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Zusammenfassung

MIzAR is a system that allows for proving mathematical theorems
in a rather natural style. It provides a special input language for ma-
thematical knowledge.

We use MI1zAR to prove the mathematical correctness of algebraic algo-
rithms, in particular the algorithms of Brown and Henrici for addition
and multiplication in fraction fields.

We also include an introduction into the MizAR language so that
Mi1zAR beginners should be able to do the first steps in using MIZAR.
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1 Introduction

Modern algebraic algorithms should be formulated generically in terms of
abstract mathematical structures ([Sc96]). Therfore proving them correct
requires detailed knowledge about these domains which is very hard to for-
mulate for theorem provers in general.

On the other hand there exist systems like AXIoM in which such algebraic
domains can be expressed, but they do not include proof assistance for ma-
thematical theorems.

As a consequence there is no system that could serve as a prove tool in the
context of algebraic algorithms.

Mi1zar([Ru92]) is a system that — originally intended for support in
writing mathematical papers — admits to express mathematical knowledge
in a very natural style using a special input language. It also includes a large
library of MizAR articles and a checker that verifies articles written in the
MizARr language.

We want to use MIzAR to fill the gap just mentioned, namely we want
to prove the correctness of two algebraic algorithms of Brown and Henrici.
Therefore we wrote an extensive MIZAR article: First we need some ba-
sics about divisibility in integral domains which are not yet included in the
MizaRr library, before we can introduce the concept greatest common divi-
sor. After that we want to show that the algorithms of Henrici and Brown
([Heb56]) concerning addition and multiplication in fraction fields are correct
by formulating and proving correctness conditions in MIZAR.

2 The Algorithms of Brown and Henrici

In this section we present the algorithms of Brown and Henrici for addition
and multiplication in fraction fields. For that we use the programming lan-
guage SUCHTHAT ([LS96]) which allows for generic computation in the field
of computer algebra.

Let T be an integral domain, and let Q be the fraction field of I. Based
on algorithms for the arithmetic operations in I one obtains algorithms for
the arithmetic operations in Q ([Co??]). To be able to choose a unique repre-
sentative from each equivalence class of Q, we assume that I is a gcdDomain
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that is an integral domain in which for any two elements exists a greatest
common divisor.

let I be gcdDomain;
let Q be QuotientField of I;

We also assume that we have algorithms that constuct a fraction out of
elements of I and that decompose a fraction into numerator and denomina-
tor.

Algorithm: r1 := num(r)
Input: r € Q.
Qutput: r € I. ||

Algorithm: r2 := denom(r)
Input: r € Q.
Output: r € I such that r2 # 0. ||

Algorithm: t := denom(r,s)
Input: r,s € I such that gcd(r,s) = 1.
OQutput: t € Q such that t = r/s, t is normalized. ||

The algorithms accept normalized frations as input that is fractions t
with gcd(num(t) ,denom(t)) = 1 and denom(t) is in normalform (see end
of section four). To get a normalized fraction as ouput one can use the usual
addition resp. multiplication followed by computing the greatest common di-
visor of the result. However the algorithms of Brown and Henrici we present
here in general are much more efficient ([Co?7]).

Algorithm: t <- operator +(r,s)

Input: r,s € Q, r,s normalized.

Output: t € Q such that t = r+s, t normalized.
(1) [r=0 or s=07]

if r = 0 then {t := s;return};
if s = 0 then {t := r;return}.

(2) [obtain numerators and denominators.]
rl := num(r); r2 := denom(r);

s1 := num(s); s2 := denom(s).
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(3) [compute gcd(r2,s2).]
d := gcd(r2,s2).
(4) [gcd(r2,s2) = 1.]
if d = 1 then { t:= fract((ri*s2)+(r2*sl),r2*s2);return}.
(5) [compute t1’ and t2°’.]
r2’ := r2/d; s2’ := s2/d;
t1’ := ri*s2’ + si*r2’.
(6) [ t1’ =0.]
if t1’> = 0 then { t := O;return}.
(7) [ general case.]

e := gcd(tl’,d);
if e = 1 then { t := fract(t1’,t2’);return};
t := fract(til’/e,t2’/e). ||

Algorithm: t <- operator *(r,s)

Input: r,s € Q, r,s normalized.

Output: t € Q such that t = r*s, t normalized.
(1) [r=0 or s=07]

if r = 0 or s = 0 then {t := O;return};
(2) [obtain numerators and denominators.]

rl := num(r); r2 := denom(r);

s1 := num(s); s2 := denom(s).

(3) [r and s € I.]

if r2 = 1 and s2 = 1 then {t := fract(ril*si,1);return}.
(4) [rorseI.]

if r2 = 1 then {t :

if s2 = 1 then {t :
(5) [general case.]

d := gcd(rl,s2); e := gcd(sl,r2);

t := fract((ri1/d)*(s1/e),(r2/e)*(s2/d)). ||

fract((ri*s1)/gecd(rl,s2),s2);return};
fract((ri*s1)/gecd(sl,r2),r2);return}.

In the rest of the paper we show that the two algorithms of Brown and
Henrici are correct: For every gcdDomain I and fractions r,s € I such that
the input specification is fulfilled, the output t of the algorithms fulfills the
output specification. All proofs are written in the MizZAR language and have
been accepted by the MizAR checker

Section three gives an introduction to the MizAr language. The ex-
amples are some basics of divisibility in integral domains we need later on.
Section four introduces amplesets that is sets of representatives. We will use
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amplesets to define the greatest common divisor as a unique function. In
section five we introduce gedDomains and prove properties about greatest
common divsors that are crucial for the theorems of Brown and Henrici
which we establish in section six. Section seven finally contains the correct-
ness proofs, to be more precise we define MizAR functions that mirror the
input/output behaviour of the algorithms and prove that the values of these
functions have the desired properties.

3 The MizAR Language

In this section we give a short introduction to the MizAR language ([Tr93]).
Thereby we illustrate the concepts with parts of our MizAR article about
gcdDomains, i.e. integral domains with greatest common divisor.

We use STWEB ([Br89)), a literate programming tool which allows the ex-
traction of the MizAR files out of our KTEX document.

Each MizaRrarticle consists of two main parts: the environment part and
the tezt-proper part.

"GCD.MIZ" 6a =
environ
(env 6b)
begin
(txtpr 7b)
o

File defined by scraps 6a, 7c, 8, 9b, 13ab, 14a, 17b, 18bc, 19, 20ab, 21, 23b, 26, 29b, 30,
32, 34, 35

The environment consists of several directives indicating which items of the
MizaRr library can be referenced in text-proper.

(env 6b) =
vocabulary (vocabulary 7a)
notation (notation 40a)
constructors (constructors 40b)
definitions (definitions 40c)
theorems (theorems 40d)
clusters (clusters 40e)
schemes (schemes 40f)

&

Macro referenced in scrap 6a.
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After each keyword follows a list of M1ZAR article names e.g.

(vocabulary 7a) =
BOOLE, VECTSP_1,VECTSP_2,REAL_1,LINALG_1,SFAMILY,GCD;
O

Macro referenced in scrap 6b.

The directive vocabulary adds symbols of the named files to the article’s
internal lexicon. If there are new symbols (introduced in text-proper) these
have to be put in an extra vocabulary file like GCD.VOC in this case.

The directives notations and constructors request the conceptual framework
of the article. In Mi1zARit is possible to introduce synonyms if another name
is more appropriate in the actual context. So constructors give the concepts
to be used in text-proper, and notations give the synonyms to be used for
these concepts.

definitions and theorems indicate which definitions and theorems may be
cited in the article. schemes describe second order theorems that can be
referenced in text-proper.

The tezt-proper includes the new mathematical knowledge that is new
definitions and theorems as well as the proofs for those. We present the main
features of the MizAR language for writing mathematical texts.

Reservations delcare the (mathematical) type of identifiers:

(txtpr 7b) =
reserve X,Y,Z for set;
reserve I for domRing;
reserve a,b,c,d for Element of the carrier of I;

&

Macro referenced in scrap 6a.

