Defining Power Series and Polynomials in
Mizar

Piotr Rudnicki*
University of Alberta, Canada
email: piotr@cs.ualberta.ca

Christoph Schwarzweller
University of Tiibingen, Germany
email: schwarzw@informatik.uni-tuebingen.de

Andrzej Trybulec!
University of Bialystok, Poland
email: trybulec@math.uwb.edu.pl

14th September 2000

Abstract. We report on the construction of formal multivariate power
series and polynomials in the Mizar system. First, we present how the al-
gebraic structures are handled and how we inherited the past developments
from the Mizar library. The Mizar library evolves and past contributions are
revised and (usually) generalized. Our work on formal power series caused
a number of such revisions. It seems that revising past developments with
an intent to generalize them is a necessity when building a data base of for-
malized mathematics. And this poses a question: how much generalization
is best?

*Supported by NSERC Grant OGP9207.
tSupported by NSERC Grant OGP9207 and NATO CRG 951368.



1 Introduction

Mathematics, especially algebra, uses dozens of structures; groups, rings,
vector spaces, to name few of the most basic ones. These structures are
closely connected to each other giving raise to inheritance. For example,
each ring is a group with respect to its addition and hence every theorem
about groups trivially holds for rings also. Furthermore there is a trend
towards introducing more general structures: semi-rings as a generalization
of rings, modules as a generalization of vector spaces, etc. Again, theorems
about a structure are trivially true for any structure derived from it. The
derived structure inherits everything from its ancestors.

In mechanized proof-checking systems the issues of inheritance have to
be made explicit. It is by far non trivial to build a proof-checker for which
theorems for groups apply also to rings. Generalizations, as mentioned
above, may result in building a sizeable graph of inheritance and only
extensive practice can say how good is a particular solution. The issue is
further complicated by inertia induced through the existing developments
in a proof-checking environment. On the one hand, one would like to inherit
as much as possible from the past, on the other hand one wants to change
the past if it turns out to be inconvenient for the task at hand. And the
task at hand is usually too big to start everything from scratch.

In this paper we describe the construction of formal multivariate power
series and polynomials in the Mizar system [4], during which we had to
deal with these problems. We discuss the tools Mizar offers to build alge-
braic structures; tools, we believe, providing a flexible mechanism allowing
the kind of inheritance omnipresent in mathematics. Generalization is a
more complex task. Of course one can easily derive rings from semi-rings;
however, there is a challenge when the rings have been already introduced
in the past and one aims at introducing semi-rings. The question is what
to do with the theorems about rings already proven and stored in a library.
A number of them will hold for semi-rings also. Stating and proving them
again would not only be a tedious job but would blow up the library. Alter-
natively, the library has to be revised as a whole. We discuss some issues
of generalizations and library revisions.

2 Defining Algebraic Domains in Mizar

The Mizar construction of formal multivariate polynomials aimed at defin-
ing the ring of polynomials over a minimal algebraic domain which would
permit such a construction. The definition of an algebraic domain is
founded on a structure mode providing the primitive notions, and next,



the axioms for a specific class of structures are defined as properties of the
underlying structure mode.

In our case, the structure mode of interest is doubleLoopStr, defined in
[3]. Figure 1 illustrates the relationship of doubleLoopStr to other struc-
ture modes!. The bottom definition introduces the following constructors:

e The structure mode doubleLoopStr, that may be used to qualify
variables, e.g. let S be doubleLoopStr or form predicates, e.g. T
is doubleLoopStr. However, T for which the above holds, may have
other fields besides those listed in the definition, if the type of T is
derived from doubleLoopStr.

e The attribute strict which when used as strict doubleLoopStr
gives the type of structures that have no additional fields besides the
ones mentioned in the definition. The attribute symbol strict is
heavily overloaded as every definition of a structure mode defines a
new attribute denoted by this symbol.

e The aggregate functor that is used to construct aggregates of the
form doubleLoopStr (#c,a,m,u,z#), where c is a set, a and m binary
operations on c, u and z two fixed elements of c. Structures denoted
by aggregates are strict.

e The forgetful functor which when used as the doubleLoopStr of S
creates a strict structure from S (provided S has a type widening to
doubleLoopStr). This functor denotes the aggregate:

doubleLoopStr (# the carrier of S,
the add of S, the mult of S,
the unity of S, the Zero of S #)

If Sis strict doubleLoopStr, then S = the doubleLoopStr of S.

