeroed LoopStr and all other types widening to it. Mizar checker

7tacitly processes all available conditional clusters and they are not explicitlyreferenced.3 Formal Multivariate Power Series and PolynomialsThe construction of formal power series and polynomials is presented in [5].We build power series as functions from power products into a structureL of coeÆcients. A power product itself is a function, called bag, from agiven set of variables into the natural numbers.Variables are elements of an arbitrary set X. When we need the variablesto be ordered, we use ordinals as X but we prefer to be as general aspossible. A bag over a set of variables X is de�ned in terms of the conceptof ManySortedSet [7].definitionlet X be set;mode bag of X isnatural-yielding finite-support ManySortedSet of X;end;The attribute natural-yielding means that the values of a bag are natu-ral numbers, whereas finite-support describes the property of a functionas having only �nitely many values not equal to zero. The set of all bagsof X is then de�ned and named Bags X.Several operations on bags are de�ned, for example addition (b1 + b2)used for multiplying power products and restricted subtraction (b1 -' b2)used for dividing power products. Also, we introduced the usual order onpower products and the concept of their divisibility.Given a structure S, a formal power series over S with the variablesin X assigns to each power product over X a coeÆcient, an element of S.Consequently a Series of S,X is a function from Bags X into S:definitionlet X be set, S be 1-sorted;mode Series of X,S -> Function of (Bags X),S meansnot contradiction;end;Note that nothing is required from the structure S, in particular no additionover S has to be available. These assumptions are introduced later whennecessary to ensure additional properties of series. For example, de�ningaddition of series requires addition of the elements of S, hence is de�nedfor LoopStr:

8 definitionlet n be set, L be right_zeroed (non empty LoopStr),p,q be Series of n,L;func p + q -> Series of n,L meansfor x being bag of n holds it.x = p.x + q.x;end;(Note: the attribute right_zeroed is not really needed and will be prob-ably eliminated when the library is revised.)De�nition of multiplication required a bit more work: p*q on a bag b isobtained by considering all decompositions of b into bags b1 and b2 suchthat b = b1 + b2. This is done with the helper functor decomp which givesthe �nite sequence of decompositions of b ordered in increasing order of the�rst component. For this we required that the variables are identi�ed witha certain ordinal:definitionlet n be Ordinal,L be add-associative right_complementableright_zeroed (non empty doubleLoopStr),p,q be Series of n, L;func p*q -> Series of n, L meansfor b being bag of nex s being FinSequence of the carrier of Lst it.b = � s &len s = len decomp b &for k being Nat st k 2 dom sex b1, b2 being bag of n st �(decomp b,k) = <*b1, b2*> &�(s,k) = p.b1 � q.b2;end;(We would like to mention that proving the associativity of this multipli-cation presented a technical challenge.)We also de�ned the operators p - q and -p with the obvious meaning aswell as the zero series and the unit series denoted by 0_(n,L) and 1_(n,L).Polynomials are a special case of formal power series; they are the serieshaving only �nitely many power products with non-zero coeÆcients, thatis series with a �nite support (written finite-Support to distinguish fromfinite-support, introduced earlier). Due to this restriction the underly-ing structure L must have a zero, hence be a ZeroStr.definitionlet n be Ordinal, L be non empty ZeroStr;mode Polynomial of n,L is finite-Support Series of n,L

9end;All the functors de�ned for series and resulting in series can be appliedto polynomials, however, the types of these functors are series and notpolynomials. We have to explicitly state when performing operations onpolynomials we obtain polynomials, that is that the resulting series has�nite support. This problem is solved by employing functorial clusters, inwhich exactly this is stated (and proved), for example:definitionlet n be Ordinal, L be right_zeroed (non empty LoopStr),p,q be Polynomial of n,L;cluster p + q -> finite-Support;coherenceproofShow that the result of adding two Polynomials has �nite-Support.endend;Putting it all together we get the ring of polynomials over a structure L asa doubleLoopStr in which the single components are identi�ed with thecorresponding just de�ned operators. Note that the underlying structure Lis not a full commutative ring. We only used attributes necessary to ensurethat the operators for polynomials again result in a polynomial.definitionlet n be Ordinal,L be right_zeroed add-associative right_complementable unitaldistributive non trivial (non empty doubleLoopStr);func Polynom-Ring(n,L) -> strict non empty doubleLoopStr means(for x being setholds x 2 the carrier of it iff x is Polynomial of n,L) &(for x,y being Element of it, p,q being Polynomial of n,Lst x = p & y = q holds x + y = p + q) &(for x,y being Element of it, p,q being Polynomial of n,Lst x = p & y = q holds x � y = p * q) &0.it = 0_(n,L) &1_ it = 1_(n,L);end;So far we only de�ned an instance of a doubleLoopStr; nothing is saidabout the usual algebraic properties of a polynomial ring. To constitutePolynom-Ring(n,L) as a ring, the necessary attributes are introduced incluster registrations. For some of the attributes, additional properties of L