After this reservation I stands for an integral domain and a,b,c and d are
Elements of I. Using this identifiers we can define new concepts of integral
domains e.g. divisibility:

"GCD.MIZ" 7c =
definition
let I be domRing;
let x,y be Element of the carrier of I;
pred x divides y means :Defl:
ex z being Element of the carrier of I st y = xz;
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antonym x not_divides y;
end;

definition
let I be domRing;
let x be Element of the carrier of I;

pred x is_unit means :Def2:

x divides (1.I);

(1.I) is the multiplicative identity of I

antonym x is_no_unit;
end;

definition
let I be domRing;
let x,y be Element of the carrier of I;
pred x is_associated_to y means :Def3:
x divides y & y divides x;
antonym x is_not_associated_to y;
end;
<

File defined by scraps 6a, 7c, 8, 9b, 13ab, 14a, 17b, 18bc, 19, 20ab, 21, 23b, 26, 29b, 30,
32, 34, 35

In MizARr it is possible to define predicates (like we did), functions and
modes (like domRing). We stress again that new symbols like divides have
to be explicitly introduced in an extra file called GCD.VOC.

Now using these new definitions mathematical theorems can be formu-
lated in a very natural way:

"GCD.MIZ" 8 =

theorem
Li: for a,b,c being Element of the carrier of I holds
(a divides a) &
((a divides b & b divides c) implies (a divides c))
proof
(proof L1 9a)
end;

(more div 40g)
)

File defined by scraps 6a, 7c, 8, 9b, 13ab, 14a, 17b, 18bc, 19, 20ab, 21, 23b, 26, 29b, 30,
32, 34, 35.
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L1 is a label (or marker) that makes it possible to reference this theorem in
later parts of text-proper. Note that L1 only is an internal label, so theo-
rems without a label also can be cited once the article is included in the
MizARr library.

The proof of this theorem is rather easy, because the MizAR language allows
to state a proof close to textbook style:

(proof L1 9a) =
let A,B,C be Element of the carrier of I;
M1: now assume H1: A divides B & B divides C;
consider D being Element of the carrier of I such that
H2: AD = B by H1,Defi;
consider E being Element of the carrier of I such that
H3: BE = C by H1,Defi;

H4: A(DE) = (AD)E Dby VECTSP_1:def 16
.= BE by H2
.=C by H3;
thus (A divides B & B divides C) implies A divides C
by H4,Defl;
end; :: M1

M2: A(1.I) = A by VECTSP_2:1;
M3: A divides A by M2,Defl;
thus thesis by M1,M3;

<&

Macro referenced in scrap 8.

As another example we prove the well known

"GCD.MIZ" 9b =
theorem
Li1l: for a,b being Element of the carrier of I holds
(a is_associated_to b iff (ex c st (c is_unit & ac = b)))
proof
(proof L11 10a)
end;
O

File defined by scraps 6a, 7c, 8, 9b, 13ab, 14a, 17b, 18bc, 19, 20ab, 21, 23b, 26, 29b, 30,
32, 34, 35.

In M1zAR, an if and only if has to be proved by two implications, so we get
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(proof L11 10a) =

Ki: for a,b being Element of the carrier of I holds
(a is_associated_to b) implies
(ex c being Element of the carrier of I
st (c is_unit & ac = b))
proof
(proof Llla 1la)
end;

K2: for a,b being Element of the carrier of I holds
(ex c being Element of the carrier of I
st (c is_unit & ac = b))
implies (a is_associated_to b)
proof
(proofL11b 10b)
end;

thus thesis by K1,K2;
<&

Macro referenced in scrap 9b.

The proof of K2 is straightforward, it looks like

(proofL11b 10b) =
let A,B be Element of the carrier of I;
M1: (ex ¢ st (c is_unit & Ac = B)) implies
A is_associated_to B
proof
M2: now
assume H1: (ex ¢ st (¢ is_unit & Ac = B));
consider C being Element of the carrier of I such that
H2: C is_unit & AC = B by H1;
H3: C divides (1.I) by H2,Def2;
H4: ex d st Cd = (1.I) by H3,Defi;
consider D being Element of the carrier of I such that
H5: CD = (1.I) by H4;

H6: A = A(1.I) by VECTSP_2:1
= A(CD) by Hb5
= (AC)D by VECTSP_1:def 16
= BD by H2;

H7: B divides A by H6,Defil;
H8: A divides B by H2,Defil;
H9: A is_associated_to B by H7,H8,Def3;
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thus thesis
1 M2
thus thesis
1 M1
thus thesis

end;

end;

&

by H9;
by M2;

by Mi;

Macro referenced in scrap 10a.

The proof of K1 starts as usual by applying the definitions:

(proof L1la 11a)

let A,B be Element of the carrier of I;
assume HO: A is_associated_to B;

H2: A divides
H3: ex ¢ st B
H4: ex d st A

consider C being Element of the carrier of I such that

B

& B divides A by HO,Def3;
Ac by H2,Defl;
Bd by H2,Defl;

H5: B = AC by H3;

consider D being Element of the carrier of I such that

H6: A = BD by H4;

(cases 11b)

o

Macro referenced in scrap 10a.

11

But then as indicated by cases we have to distinguish A = (0.I) and A <>

(0.I). To do so the MizAR language has a special construct:

(cases 11b) =

M: now per cases;

case A: A <> (0.I);
(caseA 12a)

case B: A = (0.1);
(caseB 12b)

end;

..cases

thus thesis by M;

&

Macro referenced in scrap 1la.
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In this case it is obvious for M1ZAR, that A and B together cover all possible
cases, but it may happen, that this must be proved before and referenced
at level M.

Now the rest of the proof is easy:

(caseA 12a) =
H7: A

BD by H6

(AC)D by HS5

.= A(CD) by VECTSP_1:def 16;

H8: CD = (1.I) by H7,L10,4;

H9: C divides (1.I) by H8,Defi;

H10: C is_unit by H9,Def2;

thus (ex c being Element of the carrier of I st
(c is_unit & B = Ac)) by H10,H5;

\

Macro referenced in scrap 11b.

(caseB 12b) =
Hi: B

= AC by H5
= (0.I) by B,VECTSP_2:26;
H2: B = (0.I) by H1
= (0.I)(1.I) by VECTSP_2:1
= A(1.1) by B;
H3: (1.I) is_unit
proof

Mi: (1.I)(1.I) = (1.I) by VECTSP_2:1;
M2: (1.I) divides (1.I) by M1,Defi;
thus thesis by M2,Def2;
end;
thus (ex c being Element of the carrier of I st
(c is_unit & B = Ac)) by H2,H3;
<&

Macro referenced in scrap 11b.

Other properties about divisibility we need to prove to establish our main
results are included in the appendix.

4 AmpleSets

An ampleset A for an integral domain I is a set A C I which contains exactly
one element from each class of associates ([Sc96] or [Co?7]). The existence
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of amplesets is due to the Aziom of Choice, which is included in MI1ZAR as
a theorem.

We need amplesets to define the greatest common divisor as a unique func-
tion in the usual sense and not as a subset of the integral domain.

We start by defining classes of associates.

Note that in MiZAR defining a function requires a correctness proof. To see
an example of such a proof refer to section five where we prove the correct-
ness of the ged-function.

"GCD.MIZ" 13a =
definition
let I be domRing;
let a be Element of the carrier of I;
func Class a
-> non empty Subset of the carrier of I means :Defhl:
(for b being Element of the carrier of I holds
b € it iff b is_associated_to a);
(correctness Class 49)

definition
let I be domRing;

func Classes I

-> Subset-Family of the carrier of I means :Defh2:

(for A being Subset of the carrier of I holds

A € it iff

(ex a being Element of the carrier of I st A = Class a));
(correctness Classes 5la)

&

File defined by scraps 6a, 7c, 8, 9b, 13ab, 14a, 17b, 18bc, 19, 20ab, 21, 23b, 26, 29b, 30,
32, 34, 35

Here are also some basic results concerning Class and Classes we need
during the existence proof of amplesets. The proofs are included in the ap-
pendix.

"GCD.MIZ" 13b =
theorem
CL1: for a,b being Element of the carrier of I holds
Class a N Class b <> @) implies Class a = Class b
(proof CL1 51b)
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theorem
CL2: for I being domRing holds Classes I is non empty
(proof CL2 52)

theorem
CL3: for X being Subset of the carrier of I holds
X € Classes I implies X is non empty
(proof CL3 53a)
<

File defined by scraps 6a, 7c, 8, 9b, 13ab, 14a, 17b, 18bc, 19, 20ab, 21, 23b, 26, 29b, 30,
32, 34, 35.