The mode doubleLoopStr is derived from LoopStr and multLoopStr_0.
This means that type doubleLoopStr widens to both, or in other words is
a subtype of both LoopStr and multLoopStr.0.

Typically, a structure definition introduces also some selector functors
to access its fields. The selector functors are introduced in the first struc-
ture definition in which the selector is used. The structure mode 1-sorted
defines the selector functor the carrier of. It may be used for any
1-sorted structure, e.g. ZeroStr, LoopStr, doubleLoopStr. The selec-
tor functor the Zero of is introduced by ZeroStr and the selector functor
the add of by LoopStr. In the case of multLoopStr_0 no new selectors are

ISee [1], [8] and [3] to learn more about these structures.



struct 1-sorted
(# carrier -> set #);

struct (l-sorted) ZeroStr
(# carrier -> set,

Zero -> Element of the carrier #);

struct (ZeroStr) LoopStr
(# carrier -> set,

add -> Bin0p of the carrier,
Zero -> Element of the carrier #);

™~

struct (l1-sorted) HGrStr
(# carrier -> set,
mult -> BinQp of the carrier #);

T

struct (HGrStr) multLoopStr
(# carrier -> set,
mult -> Bin0p of the carrier,
unity -> Element of the carrier #);

T

struct (ZeroStr, multLoopStr) multLoopStr_O
(# carrier -> set,

mult -> Bin0Op of the carrier,
unity -> Element of the carrier,
Zero -> Element of the carrier #);

—_

struct (LoopStr,

(# carrier ->

add ->
mult ->
unity ->
Zero ->

multLoopStr_0) doubleLoopStr
set,

BinOp of the carrier,

BinOp of the carrier,

Element of the carrier,
Element of the carrier #);

Figure 1. Derivation of doubleLoopStr

introduced, mult and unity are inherited from HGrStr and multLoopStr,
respectively. In the case of doubleLoopStr also all selector functors are

inherited.

ZeroStr is a common ancestor of LoopStr and multLoopStr-0. In this
way we ensure that carrier and Zero are the same in both. The definition
of ZeroStr introduces Zero as a new selector, carrier is inherited from
1-sorted that is common ancestor for most structures in the Mizar library

(MML).

If S is defined to satisfy S = doubleLoopStr (#c,a,m,u,z#) then




the 1-sorted of S = 1-sorted (#c#)

the ZeroStr of S = ZeroStr (#c,z#)

the LoopStr of S = LoopStr(#c,a,z#)

the multLoopStr_0 of S = multLoopStr_O(#c,m,u,z#)
the doubleLoopStr of S = doubleLoopStr (#c,a,m,u,z#)

that is the doubleLoopStr of S = S.

The order of selectors in a structure definition serves syntactic purposes
only and it can be chosen arbitrarily (with obvious restriction that a selector
s1 that occurs in the type of a selector so must be put before so). The
structures in Mizar are not tuples but rather partial functions on selectors
and selectors must not be identified with just a place in the aggregate
functor.

A structure mode defines a backbone on which algebraic domains are
built. The desired properties of an algebraic domain are introduced usu-
ally one at a time through defining appropriate attributes. For example,
associativity of addition is formulated ([8]) as:

definition

let S be non empty LoopStr;

attr S is add-associative means
for a,b,c being Element of the carrier of S
holds (a + b) + c=a+ (b + c);

end;

(a + b is a shorter notation for (the add of S).[a,bl; this notation is
usually defined right after the selector functor is introduced, see [8].) The
attribute add-associative is defined for the structure mode LoopStr,
in which the selector add is introduced. Through inheritance—the mode
doubleLoopStr widens to the mode LoopStr as the latter is an ancestor of
the former the attribute is available for objects of mode doubleLoopStr.