10were necessary. For example, it turned out that in order to prove the com-mutativity of multiplication, we also needed the addition of polynomials tobe commutative.definitionlet n be Ordinal,L be Abelian add-associative right_zeroedright_complementable commutative unital distributivenon trivial (non empty LoopStr);cluster Polynom-Ring(n,L) -> commutative;end;Finally, to prove distributivity of Polynom-Ring(n,L) we had to use at-tributes implying that L is a ring with a unit, but not a commutative one.definitionlet n be Ordinal,L be right_zeroed Abelian add-associativeright_complementable unital distributive associativenon trivial (non empty doubleLoopStr);cluster Polynom-Ring (n, L) -> unital right-distributive;end;4 Evaluating Multivariate PolynomialsThe next natural step is to de�ne the evaluation of polynomials in the un-derlying structure L [6]. To de�ne the evaluation as a function from thering of polynomials over L into L, it is not necessary for L to be a ring.But in order to prove that the evaluation of polynomials is a homomor-phism, further properties of L are necessary, namely that L is a non trivialcommutative ring with 1.First, we resolve the problem of evaluating a power product b which isa bag of n.definitionlet n be Ordinal,b be bag of n,L be unital non trivial (non empty doubleLoopStr),x be Function of n,L;func eval(b,x) -> Element of the carrier of L meansex y being FinSequence of the carrier of Lst len y = len SgmX(RelIncl n, support b) &it = � y &for i being Nat st 1 <= i & i <= len y holds

11y|.i = power(L).((x�SgmX(RelIncl n, support b))|.i,(b�SgmX(RelIncl n, support b))|.i);end;We use a helper function x evaluating the variables n into L. To get theinteresting part of x, that is an evaluation of the variables occurring withnon-zero exponents in b, the functor SgmX is employed. This functor takesa �nite set|here the support of a bag|and a linear order for the set andreturns a �nite sequence in which the elements of the set occur in increasingorder. This sequence is then composed with x to get the �nite sequenceof values and with b to get the corresponding �nite sequence of exponents.The exponentiation is then performed pointwise yielding a �nite sequencey of elements of L. The result of the evaluation of b with respect to x is theproduct of the values of y. We get this product using the functor � whichtakes a �nite sequence (over a structure allowing for elements occurring inthis sequence [9]).The structure L has to meet two requirements: the existence of a unityand that it is not trivial (has at least two elements). However, in order toprove that the evaluation respects multiplication of power products, thatis to prove the rather obvious facteval(b1+b2,x) = eval(b1,x) � eval(b2,x)it turned out that L has to provide a commutative multiplication with a (leftand right) unity. As this property is necessary to prove multiplicativity ofevaluation, it follows that the evaluation of polynomials is a homomorphismonly if the underlying structure L is a commutative ring with 1.The de�nition of the evaluation of a polynomial is de�ned in analogousway to the evaluation of power products:definitionlet n be Ordinal,L be right_zeroed add-associative right_complementable unitaldistributive non trivial (non empty doubleLoopStr),p be Polynomial of n,L,x be Function of n,L;func eval(p,x) -> Element of the carrier of L meansex y being FinSequence of the carrier of Lst len y = len SgmX(BagOrder n, Support p) &it = � y &for i being Nat st 1 <= i & i <= len y holdsy|.i = (p�SgmX(BagOrder n, Support p))|.i �eval(((SgmX(BagOrder n, Support p))|.i),x);end;

12The next goal was to prove that the functor eval is a homomorphismfrom the polynomial ring over L into L. To do so we introduced a functorPolynom-Ring(n,L,x) taking an ordinal number, a structure L and vari-able evaluation function x as parameters, assigning to each polynomial pthe value of eval(p,x).definitionlet n be Ordinal,L be right_zeroed add-associative right_complementable unitaldistributive non trivial (non empty doubleLoopStr),x be Function of n, L;func Polynom-Evaluation(n,L,x) -> map of Polynom-Ring(n,L),Lmeans for p being Polynomial of n,L holds it.p = eval(p,x);end;Proving the properties of a homomorphism required additional assumptionsconcerning L, in particular, to prove that the evaluation of polynomials iscompatible with the multiplication of polynomials we had to assume forthe �rst time, that the underlying structure L is indeed a commutative ringwith 1. Thus we ended up with the followingdefinitionlet n be Ordinal,L be right_zeroed add-associative right_complementableAbelian well-unital distributive non trivialcommutative associative (non empty doubleLoopStr),x be Function of n,L;cluster Polynom-Evaluation(n,L,x) -> RingHomomorphism;end;5 Library RevisionsWhen starting to de�ne polynomials, we wanted to keep the number ofnew de�nitions as small as possible. Hence we examined the Mizar Mathe-matical Library (MML) to �nd concepts we could use for our task. Severalproblems occurred.We found out (not for the �rst time) that many basic theorems weremissing. For example, the functor � sums up elements of a �nite sequence;it is clear that if all but one particular element equal zero, the sum in factis this element. This theorem had not been proven before.Some concepts were introduced for a too speci�c structure, hence notgeneral enough to use them in our case. For example, the functor power,for exponentiation with natural numbers, was de�ned for groups, whereas