Now we are ready to define — and prove the existence of — amplesets for
integral domains.

"GCD.MIZ" 14a =
definition
let I be domRing;
mode Am of I
-> non empty Subset of the carrier of I means :Def8a:
(for a being Element of the carrier of I
ex z being Element of it
st z is_associated_to a) &
(for x,y being Element of it holds x <> y implies
X is_not_associated_to y);
(existence Am 14b)
<

File defined by scraps 6a, 7c, 8, 9b, 13ab, 14a, 17b, 18bc, 19, 20ab, 21, 23b, 26, 29b, 30,
32, 34, 35.

To prove the existence we first have to establish three properties of Classes
I which are presupposition for the application of the axiom of choice.

(existence Am 14b) =

existence
proof
K: now let I be domRing;
set M = Classes I;
Ki: M is non empty by CL2;
reconsider M as non empty set by Ki;
K2: for X st X € M holds X <> 0
(proof K2 53b)
K3: for X, st X e M &Y EM&X<>Yholds XNY=90
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(proof K3 53c)

K4: ex Choice being set st
for X st X € M ex x being Any
st Choice N X = { x } by K2,K3,WELLORD2:27;
consider AmpS’ being set such that Kb:
for X st X € M ex x being Any
st AmpS’ N X = {x} by K4;
K5a: AmpS’ is non empty
(proof Kba 54a)
reconsider AmpS’ as non empty set by Kba;
(existence Am 2 15a)
<

Macro referenced in scrap 14a.

Now Amp’ is a set that contains exactly one element out of each class of
asscoiates, but we need a set in which there are only these elements and no
other ones. So we define:

(existence Am 2 15a) =
set AmpS =
{ x where x is Element of AmpS’:
ex X being non empty Subset of the carrier of I
st X €M &AimpS’ NX={x12} 3}
(existence Am 3 15b)
<

Macro referenced in scrap 14b.

Now we can prove that Amp is a subset of the carrier of I.

(existence Am 3 15b) =
K6a: for X being Element of M holds
ex z being Element of AmpS st AmpS N X = {z}
(proof K6a 54b)
K6: AmpS is non empty Subset of the carrier of I
(proof K6 55)
reconsider AmpS as non empty Subset of the carrier of I by K6;
(existence Am 4 16a)
<

Macro referenced in scrap 1ba.

It remains to prove that Amp indeed has the desired properties, that is
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(existence Am 4 16a) =

K7: for a being Element of the carrier of I
ex z being Element of AmpS
st z is_associated_to a
(proof K7 16b)
K8: for x,y being Element of AmpS holds
x <> y implies x is_not_associated_to y
(proof K8 17a)
thus ex s being non empty Subset of the carrier of I st
(for a being Element of the carrier of I
ex z being Element of s
st z is_associated_to a) &
(for x,y being Element of s holds x <> y implies
x is_not_associated_to y) by K7,K8;

end; :: K
thus thesis by K;
end; :: existence
end;
<&

Macro referenced in scrap 15b.

Of course both properties K7 and K8 hold because Amp is defined via the
axiom of choice. To be more precise: The first property follows from the fact
that for each X € Classes I the intersection of X and Amp is non empty. The
second property follows because the cardinality of this intersection is one.

(proof K7 16b) =
proof
let a be Element of the carrier of I;
HO: Class a € M by Defh2;
reconsider N = Class a as Element of M by HO;
consider z being Element of AmpS such that
Hi: AmpS N N = {z} by Kéa;
Hia: z € {z} by ENUMSET1:4;
Hib: z € AmpS N Class a by Hila,Hi;
H2: z € Class a by Hib,BOOLE:def 3;
H3: z is_associated_to a by H2,Defhi;
thus thesis by H3;
end;

&

Macro referenced in scrap 16a.
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(proof K8 17a) =
proof
let x,y be Element of AmpS;
assume HO: x <> y;
assume H1: x is_associated_to y;

H2:
H3:
H4:
H5:
H6:
H7:
H8:

X
X

M

=

C

is_associated_to x by L2;

€ Class x by H2,Defhi;
is_associated_to x by H1,L2;

€ Class x by H4,Defhi;

€ AmpS N Class x by H3,BO0LE:def 3;
€ AmpS N Class x by H5,BO0LE:def 3;
lass x € M by Defh2;

consider z being Element of AmpS such that
H9: AmpS N Class x = {z} by H8,K6a;

H10:
Hit:
Hi2:
H13:
Hi4:
H15:

x € {z} by H6,H9;
= z by H10,ENUMSET1:3;
{z} by H7,H9;
z by H12,ENUMSET1:3;
y by H11,H13;
contradiction by HO,H14;

- m

Mo N

thus thesis by H15;

end;

&

Macro referenced in scrap 16a.

So we established the existence of amplesets for integral domains. As a
matter of convienience we require that (1.I) is always an element of our
amplesets whereas (0.I) is always an element of the set because the class
of associates of (0.I) contains only one element.

"GCD.MIZ" 17b =
definition
let I be domRing;
mode AmpleSet of I

-> non empty Subset of the carrier of I means :Def8:

it is Am of I & (1.I) € it;
(existence AmpleSet 56)

reserve Amp for AmpleSet of I;

o

File defined by scraps 6a, 7c, 8, 9b, 13ab, 14a, 17b, 18bc, 19, 20ab, 21, 23b, 26, 29b, 30,
32, 34, 35
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To show the existence one takes an ampleset A of I and exchanges the element
associated to (1.I) for (1.I):

(definition of A’ 18a) =
let A be Am of I;
consider x being Element of A such that
Hi: x is_associated_to (1.I) by Def8a;
set A’ = { z where z is Element of 4 : z <> x } U {(1.1I)};
&

Macro referenced in scrap 56.

The rest of the proof consists of establishing the desired properties of A’
and is very close to the proof just given. It is included in the appendix.

As we will see using an ampleset to define the ged-function only suffices to
show that for the output t of our algorithms holds ged(num(t) ,denom(t))
= 1. To establish that t is normalized we need an additional property of our
ampleset:

"GCD.MIZ" 18b =
definition
let I be domRing;
let Amp be AmpleSet of I;
pred Amp is_multiplicative means :Def25:
for x,y being Element of Amp holds xy € Amp;
end;
<

File defined by scraps 6a, 7c, 8, 9b, 13ab, 14a, 17b, 18bc, 19, 20ab, 21, 23b, 26, 29b, 30,
32, 34, 35

Here is a summary of some other properties of an ampleset we need later
on:

"GCD.MIZ" 18c =

theorem
AMP: for Amp being AmpleSet of I holds
((1.I) € Amp) &
(for a being Element of the carrier of I
ex z being Element of Amp
st z is_associated_to a) &
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(for x,y being Element of Amp holds x <> y
implies x is_not_associated_to y)
(proof AMP 59a)

theorem

AMPO: for Amp being AmpleSet of I holds
(0.I) is Element of Amp

(proof AMPO 61a)

theorem

AMP1: for x,y being Element of Amp holds
X is_associated_to y implies x = y

(proof AMP1 61b)

theorem
AMP5: for Amp being AmpleSet of I holds
Amp is_multiplicative implies
(for x,y being Element of Amp holds
(y divides x & y <> (0.I)) implies x/y € Amp)
(proof AMPb5 59b)
<

File defined by scraps 6a, 7c, 8, 9b, 13ab, 14a, 17b, 18bc, 19, 20ab, 21, 23b, 26, 29b, 30,
32, 34, 35.

We end this section with the definition of a normalform modulo an ampleset:
The normalform of an element x is the element of the ampleset that is
associated to x.

"GCD.MIZ" 19 =

definition

let I be domRing;

let Amp be AmpleSet of I;

let x be Element of the carrier of I;
func NF(x,Amp) -> Element of the carrier of I means :Def20:
it € Amp & it is_associated_to x;

(correctness NF 62a)

<

File defined by scraps 6a, 7c, 8, 9b, 13ab, 14a, 17b, 18bc, 19, 20ab, 21, 23b, 26, 29b, 30,
32, 34, 35.