Using separate attributes, various properties of algebraic domains are
defined. These attributes can then be combined into clusters:

definition
cluster add-associative right_zeroed right_complementable
Abelian commutative associative left_unital
right_unital distributive Field-like non degenerated
(non empty doubleLoopStr);
existence
proof
Demonstrate the existence of an object with all listed attributes.
end;
end;



The attributes in the cluster above were introduced for various structure
modes, all inherited by doubleLoopStr. For example, empty is defined for
1-sorted, Abelian for LoopStr, commutative for HGrStr. The attribute
distributive is defined for doubleLoopStr as it could not have been
defined earlier.

The existence proof in the cluster definition is necessary to avoid empty
modes that are not allowed in Mizar. Once we have proven the existence
of an object with a cluster of attributes, we can introduce a mode of the
desired algebraic domain:

definition

mode Field is
add-associative right_zeroed right_complementable
Abelian commutative associative left_unital
right_unital distributive Field-like non degenerated
(non empty doubleLoopStr) ;

end;

The mode Field is an abbreviation for a doubleLoopStr having the at-
tributes given in its definition. Note that through inheritance the definition
of Field just combines various notions; most of them exist on their own
merit. A definition of a Ring could share the same backbone structure with
Field and its attributes could be a subset of Field’s attributes. Therefore
each theorem about a Ring would be applicable to a Field.

Conditional clusters is another Mizar mechanism through which we ob-
tain reuse of theorems. A conditional cluster expresses the fact that a Mizar
object that enjoys some attributes also enjoys another ones. For example,
the rather trivial fact that a commutative binary operator with a right zero
also possesses a left zero, can be expressed as follows:

definition
cluster Abelian right_zeroed -> left_zeroed (non empty LoopStr);
coherence
proof
Demonstrate that the desired implication holds.
end;
end;

Once the above conditional cluster has been registered, predicates and func-
tions defined for left_zeroed LoopStr are now also available for all other
objects whose type widens to Abelian right_zeroed LoopStr. Also, the-
orems proven for left_zeroed LoopStr are now applicable to Abelian
right zeroed LoopStr and all other types widening to it. Mizar checker



tacitly processes all available conditional clusters and they are not explicitly
referenced.

3 Formal Multivariate Power Series and Polynomials

The construction of formal power series and polynomials is presented in [5].
We build power series as functions from power products into a structure
L of coefficients. A power product itself is a function, called bag, from a
given set of variables into the natural numbers.

Variables are elements of an arbitrary set X. When we need the variables
to be ordered, we use ordinals as X but we prefer to be as general as
possible. A bag over a set of variables X is defined in terms of the concept
of ManySortedSet [7].

definition
let X be set;
mode bag of X is
natural-yielding finite-support ManySortedSet of X;
end;

The attribute natural-yielding means that the values of a bag are natu-
ral numbers, whereas finite-support describes the property of a function
as having only finitely many values not equal to zero. The set of all bags
of X is then defined and named Bags X.

Several operations on bags are defined, for example addition (b1 + b2)
used for multiplying power products and restricted subtraction (b1 -’ b2)
used for dividing power products. Also, we introduced the usual order on
power products and the concept of their divisibility.

Given a structure S, a formal power series over S with the variables
in X assigns to each power product over X a coefficient, an element of S.
Consequently a Series of S,X is a function from Bags X into S:

definition

let X be set, S be l-sorted;

mode Series of X,S -> Function of (Bags X),S means
not contradiction;

end;

Note that nothing is required from the structure S, in particular no addition
over S has to be available. These assumptions are introduced later when
necessary to ensure additional properties of series. For example, defining
addition of series requires addition of the elements of S, hence is defined
for LoopStr:



definition
let n be set, L be right_zeroed (non empty LoopStr),
p,q be Series of n,L;
func p + q -> Series of n,L means
for x being bag of n holds it.x = p.x + q.X;
end;

(Note: the attribute right_zeroed is not really needed and will be prob-
ably eliminated when the library is revised.)

Definition of multiplication required a bit more work: p*q on a bag b is
obtained by considering all decompositions of b into bags b1 and b2 such
that b = bl + b2. This is done with the helper functor decomp which gives
the finite sequence of decompositions of b ordered in increasing order of the
first component. For this we required that the variables are identified with
a certain ordinal:

definition
let n be Ordinal,
L be add-associative right_complementable
right_zeroed (non empty doubleLoopStr),
p.q be Series of mn, L;
func p*q -> Series of n, L means
for b being bag of n
ex s being FinSequence of the carrier of L
st it.b =¥ s &
len s = len decomp b &
for k being Nat st k € dom s
ex bl, b2 being bag of n st w(decomp b,k) = <*bl, b2*x> &
w(s,k) = p.bl - q.b2;
end;

(We would like to mention that proving the associativity of this multipli-
cation presented a technical challenge.)