13we wanted to use it in a structure providing only unity. Of course onecan de�ne the functor again for the more general case, but this does notseem appropriate in a library. The solution is to revise the MML, thatmeans generalizing the original de�nition and reformulating the theoremsconcerning this concept.2On the one hand this problem seems natural. If one is writing an articleabout for example groups in which one needs a functor|and one does not�nd it in the MML|one simply de�nes it. And why should one thinkabout more general solutions, if it works well for the theorems intendedto prove? In addition, it is rather hard, if even possible, to estimate howgeneral a de�nition should be in order to provide optimal bene�t for futureusers of MML.On the other hand, while proving theorems about the new concept, oneusually observes which properties of the underlying structure are necessaryto prove it and which are not. The correctness proof of the power functor,for example, de�nitely did not use the properties of a group. The sameholds for de�ning formal power series and polynomials: we �rst did (and�nished) this job for polynomials with a �nite number of variables only,before we realized that we already had developed all the machinery forconstructing power series in arbitrary number of variables.Another point connected with this problem is that sometimes it maybe better to be not as general as possible. For example, although onecan build the theory of polynomials in one variable out of our approach,by using Polynomial-Ring(1,R), this seems not to be the best solution.Doing so would require R to be a commutative and associative ring, justbecause these properties were necessary to prove multiplicativity of theevaluation in the general case. But it seems that for polynomials with onevariable only this property can be established with weaker assumptions onR.3 So the question remains: How much generalization is best?6 Conclusions and Further WorkIn this paper we described the construction of formal multivariate powerseries and polynomials in the Mizar system. The main concern was topresent the possibilities Mizar o�ers to build algebraic structures. Althoughthese possibilities are quite elegant and include inheritance in the usualmathematical style, library revisions were necessary during our work.2Sometimes it turns out that the proof of a theorem actually does not use all prop-erties of the structure it is about.3At the moment the theory of polynomials in one variable is developed separately inorder to check this.

14 We plan to go on with our work on polynomials, among other goals isgetting more insight into the way of dealing with inheritance in algebraicstructures. We want to check how applications of our general theory ofpolynomials can be done. One of the goals is to develop a theory of poly-nomials over �nite �elds|as used in coding theory|thus to restrict theunderlying structure of a polynomial ring. Also the theory of one-variablepolynomials will be constructed separately, although it could be build usingour approach. This may serve as a case study concerning the question howmuch generalization is best.Another plan is to work towards the theory of Groebner bases andBuchberger-like algorithms. For that it is necessary to develop the theoryof ideals �rst. This seems to be an algebraic topic with many applicationsand hence could also contribute to solve the problems we discussed here.

Bibliography[1] Association of Mizar Users, Library Committee, Preliminaries toStructures. Available on WWW:http://mizar.org/JFM/Addenda/struct 0.abs.html.[2] Grzegorz Bancerek and Krzysztof Hryniewiecki, Segments of Nat-ural Numbers and Finite Sequences. Formalized Mathematics,1(1):107{114, 1990. Available on WWW:http://mizar.org/JFM/ Vol1/finseq_1.abs.html.[3] Eugeniusz Kusak, Wojciech Leo�nczuk and Micha l Muzalewski,Abelian Groups, Fields and Vector Spaces. Formalized Mathemat-ics, 1(2):335{342, 1990. Available on WWW:http://mizar.org/JFM/Vol1/vectsp_1.abs.html.[4] Piotr Rudnicki and Andrzej Trybulec. On Equivalents of Well-foundedness. An experiment in Mizar. Journal of Automated Rea-soning, 23:197{234, 1999.[5] Piotr Rudnicki and Andrzej Trybulec, Multivariate Polynomi-als with arbitrary Number of Variables. Formalized Mathematics,8(1):317{332, 1999. Available on WWW:http://mizar.org/JFM/Vol11/polynom1.abs.html.[6] Christoph Schwarzweller and Andrzej Trybulec, Evaluation ofMultivariate Polynomials. To appear in Formalized Mathemat-ics, 2000. Available on WWW:http://mizar.org/JFM/Vol12/polynom2.abs.html.[7] Andrzej Trybulec, Many-sorted sets. Formalized Mathematics,4(1):15{22, 1993. Available on WWW:http://mizar.org/JFM/Vol5/pboole.abs.html.[8] Wojciech A. Trybulec, Vectors in Real Linear Space. Formal-ized Mathematics, 1(2):291{296, 1990. Available on WWW:http://mizar.org/JFM/Vol1/rlvect_1.abs.html.[9] Wojciech A. Trybulec, Lattice of Subgroups of a Group. FrattiniSubgroup. Formalized Mathematics 2(1):41{47, 1991. Availableon WWW:http://mizar.org/JFM/Vol2/group_1.abs.html.15