As an easy consequence we get
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"GCD.MIZ" 20a =
theorem
NF1: for Amp being AmpleSet of I holds
NF((0.I),Amp) = (0.I) & NF((1.I),Amp) = (1.I)
(proof NF1 62b)

theorem
NF3: for Amp being AmpleSet of I
for a being Element of the carrier of I holds
a € Amp iff a = NF(a,Amp)
(proof NF3 63a)
<

File defined by scraps 6a, 7c, 8, 9b, 13ab, 14a, 17b, 18bc, 19, 20ab, 21, 23b, 26, 29b, 30,
32, 34, 35.

We will use this normalform to define normalized fractions in section seven.

5 GCD-Domains

In this section we introduce gedDomians, e.g. integral domains with grea-
test common divisors. Therefore we first define an attribute gcd-1ike for
integral domains and then a gcdDomain to be an integral domain for which
this attribute is fulfilled. Note the cluster definition: In MIZAR one have to
prove that the objects one defines do exist.

This section also includes five theorems about the gcd-function which we
need to prove the theorems of Brown and Henrici in the next section.

"GCD.MIZ" 20b =
definition
let I be domRing;
attr I is gcd-like means :Def7:
(for x,y being Element of the carrier of I
ex z being Element of the carrier of I st
z divides x & z divides y &
(for zz being Element of the carrier of I
st (zz divides x & zz divides y)
holds (zz divides z)));
end;
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definition
cluster gcd-like domRing;
(existence gcdDomain 63b)
:: proved by showing that a Field is a gcd-like domRing
end;

definition
mode gcdDomain is gcd-like domRing;
end;

reserve I for gcdDomain;

&

File defined by scraps 6a, 7c, 8, 9b, 13ab, 14a, 17b, 18bc, 19, 20ab, 21, 23b, 26, 29b, 30,
32, 34, 35.

Now that we have defined gcdDomains, we want to introduce a ged-function
in these structures. The problem is that the greatest common divsor is un-
ique only up to associates. So we use the concept of ample sets to get a
function in its usual sense. For that the AmpleSet has become an argument
of the gcd-function because changing the ampleset may change the value the
gcd-function returns.

Note that although gcd returns an element of AmpleSet the type of this
element is Element of the carrier of I.

"GCD.MIZ" 21 =

definition

let I be gcdDomain;

let Amp be AmpleSet of I;

let x,y be Element of the carrier of I;

func gcd(x,y,Amp) -> Element of the carrier of I means :Def4:
it € Amp &
it divides x & it divides y &
(for z being Element of the carrier of I
st (z divides x & z divides y)
holds (z divides it));

(existence ged 22a)

(uniqueness ged 23a)

end;

(more gecd 65)
O

File defined by scraps 6a, 7c, 8, 9b, 13ab, 14a, 17b, 18bc, 19, 20ab, 21, 23b, 26, 29b, 30,
32, 34, 35
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The correctness proof that belongs to a function definition proceeds as fol-
lows: One have to prove ezistence e.g. that for every integral domain there
is a function with the required properties and uniqueness e.g. that every two
elements both fulfilling the properties of the definition are identical.

To show the existence we take an element u of I with the required gcd-
properties. u exists because I is a gcdDomain.

(existence ged 22a) =
existence
proof
consider u being Element of the carrier of I such that
Hi: u divides x & u divides y &
(for zz being Element of the carrier of I
st (zz divides x & zz divides y)
holds (zz divides u)) by Def7;
(existence ged 2 22b)
&

Macro referenced in scrap 21.

All that remains is to prove that the element z of Amp that is associated to
u also has these properties:

(existence ged 2 22b) =
consider z being Element of Amp such that
H2: z is_associated_to u by AMP;
H3: z divides u by H2,Def3;
H4: z divides x & z divides y by H3,H1,L1;
H6: for zz being Element of the carrier of I
st (zz divides x & zz divides y) holds (zz divides z)
proof
let zz be Element of the carrier of I;
assume M1: zz divides x & zz divides y;
M2: zz divides u by M1,H1;
M3: u divides z by H2,Def3;
M4: zz divides z by M2,M3,L1;
thus thesis by M4;

end;
thus thesis by H4,HS6;
end;
<&

Macro referenced in scrap 22a.
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Uniqueness follows from the fact that two elments of Amp that are associated
to each other are indeed identical.
(uniqueness ged 23a) =
uniqueness
proof
Ki: now
let z1 be Element of the carrier of I such that
Hi: z1 € Amp &
z1 divides x & zl1 divides y &
(for z being Element of the carrier of I
st (z divides x & z divides y)
holds (z divides z1));
let z2 be Element of the carrier of I such that
H2: z2 € Amp &
z2 divides x & z2 divides y &
(for z being Element of the carrier of I
st (z divides x & z divides y)
holds (z divides z2));
H3: zl1 is_associated_to z2

proof
M4: z2 divides zl1 & z1 divides z2 by H1,H2;
thus thesis by M4,Def3;

end;
thus z1 = z2 by H1,H2,H3,AMP;
end; I now
thus thesis by Ki;
end;
<&

Macro referenced in scrap 21.

The next step is to establish five basic properties about the gcd-function.
We will need them later to prove the theorems of Henrici and Brown. Note
that these properties hold for arbitrary amplesets.

"GCD.MIZ" 23b =
theorem

TO:

for Amp being AmpleSet of I
for a,b,c being Element of the carrier of I holds
gcd(ged(a,b,Amp),c,Amp) = gcd(a,gcd(b,c,Amp),Amp)

(proof TO 69a)
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theorem
T1: for Amp being AmpleSet of I
for a,b,c being Element of the carrier of I holds
gcd(ac,bc,Amp) is_associated_to cgcd(a,b,Amp)
(proof T1 69b)

theorem

T2: for Amp being AmpleSet of I
for a,b,c being Element of the carrier of I holds
gcd(a,b,Amp) = (1.I) implies
gcd(a,bc,Amp) = gecd(a,c,Amp)

(proof T2 25a)

theorem

T3: for Amp being AmpleSet of I
for a,b,c being Element of the carrier of I holds
(c = gcd(a,b,Amp) & c <> (0.I)) implies
gcd(a/c,b/c,Amp) = (1.1)

(proof T3 72)

theorem
T4: for Amp being AmpleSet of I
for a,b,c being Element of the carrier of I holds
gcd(a+(bc),c,Amp) = gcd(a,c,Amp)
(proof T4 73)
<&

File defined by scraps 6a, 7c, 8, 9b, 13ab, 14a, 17b, 18bc, 19, 20ab, 21, 23b, 26, 29b, 30,
32, 34, 35.

To do so we first had to prove several lemmas we do not want to list up
here, but which are included in the appendix.

Here we only present the proof of theorem T2 as an example. We point
out that this proof is nothing more than a translation of a proof given in
a textbook. Note that most steps invoke the application of a lemma. The
technique to prove the other theorems is exactly the same and we put the
code in the appendix.

The proof of T2 proceeds as follows: The first part consists of showing
that gcd(a,bc,Amp) is associated to ged(a,c,Amp).
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(proof T2 25a) =

proo
let
let
assu
H2:
H3:
H4:
H5:
H6:
H7a:
H7:
HS3:
H9:
H10:

Hi1:

Hi2:

f
Amp be AmpleSet of I;
A,B,C be Element of the carrier of I;
me Hi: gcd(A,B,Amp) = (1.1);
gcd(AC,BC,Amp) is_associated_to Cgcd(4,B,Amp)
by T1;
Cgcd(A,B,Amp) = C(1.I) by H1
.= C by VECTSP_2:1;
gcd(AC,BC,Amp) is_associated_to C by H2,H3;
C is_associated_to gcd(AC,BC,Amp) by H4,L2;
gcd(A,C,Amp) is_associated_to
gcd(A,gcd(AC,BC,Amp) ,Amp) by H5,L14;
gcd(A,gcd(AC,BC, Amp) , Amp) =
gcd(gecd(A,AC, Amp) ,BC, Amp) by TO;
gcd(A,gcd(AC,BC,Amp) ,Amp) is_associated_to
gcd(gcd(A,AC, Amp) ,BC,Amp) by H7a,L2;
gcd(A,C,Amp) is_associated_to
gcd(gcd(A,AC, Amp) ,BC,Amp) by H6,H7,L2;
gcd(A,AC,Amp) is_associated_to A
(proof HY 74a)
gcd(gecd(A,AC, Amp) ,BC,Amp) is_associated_to
gcd(A,BC,Amp) by H9,L14;
gcd(A,C,Amp) is_associated_to gcd(4,BC,Amp)
by HS,H10,L2;
gcd(A,BC,Amp) is_associated_to gcd(A,C,Amp)
by Hi1,L2;

(proof T2 2 25b)

&

Macro referenced in scrap 23b.