We also defined the operatorsp - qand -p with the obvious meaning as
well as the zero series and the unit series denoted by 0_(n,L) and 1_(n,L).

Polynomials are a special case of formal power series; they are the series
having only finitely many power products with non-zero coefficients, that
is series with a finite support (written finite-Support to distinguish from
finite-support, introduced earlier). Due to this restriction the underly-
ing structure L must have a zero, hence be a ZeroStr.

definition
let n be Ordinal, L be non empty ZeroStr;
mode Polynomial of n,L is finite-Support Series of n,L



end;

All the functors defined for series and resulting in series can be applied
to polynomials, however, the types of these functors are series and not
polynomials. We have to explicitly state when performing operations on
polynomials we obtain polynomials, that is that the resulting series has
finite support. This problem is solved by employing functorial clusters, in
which exactly this is stated (and proved), for example:

definition
let n be Ordinal, L be right_zeroed (non empty LoopStr),
p.q be Polynomial of n,L;
cluster p + q -> finite-Support;
coherence
proof
Show that the result of adding two Polynomials has finite-Support.
end
end;

Putting it all together we get the ring of polynomials over a structure L as
a doubleLoopStr in which the single components are identified with the
corresponding just defined operators. Note that the underlying structure L
is not a full commutative ring. We only used attributes necessary to ensure
that the operators for polynomials again result in a polynomial.

definition
let n be Ordinal,
L be right_zeroed add-associative right_complementable unital
distributive non trivial (non empty doubleLoopStr);
func Polynom-Ring(n,L) -> strict non empty doubleLoopStr means
(for x being set
holds x € the carrier of it iff x is Polynomial of n,L) &
(for x,y being Element of it, p,q being Polynomial of n,L
st x=p&y=qholdsx+y=p+q &
(for x,y being Element of it, p,q being Polynomial of n,L
st x =p &y =qholds x -y =p*q) &
0.it = 0_(n,L) &
1_ it = 1_(n,L);

end;

So far we only defined an instance of a doubleLoopStr; nothing is said
about the usual algebraic properties of a polynomial ring. To constitute
Polynom-Ring(n,L) as a ring, the necessary attributes are introduced in
cluster registrations. For some of the attributes, additional properties of L



10

were necessary. For example, it turned out that in order to prove the com-
mutativity of multiplication, we also needed the addition of polynomials to
be commutative.

definition
let n be Ordinal,

L be Abelian add-associative right_zeroed
right_complementable commutative unital distributive
non trivial (non empty LoopStr);

cluster Polynom-Ring(n,L) -> commutative;
end;

Finally, to prove distributivity of Polynom-Ring(n,L) we had to use at-
tributes implying that L is a ring with a unit, but not a commutative one.

definition
let n be Ordinal,

L be right_zeroed Abelian add-associative
right_complementable unital distributive associative
non trivial (non empty doubleLoopStr);

cluster Polynom-Ring (n, L) -> unital right-distributive;
end;

4 Evaluating Multivariate Polynomials

The next natural step is to define the evaluation of polynomials in the un-
derlying structure L [6]. To define the evaluation as a function from the
ring of polynomials over L into L, it is not necessary for L to be a ring.
But in order to prove that the evaluation of polynomials is a homomor-
phism, further properties of L are necessary, namely that L is a non trivial
commutative ring with 1.