Now the identity of gcd(a,bc,Amp) and gecd(a,c,Amp) follows because they
are associated to each other and both included in the set Amp of representa-

tives.

(proof T2 2
H13:
Hi4:
H15:
thus
end;

&

25b) =

gcd(A,BC,Amp) is Element of Amp by Def4;
gcd(A,C,Amp) is Element of Amp by Def4;
gcd(A,BC,Amp) = gcd(A,C,Amp) by H12,H13,H14,AMP;
thesis by H15;

Macro referenced in scrap 2ba.
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6 The Theorems of Brown and Henrici

Now we are ready to prove the theorems of Brown and Henrici concerning
addition and multiplication in fraction fields. The properties established in
these two theorems are crucial for correctness of the algorithms.

"GCD.MIZ" 26 =
theorem HEN1:
for Amp being AmpleSet of I
for r1,r2,s1,s2 being Element of the carrier of I holds
(gcd(rl,r2,Amp) = (1.I) & gcd(sl,s2,Amp) = (1.I) &
r2 <> (0.I) & s2 <> (0.I))
implies
gcd((r1(s2/gcd(r2,s2,Amp)))+(s1(r2/gcd(r2,s2,4mp))),
r2(s2/gcd(r2,s2,Amp)) ,Amp) =
gcd((r1(s2/gcd(r2,s2,Amp)))+(s1(r2/gcd(r2,s2,Amp))),
gcd(r2,s2,Amp) ,Amp)
(proof HEN1 27)

theorem HEN2:
for Amp being AmpleSet of I
for r1,r2,s1,s2 being Element of the carrier of I holds
(gcd(r1l,r2,Amp) = (1.I) & gcd(sl,s2,Amp) = (1.I) &
r2 <> (0.I) & s2 <> (0.I))
implies
gcd((r1/gecd(ri,s2,Amp)) (s1/gcd(s1,r2,Amp)),
(r2/gcd(s1,r2,Amp)) (s2/gcd(rl,s2,Amp) ) ,Amp) = (1.I)
(proof HEN?2 28)
O

File defined by scraps 6a, 7c, 8, 9b, 13ab, 14a, 17b, 18bc, 19, 20ab, 21, 23b, 26, 29b, 30,
32, 34, 35

The proof of HEN1 takes advantage of the fact that

r2(s2/gcd(r2,s2,Amp))
= gcd(r2,s2,Amp) (r2/gcd(r2,s2,Amp)) (s2/gcd(r2,s2,Amp))

so that two applications of theorem T2 eliminate (s2/gcd(r2,s2,Amp)) and
(r2/gcd(r2,s2,Amp)) leaving the desired gcd(r2,s2,Amp) as the second
argument of the ged.

So all we have to do is to show that the assumptions of T2 holds. Here we
present the first eliminaton only. The other one is similar and can be found
in the appendix.
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(proof HEN1 27) =

proof

let Amp be AmpleSet of I;

let r1,r2,s1,s2 be Element of the carrier of I;

assume Hi: gcd(ri,r2,Amp) = (1.I) & gcd(si,s2,Amp) = (1.I)
& r2 <> (0.I) & s2 <> (0.1);

consider d being Element of the carrier of I such that

H2: d = gcd(r2,s2,Amp);

H2a: d divides s2 by H2,Def4;

H2b: d divides r2 by H2,Def4;

K: d <> (0.I) by H2,H1,L12;

consider r being Element of the carrier of I such that

H4: r = r2/d;

consider s being Element of the carrier of I such that

H5: s = s2/d;

H6: gcd((ris)+(sir),s,Amp) = gcd(sir,s,Amp) by T4;
H7: gcd(s,s1,Amp) = (1.1)
(proof HT7 75a)
H8: gcd(s,sir,Amp) = gcd(s,r,Amp) by H7,T2;
H9: gcd(r,s,Amp) = (1.I) by H4,H5,H2,K,T3;
H10: gcd((ris)+(sir),s,Amp)
= gcd(sir,s,Amp) by H6
= gcd(s,sir,Amp) by Li13
= gcd(s,r,Amp) by H8
.= gecd(r,s,Amp) by L13
= (1.1) by H9;
:: assumption of T2 holds
Hii: r2s = s(dr)
(proof H11 75b)
: the equality mentioned above
H12: gcd((ris)+(sir),r2s,Amp)
gcd((ris)+(sir),s(dr),Amp) by Hil
gcd((ris)+(sir),dr,Amp) by H10,T2;
:: the first elimination
(proof HEN1 2 74b)
&

Macro referenced in scrap 26.

27
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28

The proof of HEN2 also consists of two steps. In the first step one shows that

ged(r2/ged(s1, r2, Amp),r1/ged(r1, s2, Amp), Amp),

( (
gcd(s2/ged(r1, s2, Amp),s1/ged
ged(s2/ged(r1, s2, Amp),r1/ged
ged(r2/ged(s1, r2, Amp),r1/ged(r1, s2, Amp), Amp

(

(s1,r2, Amp
(r1,s2, Amp
(

p)
p) and
)

mp ),
m

)

), A
), A
), A

are all equal to (1.R). This is done by using theorem T3.

(proof HEN2 28) =

proof

let Amp be AmpleSet of I;
let r1,r2,s1,s2 be Element of the carrier of I;

assume H1i: gcd(ri,r2,Amp) = (1.I) & gcd(sl,s2,Amp)

& r2 <> (0.I) & s2 <> (0.1);
consider dl being Element of the carrier of I such that
H2: d1 = gcd(rl,s2,Amp);
consider d2 being Element of the carrier of I such that
H3: d2 = gcd(sl,r2,Amp);

H4: d1 <> (0.I) by H2,H1,L12;
H5: d2 <> (0.I) by H3,H1,L12;
consider r1’ being Element of the

H6: r1’ = r1/d1;

consider s1’ being Element of

H7: s1’ = s1/d2;

consider r2’ being Element of

H8: r2’ = r2/d2;

consider s2’ being Element of

H9: s2’ = s2/d1;

H27: gcd(r2’,r1’,Amp)
(proof H27 76b)

H45: gcd(sl’,s2’,Amp)
(proof H45 77a)

Mi: gcd(s2’,r1’,Amp)

M2: gcd(s1’,r2’,Amp)

(proof HEN2 2 29a)
O

Macro referenced in scrap 26.

(1.1)

(1.1)

the

the

the

carrier

carrier

carrier

carrier

gcd(rl’,s2’,Amp)
gcd(ri/di,s2/d1, Amp)
= (1.1)
gcd(s1/d2,r2/d2, Amp)

(1.1)

of

of

of

of

I such that
I such that
I such that

I such that

by L13
by H6,H9
by H4,H2,T3;
by H7,H8
by H5,H3,T3;

Now we can put together the desired result by using theorem T2:

(1.1)
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(proof HEN2 2 29a) =

M3: gcd(ri’si’,r2’,Amp) = gcd(r2’,ri1’s1’,Amp) by L13
gcd(r2’,s1’,Amp) by H27,T2
gcd(s1’,r2’,Amp) by L13

.= (1.1) by M2;

M4 : gcd(ri’s1’,r2’s2’,Amp)
gcd(ri’s1’,s2’,Amp) by M3,T2
gcd(s2’,r1’s1’ ,Amp) by L13

= gcd(s2’,s1’,Amp) by M1,T2
= gcd(s1’,s2’,Amp) by L13
= (1.1) by H45;

M5: gcd((ri1/gcd(rl,s2,Amp))(s1/gcd(s1,r2,Amp)),
(r2/gcd(s1,r2,Amp)) (s2/gcd(rl,s2,Amp) ) ,Amp) = (1.I)
by M4,H6,H7,HS,H9,H2,H3;
thus thesis by M5;
end;

&

Macro referenced in scrap 28.

7 Correctness of the Algorithms

In this section we formulate and prove correctness conditions for the al-
gorithms of Brown and Henrici concerning addition and multiplication in
fraction fields.

First we define two further predicates for elements of integral domains.
It may be helpful to consider x as the numerator and y as the denominator
of a fraction.

"GCD.MIZ" 29b =
definition
let I be gcdDomain;
let x,y be Element of the carrier of I;
pred x canonical y means :Def10:
ex Amp being AmpleSet of I st gcd(x,y,Amp) = (1.I);
end;

definition
let I be gcdDomain;
let Amp be AmpleSet of I;
let x,y be Element of the carrier of I;
pred x,y are_normalized_wrt Amp means :Def27:
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gcd(x,y,Amp) = (1.I) & y € Amp & y <> (0.I);
end;

(more def 77b)
O

File defined by scraps 6a, 7c, 8, 9b, 13ab, 14a, 17b, 18bc, 19, 20ab, 21, 23b, 26, 29b, 30,
32, 34, 35

Note that the predicate canonical is independent of the ampleset. This is
due to the fact that our amplesets always contain (1.I). As we already
mentioned using non multiplicative amplesets allows proving that the out-
put of the algorithms is again canonical but not that it is normalized.

The second predicate describes normalized fractions. Changing the ampleset
may change the value of this predicate due to the second term of the defini-
tion. Here we stress again that the theorems we will prove hold for arbitrary
(multiplicative) amplesets.

The next step is to define MizZAR functions that mirror the input/output

behaviour of the two algorithms. For that we use the if-construct of the
MizAR language. We stress that the guards of this if need not be disjunct.
Therefore one also have to prove consistency of the definition that is when-
ever two guards hold at the same time the corresponding values of the if
have to be identical.
Of course it is easy to reformulate the guards to make them disjunct in the
usual sense of programming languages but we prefer to presuppose as less as
possible. Note that proving consistency can be seen as proving the possibility
to evaluate the if-construct in parallel taking the first terminating branch
as the returned value.

7.1 The Addition Algorithm

The definition of the addition function is a straightforward translation of the
algorithm presented in section two. addl gives the numerator of the result,
add2 the denominator.

"GCD.MIZ" 30 =
definition
let I be gcdDomain;
let Amp be AmpleSet of I;
let ri1,r2,s1,s2 be Element of the carrier of I;
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assume A: rl canonical r2 & sl canonical s2 &
r2 = NF(r2,Amp) & s2 = NF(s2,Amp);
func addi(ri,r2,s1,s2,Amp)
-> Element of the carrier of I means :Deflla:
it = s1 if r1 = (0.1),
it = r1 if s1 = (0.1),
it = ri1s2 + r2s1 if gcd(r2,s2,Amp) = (1.1),
it = (0.I) if (ri1(s2/gcd(r2,s2,Amp))) +
(s1(r2/gcd(r2,s2,Amp))) = (0.I)
otherwise it = ((ri1(s2/gcd(r2,s2,Amp))) +
(s1(r2/gcd(r2,s2,Amp)))) /
gcd((r1(s2/gcd(r2,s2,Amp))) +
(s1(r2/gcd(r2,s2,Amp))),
gcd(r2,s2,Amp) , Amp) ;
existence;
uniqueness;
(consistency addl 79)
end;

definition
let I be gcdDomain;
let Amp be AmpleSet of I;
let r1,r2,s1,s2 be Element of the carrier of I;
assume A: rl canonical r2 & sl canonical s2 &
r2 = NF(r2,Amp) & s2 = NF(s2,Amp);
func add2(ri,r2,s1,s2,Amp)
-> Element of the carrier of I means :Defl2a:
it = s2 if r1 = (0.1),
it = r2 if s1 = (0.1),
it = r2s2 if gcd(r2,s2,Amp) = (1.1),
it = (1.I) if (ri1(s2/gcd(r2,s2,Amp))) +
(s1(r2/gcd(r2,s2,Amp))) = (0.I)
otherwise it = (r2(s2/gcd(r2,s2,Amp))) /
gcd((r1(s2/gcd(r2,s2,Amp))) +
(s1(r2/gcd(r2,s2,Amp))),
gcd(r2,s2,Amp) , Amp) ;
existence;
uniqueness;
(consistency add2 81)
end;
o

File defined by scraps 6a, 7c, 8, 9b, 13ab, 14a, 17b, 18bc, 19, 20ab, 21, 23b, 26, 29b, 30,
32, 34, 35
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Now we formulate the two theorems that ensures the correctness of the
addition algorithm. Due to the first one the output t is again normalized,
due to the second one the algorithm indeed is an addition algorithm (that is
the output t and the result of the usual addition are members of the same
equivalence class of the fraction field).

"GCD.MIZ" 32 =
theorem
for Amp being AmpleSet of I
for r1,r2,s1,s2 being Element of the carrier of I holds
(Amp is_multiplicative &
rl,r2 are_normalized_wrt Amp &
s1,s2 are_normalized_wrt Amp)
implies
addi(ri,r2,s1,s2,Amp),add2(r1,r2,s1,s2, Amp)
are_normalized_wrt Amp

(proof ALG1 86b)

theorem

for Amp being AmpleSet of I

for r1,r2,s1,s2 being Element of the carrier of I holds
(Amp is_multiplicative &
rl,r2 are_normalized_wrt Amp &
sl1,s2 are_normalized_wrt Amp)

implies
addi(ri,r2,s1,s2,Amp) (r2s2) =
add2(ri,r2,s1,s2,Amp) ((ri1s2)+(sir2))

(proof ALG?2 88)
<

File defined by scraps 6a, 7c, 8, 9b, 13ab, 14a, 17b, 18bc, 19, 20ab, 21, 23b, 26, 29b, 30,
32, 34, 35.

The proof of the theorems consists of proving the cases of the if-construct.
The cases that are not trivial are handled by showing that theorem HEN1 is
applicable. This yields that the result is canonical. The other properties we
need follow directly from the fact that we use multiplicative amplesets.

Here we give an example of a trivial case and of a case using HEN1. The
other cases can be found in the appendix.
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(example cases ALG1 33a) =

case A: r1 = (0.1I);

A1: addi(ri,r2,s1,s2,Amp) = si1 by A,HO,H3a,Deflla;

A2: add2(ri,r2,s1,s2,Amp) = s2 by A,HO,H3a,Defl2a;

A3: gcd(addi(rl,r2,s1,s2,Amp),add2(r1,r2,s1,s2,Amp) , Amp)
= gcd(s1,s2,Amp) by A1,A2
= (1.1 by H3;

thus thesis by A3,A2,HOb,Def27;

case C: gcd(r2,s2,Amp) = (1.1I);
Ci: addi(ri,r2,s1,s2,Amp) = (ris2)+(r2s1) by C,HO,H3a,Deflia;
C2: add2(ri,r2,s1,s2,Amp) = r2s2 by C,HO,H3a,Def12a;
C3: gcd(addi(rl,r2,s1,s2,Amp),add2(r1,r2,s1,s2,Amp) , Amp)
= gcd((r1s2)+(r2s1),r2s2,Amp) by C1,C2
.= ged((ri1s2)+(sir2),r2s2, Amp)
.= ged((r1(s2/(1.1)))+(s1r2),r2s2,Amp) by L7a
.= ged((r1(s2/(1.1)))+(s1(r2/(1.1))),r2s2,Amp) by L7a
.= ged((r1(s2/(1.1)))+(s1(xr2/(1.1))),r2(s2/(1.1)), Amp)
by L7a
.= ged((r1(s2/gcd(r2,s2,Amp)) )+ (s1(r2/gcd(r2,s2,4mp))),
r2(s2/gcd(r2,s2,Amp)) ,Amp) by C
.= ged((r1(s2/gcd(r2,s2,Amp)) )+ (s1(r2/gcd(r2,s2,Amp))),
gcd(r2,s2,Amp),Amp) by HO,H3,HEN1
.= (1.I) by C,GCD2;
reconsider r2,s2 as Element of Amp by HOb;
C4: r2s2 € Amp by HOa,Def25;
C5: r2s2 <> (0.I) by HO,VECTSP_2:15;
thus thesis by C€2,C3,C4,C5,Def27;
&

Macro referenced in scrap 86b.

The proof of theorem ALG2 is nothing more than equational resoning. Again
we give two cases as examples.