First, we resolve the problem of evaluating a power product b which is
a bag of n.

definition
let n be Ordinal,
b be bag of n,
L be unital non trivial (non empty doubleLoopStr),
x be Function of n,L;
func eval(b,x) -> Element of the carrier of L means
ex y being FinSequence of the carrier of L
st len y = len SgmX(RelIncl n, support b) &
it=ITy&
for i being Nat st 1 <= i & i <= len y holds



11

yl.i = power(L).((x-SgmX(RelIncl n, support b))l.i,
(b-SgmX (RelIncl n, support b))|.i);
end;

We use a helper function x evaluating the variables n into L. To get the
interesting part of x, that is an evaluation of the variables occurring with
non-zero exponents in b, the functor SgmX is employed. This functor takes
a finite set here the support of a bag and a linear order for the set and
returns a finite sequence in which the elements of the set occur in increasing
order. This sequence is then composed with x to get the finite sequence
of values and with b to get the corresponding finite sequence of exponents.
The exponentiation is then performed pointwise yielding a finite sequence
y of elements of L. The result of the evaluation of b with respect to x is the
product of the values of y. We get this product using the functor II which
takes a finite sequence (over a structure allowing for elements occurring in
this sequence [9]).

The structure L has to meet two requirements: the existence of a unity
and that it is not trivial (has at least two elements). However, in order to
prove that the evaluation respects multiplication of power products, that
is to prove the rather obvious fact

eval (b1+b2,x) = eval(bl,x) - eval(b2,x)

it turned out that L has to provide a commutative multiplication with a (left
and right) unity. As this property is necessary to prove multiplicativity of
evaluation, it follows that the evaluation of polynomials is a homomorphism
only if the underlying structure L is a commutative ring with 1.

The definition of the evaluation of a polynomial is defined in analogous
way to the evaluation of power products:

definition
let n be Ordinal,
L be right_zeroed add-associative right_complementable unital
distributive non trivial (non empty doubleLoopStr),
p be Polynomial of n,L,
x be Function of n,L;
func eval(p,x) -> Element of the carrier of L means
ex y being FinSequence of the carrier of L
st len y = len SgmX(BagOrder n, Support p) &
it =3Yy&
for i being Nat st 1 <= i & i <= len y holds
yl.i = (p-SgmX(BagOrder n, Support p))|.i -
eval (((SgmX (BagOrder n, Support p))|.i),x);
end;



12

The next goal was to prove that the functor eval is a homomorphism
from the polynomial ring over L into L. To do so we introduced a functor
Polynom-Ring(n,L,x) taking an ordinal number, a structure L and vari-
able evaluation function x as parameters, assigning to each polynomial p
the value of eval(p,x).

definition
let n be Ordinal,
L be right_zeroed add-associative right_complementable unital
distributive non trivial (non empty doubleLoopStr),
x be Function of n, L;
func Polynom-Evaluation(n,L,x) -> map of Polynom-Ring(n,L),L
means for p being Polynomial of n,L holds it.p = eval(p,x);
end;

Proving the properties of a homomorphism required additional assumptions
concerning L, in particular, to prove that the evaluation of polynomials is
compatible with the multiplication of polynomials we had to assume for
the first time, that the underlying structure L is indeed a commutative ring
with 1. Thus we ended up with the following

definition
let n be Ordinal,

L be right_zeroed add-associative right_complementable
Abelian well-unital distributive non trivial
commutative associative (non empty doubleLoopStr),

x be Function of n,L;

cluster Polynom-Evaluation(n,L,x) -> RingHomomorphism;

end;

5 Library Revisions

When starting to define polynomials, we wanted to keep the number of
new definitions as small as possible. Hence we examined the Mizar Mathe-
matical Library (MML) to find concepts we could use for our task. Several
problems occurred.

We found out (not for the first time) that many basic theorems were
missing. For example, the functor ¥ sums up elements of a finite sequence;
it is clear that if all but one particular element equal zero, the sum in fact
is this element. This theorem had not been proven before.

Some concepts were introduced for a too specific structure, hence not
general enough to use them in our case. For example, the functor power,
for exponentiation with natural numbers, was defined for groups, whereas



13

we wanted to use it in a structure providing only unity. Of course one
can define the functor again for the more general case, but this does not
seem appropriate in a library. The solution is to revise the MML, that
means generalizing the original definition and reformulating the theorems
concerning this concept.?

On the one hand this problem seems natural. If one is writing an article
about for example groups in which one needs a functor and one does not
find it in the MML one simply defines it. And why should one think
about more general solutions, if it works well for the theorems intended
to prove? In addition, it is rather hard, if even possible, to estimate how
general a definition should be in order to provide optimal benefit for future
users of MML.