(example cases ALG2 33b) =
case C: gcd(r2,s2,Amp) = (1.1);
Ci: addi(ri,r2,s1,s2,Amp) = (ris2)+(r2s1) by C,HO,Defilla;
C2: add2(ri,r2,s1,s2,Amp) = r2s2 by C,HO,Defi2a;
C3: addi(ri,r2,s1,s2,Amp) (r2s2)
((r1s2)+(r2s1))(r2s2) by Ci
(r2s2) ((r1s2)+(r2s1))
add2(ri,r2,s1,s2,4mp) ((r1s2)+(r2s1)) by C2;
thus thesis by C3;
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case
Di1:
Di2:
D13:

Di4:

thus
o

D: (ri(s2/gcd(r2,s2,Amp)))+(s1(r2/gcd(r2,s2,Amp)))
= (0.1I);
addi(ril,r2,s1,s2,Amp)
add2(r1,r2,s1,s2,Amp)
(r1s2)+(s1r2) = (0.1I)
(proof D13 98)
addi(ri,r2,s1,s2,Amp) (r2s2)

(0.I) by D,HO,Defilla;
(1.I) by D,HO,Def12a;

= (0.I)(r2s2) by D11
= (0.1) by VECTSP_2:26
= (1.1)(0.1) by VECTSP_2:26

= (1.I1)((r1s2)+(s1r2)) by D13
add2(ri,r2,s1,s2,Amp) ((ri1s2)+(sir2)) by D12;
thesis by D14;

Macro referenced in scrap 88.

7.2 The Multiplication Algorithm

34

The method for proving the mulitplication algorithm correct is identical
to the one used in the last subsection. First we define a nominator and a
denumerator function mirroring the behaviour of the algorithm.

"GCD.MIZ" 34 =

definition

let I

be gcdDomain;

let Amp be AmpleSet of I;
let r1,r2,s1,s2 be Element of the carrier of I;
assume rl1 canonical r2 & sl canonical s2 &

r2 = NF(r2,Amp) & s2 = NF(s2,Amp);

func multi(ri,r2,s1,s2,Amp)

it = (0.I) if r1 = (0.I) or s1 = (0.1I),
it = ris1 if r2 = (1.I) & s2 = (1.1I),
it = (ri1s1)/gcd(rl,s2,Amp) if s2 <> (0.I) & r2 = (1.I),
it = (ris1)/gcd(sl,r2,Amp) if r2 <> (0.I) & s2 = (1.I)
otherwise it = (r1/gcd(ri,s2,Amp))(s1/gcd(s1,r2,Amp));
existence;
uniqueness;

-> Element of the carrier of I means :Defi3:

(consistency multl 92)

end;
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definition
let I be gcdDomain;
let Amp be AmpleSet of I;
let r1,r2,s1,s2 be Element of the carrier of I;
assume AS: rl canonical r2 & sl canonical s2 &
r2 = NF(r2,Amp) & s2 = NF(s2,Amp);
func mult2(ri,r2,s1,s2,Amp)
-> Element of the carrier of I means :Defil4:
it = (1.I) if r1 = (0.I) or s1 = (0.1I),
it = (1.I) if r2 = (1.1I) & s2 = (1.1),
it = s2/gcd(rl,s2,Amp) if s2 <> (0.I) & r2 = (1.1I),
it = r2/gecd(s1,r2,Amp) if r2 <> (0.I) & s2 = (1.1)
otherwise it = (r2/gcd(s1,r2,Amp))(s2/gcd(rl,s2,Amp));
existence;
uniqueness;
(consistency mult2 95)
end;
<&

File defined by scraps 6a, 7c, 8, 9b, 13ab, 14a, 17b, 18bc, 19, 20ab, 21, 23b, 26, 29b, 30,
32, 34, 35

The theorems we have to prove to establish the correctness of the multipli-
cation algorithm are

"GCD.MIZ" 35 =
theorem
for Amp being AmpleSet of I
for r1,r2,s1,s2 being Element of the carrier of I holds
(Amp is_multiplicative &
rl,r2 are_normalized_wrt Amp &
sl1,s2 are_normalized_wrt Amp)
implies
multi(rl,r2,s1,s2,4mp) ,mult2(rl,r2,s1,s2,Amp)
are_normalized_wrt Amp

(proof ALG3 99)

theorem
for Amp being AmpleSet of I
for r1,r2,s1,s2 being Element of the carrier of I holds
(Amp is_multiplicative &
rl,r2 are_normalized_wrt Amp &
sl1,s2 are_normalized_wrt Amp)
implies
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multi(rl,r2,s1,s2,Amp) (r2s2) =
mult2(rl,r2,s1,s2,Amp) (risi)
(proof ALG4 101)
&

File defined by scraps 6a, 7c, 8, 9b, 13ab, 14a, 17b, 18bc, 19, 20ab, 21, 23b, 26, 29b, 30,
32, 34, 35

Again the proof that the output of the algorithm is normalized consists of
trivial cases and cases that use theorem HEN2. We give two examples here:

(example cases ALG3 36) =

case B: r2 = (1.I) & s2 = (1.1);

Bi: multi(ri,r2,s1,s2,Amp) = risl by B,HO0,Defi13;

B2: mult2(ri,r2,s1,s2,Amp) = (1.I) by B,HO,Defi14;

B3: gcd(multi(ri,r2,si,s2,Amp),mult2(rl,r2,s1,s2,Amp),Amp)
= gcd((r1s1),(1.1),Amp) by B1,B2
.= (1.1) by GCD2;

B4: (1.I) € Amp by AMP;

B5: (1.I) <> (0.I) by VECTSP_1:def 21;

thus thesis by B2,B3,B4,B5,Def27;

case E: not(rl = (0.I) or s1 = (0.I)) &
not(r2 = (1.I) & s2 = (1.1)) &
not(s2 <> (0.I) & r2 = (1.1)) &
not(r2 <> (0.I) & s2 = (1.1));
El: multi(ri,r2,s1,s2,Amp) =
(r1/gcd(r1,s2,Amp))(s1/gcd(sl,r2,Amp)) by E,HO,Def13;
E2: mult2(ri,r2,s1,s2,Amp) =
(r2/gcd(s1,r2,Amp)) (s2/gcd(rl,s2,Amp)) by E,HO,Defi4;
E3: gcd(multi(ri,r2,s1,s2,Amp) ,mult2(rl,r2,s1,s2,Amp), Amp)
= gcd((r1/gcd(r1,s2,Amp)) (s1/gcd(s1,r2,Amp)),
mult2(ri,r2,s1,s2,Amp),Amp) by E1
.= ged((r1/gecd(rl,s2,Amp)) (s1/gecd(s1,r2,Amp)),
(r2/gcd(s1,r2,Amp)) (s2/gcd(rl,s2,Amp) ) ,Amp)
by E2
.= (1.I) by HO,H3,HEN2;
El0a: gcd(rl,s2,Amp) divides s2 by Def4;
E10b: gcd(ri,s2,Amp) <> (0.I) by HO,L12;
E10: s2/gcd(ri,s2,Amp) <> (0.I) by HO,E10a,E10b,L26;
Ella: gcd(rl,s2,Amp) € Amp by Def4;
reconsider z1 = gcd(ri,s2,Amp) as Element of Amp by Ella;
reconsider s2 as Element of Amp by H3;
Ei11: s2/z1 € Amp by AMP5,E10a,E10b,HOa;
Ei2a: gcd(sl,r2,Amp) divides r2 by Def4;
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E12b: gcd(sl,r2,Amp) <> (0.I) by HO,L12;

E12: r2/gcd(s1,r2,Amp) <> (0.I) by HO,E12a,E12b,L26;
Ei3a: gcd(sl,r2,Amp) € Amp by Def4;

reconsider z2 = gcd(si,r2,Amp) as Element of Amp by Ei3a;
reconsider r2 as Element of Amp by H3;

E13: r2/z2 € Amp by AMP5,E12a,E12b,HOa;

reconsider u = s2/z1 as Element of Amp by Ei1;
reconsider v = r2/z2 as Element of Amp by E13;

E14: vu € Amp by Def25,H0a;

E15: vu <> (0.I) by E10,E12,VECTSP_2:15;

thus thesis by E3,E2,E14,E15,Def27;

<

Macro referenced in scrap 99.