On the other hand, while proving theorems about the new concept, one
usually observes which properties of the underlying structure are necessary
to prove it and which are not. The correctness proof of the power functor,
for example, definitely did not use the properties of a group. The same
holds for defining formal power series and polynomials: we first did (and
finished) this job for polynomials with a finite number of variables only,
before we realized that we already had developed all the machinery for
constructing power series in arbitrary number of variables.

Another point connected with this problem is that sometimes it may
be better to be not as general as possible. For example, although one
can build the theory of polynomials in one variable out of our approach,
by using Polynomial-Ring(1,R), this seems not to be the best solution.
Doing so would require R to be a commutative and associative ring, just
because these properties were necessary to prove multiplicativity of the
evaluation in the general case. But it seems that for polynomials with one
variable only this property can be established with weaker assumptions on
R.? So the question remains: How much generalization is best?

6 Conclusions and Further Work

In this paper we described the construction of formal multivariate power
series and polynomials in the Mizar system. The main concern was to
present the possibilities Mizar offers to build algebraic structures. Although
these possibilities are quite elegant and include inheritance in the usual
mathematical style, library revisions were necessary during our work.

2Sometimes it turns out that the proof of a theorem actually does not use all prop-
erties of the structure it is about.

3 At the moment the theory of polynomials in one variable is developed separately in
order to check this.



14

We plan to go on with our work on polynomials, among other goals is
getting more insight into the way of dealing with inheritance in algebraic
structures. We want to check how applications of our general theory of
polynomials can be done. One of the goals is to develop a theory of poly-
nomials over finite fields—as used in coding theory—thus to restrict the
underlying structure of a polynomial ring. Also the theory of one-variable
polynomials will be constructed separately, although it could be build using
our approach. This may serve as a case study concerning the question how
much generalization is best.

Another plan is to work towards the theory of Groebner bases and
Buchberger-like algorithms. For that it is necessary to develop the theory
of ideals first. This seems to be an algebraic topic with many applications
and hence could also contribute to solve the problems we discussed here.



Bibliography

[1]

Association of Mizar Users, Library Committee, Preliminaries to
Structures. Available on WWW:
http://mizar.org/JFM/Addenda/struct 0.abs.html.

Grzegorz Bancerek and Krzysztof Hryniewiecki, Segments of Nat-
ural Numbers and Finite Sequences. Formalized Mathematics,
1(1):107-114, 1990. Available on WWW:
http://mizar.org/JFM/ Voll/finseq_1.abs.html.

Eugeniusz Kusak, Wojciech Leoniczuk and Michal Muzalewski,
Abelian Groups, Fields and Vector Spaces. Formalized Mathemat-
ics, 1(2):335 342, 1990. Available on WWW:
http://mizar.org/JFM/Voll/vectsp_1.abs.html.

Piotr Rudnicki and Andrzej Trybulec. On Equivalents of Well-
foundedness. An experiment in Mizar. Journal of Automated Rea-
soning, 23:197 234, 1999.

Piotr Rudnicki and Andrzej Trybulec, Multivariate Polynomi-
als with arbitrary Number of Variables. Formalized Mathematics,
8(1):317 332, 1999. Available on WWW:
http://mizar.org/JFM/Voll1l/polynoml.abs.html.

Christoph Schwarzweller and Andrzej Trybulec, Fvaluation of
Multivariate Polynomials. To appear in Formalized Mathemat-
ics, 2000. Available on WWW:
http://mizar.org/JFM/Vol12/polynom2.abs.html.

Andrzej Trybulec, Many-sorted sets. Formalized Mathematics,
4(1):15 22, 1993. Available on WWW:
http://mizar.org/JFM/Vol5/pboole.abs.html.

Wojciech A. Trybulec, Vectors in Real Linear Space. Formal-
ized Mathematics, 1(2):291-296, 1990. Available on WWW:
http://mizar.org/JFM/Voll/rlvect_1.abs.html.

Wojciech A. Trybulec, Lattice of Subgroups of a Group. Frattini
Subgroup. Formalized Mathematics 2(1):41-47, 1991. Available
on WWW:

http://mizar.org/JFM/Vol2/group_1.abs.html.

15