At last we also give two example cases out of the proof of theorem ALG4.

(example cases ALG4 37) =
case B: r2 = (1.1I) & s2 = (1.1);
Bi: multi(ri,r2,s1,s2,Amp) = risl by B,HO0,Defi13;
B2: mult2(ri,r2,s1,s2,Amp) = (1.I) by B,HO,Defi14;
B3: multi(ri,r2,s1,s2,Amp) (r2s2)
multi(ril,r2,s1,s2,Amp) ((1.I)(1.I)) by B

.= multi(rl,r2,s1,s2,Amp) (1.1) by VECTSP_2:1
.= multi(rl,r2,s1,s2,Amp) by VECTSP_2:1
.= risil by Bi
.= (1.1 (r1s1) by VECTSP_2:1
= mult2(ri,r2,s1,s2,Amp) (risi1) by B2;

thus thesis by B3;

case D: r2 <> (0.I) & s2 =
Di: multi(ri,r2,s1,s2,Amp)
by D,HO,Def13;
D2: mult2(ri,r2,s1,s2,Amp) = r2/gcd(sl,r2,Amp) by D,HO,Defi4;
D3: gcd(s1l,r2,Amp) divides si1 by Def4;
D4: gcd(s1,r2,Amp) divides sirl by D3,L6a;
D5: gcd(s1l,r2,Amp) divides (sirl)r2 by D4,L6a;
D6: ((r1s1)/gcd(s1,r2,Amp)) (r2s2)
= ((r1s1)/gcd(s1,r2,Amp)) (r2(1.I)) by D
((r1s1)/gcd(s1,r2,Amp))r2 by VECTSP_2:1
((r1s1)r2)/gcd(s1,r2, Amp) by H1,D4,D5,L8;
D8: gcd(sl,r2,Amp) divides r2 by Def4;
D9: gcd(sl,r2,Amp) divides r2rl by D8,L6a;
D10: gcd(sl,r2,Amp) divides (r2ri)si by D9,L6a;

(1.1);
= (ris1)/gcd(s1,r2,Amp)
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D11: (r2/gcd(s1,r2,Amp)) (risi)
= ((r2/gcd(s1,r2,Amp))ri)sl by VECTSP_l:def 16
= ((r2r1)/gcd(s1,r2,Amp))s1 by H1,D8,D9,L8
= ((r2r1)s1)/gcd(s1,r2,Amp) by H1,D9,D10,L8
= ((r1r2)s1)/gcd(s1,r2, Amp)
= (r1(r2s1))/gcd(s1,r2,Amp) by VECTSP_1l:def 16
.= (ri1(s1r2))/gcd(s1,r2, Amp)
.= ((r1s1)r2)/gcd(s1,r2,Amp) by VECTSP_1:def 16;
D12: multi(rl,r2,s1,s2,Amp) (r2s2)
= ((r1s1)/gcd(s1,r2,Amp))(r2s2) by D1
.= ((r1s1)r2)/gcd(s1,r2, Amp) by D6
.= (r2/gcd(s1,r2,Amp)) (risi) by D11
.= mult2(rl,r2,s1,s2,Amp) (ris1) by D2;
thus thesis by D12;
O

Macro referenced in scrap 101.

8 Conclusion and Further Work

We have proved the correctness of the algorithms of Brown and Henrici
concerning addition and multiplication in fraction fields using the Mizar
system. There are three points about this approach we want to mention he-
re:

We have proved the correctness of the algorithms not for a special do-
main but in an generic algebraic setting.
The Mi1zAR checker has verified our article. So we get proof assistance that
decreases the possibiltity of errors in algebraic proofs.
The MizAR system also serves as a database for mathematical knowledge.
So if one wants to prove other generic algorithms correct, one may take ad-
vantage of our MIZAR article by using some lemmas about integral domains
or gcdDomains. That is once these lemmas have been proved new proofs can
start on a higher level and become shorter.

We did not define fracton fields explicitly in our article but numera-
tor and denominator functions for the algorithms. We plan to remove these
functions by filling the gap concerning fration fields.

Another point is that we proved the correctness of the algorithms by
hand: We defined functions mirroring the algorithms and formulated theo-
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rems that ensure the desired properties of correctness. We think about (au-
tomatically) decomposing algorithms using Floyd-Hoare-Logic into algebraic
theorems which once they have been proved in MizARrR would allow to con-
clude the correctness of the algorithms.
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B Additional Mizar Code

B.1 Environment

(notation 40a) =
TARSKI,BOOLE,STRUCT_O,RLVECT_1,SETFAM_1,VECTSP_1, VECTSP_2;
o

Macro referenced in scrap 6b.

(constructors 40b) =

ALGSTR_1;
<

Macro referenced in scrap 6b.

(definitions 40c) =

TARSKI, BOOLE;
O

Macro referenced in scrap 6b.

(theorems 40d) =

TARSKI,BOOLE,WELLORD2,SUBSET_1,ENUMSET1,VECTSP_1,VECTSP_2;
<

Macro referenced in scrap 6b.

(clusters 40e) =

STRUCT_0,VECTSP_1,VECTSP_2;
&

Macro referenced in scrap 6b.

(schemes 40f) =

SETFAM_1,GROUP_2;
<

Macro referenced in scrap 6b.

B.2 Divisibility in Integral Domains

(more div 40g) =
theorem
IDOM1: for a,b,c being Element of the carrier of I holds
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(a <> (0.I)) implies (((ab) = (ac) implies b = c) &
((ba) = (ca) implies b = c))
proof
let a,b,c be Element of the carrier of I;
assume HO: a <> (0.I);
K1: now assume H1l: ab = ac;
H2: (0.I) = (ab) + (-(ab)) by VECTSP_2:1
= (ab) + (-(ac)) by Hi
= (ab) + (a(-c)) by VECTSP_2:28
= a(b + (-c)) by VECTSP_2:1
= a(b - ¢) by VECTSP_1:12;
H3: b - ¢ = (0.I) by H2,HO,VECTSP_2:15;
H4: ¢ = (0.I) + ¢ by VECTSP_2:1
=(b-2¢c)+c by H3
= (b + (-c)) + ¢ by VECTSP_1:12
=b+ (c + (-¢)) by VECTSP_2:1
=b + (0.I) by VECTSP_2:1
.=b by VECTSP_2:1;
thus b = ¢ by H4;
end; :: Ki
thus thesis by Ki;
end;
definition
let I be domRing;
let x,y be Element of the carrier of I;
assume dl1: y divides x;
assume d2: y <> (0.I);
func x/y -> Element of the carrier of I means :Def5:
ity = x;
existence
proof
Hi: ex z being Element of the carrier of I
st x = yz by di,Defl;
thus thesis by Hi;
end;
uniqueness
by d2,ID0OM1;
end;
theorem
Lia: for a,b,c,d being Element of the carrier of I holds
((b divides a) & (d divides c¢)) implies (bd) divides (ac)
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let a,b,c,d be Element of the carrier of I;
assume H1: (b divides a) & (d divides c);

consider x being Element
H2: bx = a by H1,Defl;
consider y being Element
H3: dy = ¢ by H1,Defl;

H4: (bd) (yx) = ((bd)y)x
= (b(dy))x
= (bc)x
= (cb)x
= c(bx)
= ca
.= ac;

thus thesis by H4,Defl;

end;

theorem

of

of

by
by
by

by
by

the carrier of I such that
the carrier of I such that
VECTSP_1:def 16
VECTSP_1:def 16

H3

VECTSP_1:def 16
H2

L2: for a,b,c being Element of the carrier of I holds
(a is_associated_to a) &

((a is_associated_to b) implies (b is_associated_to a)) &

((a is_associated_to b & b is_associated_to c)

implies (a is_associated_to c))

proof

let A,B,C be Element of the carrier of I;
Hi: A (1.I) = A Dby VECTSP_2:1;

H2: A divides A by H1,Defil;
H9: A is_associated_to A& by H2,Def3;

M1i: now

assume H3: A is_associated_to B;
H4: A divides B & B divides A by H3,Def3;
thus A is_associated_to B implies

B is_associated_to A by H4,Def3;

end; :: M1
M2: now

assume H5: A is_associated_to B & B is_associated_to C;

H6: A divides B & B divides A by H5,Def3;

H7: B divides C & C divides B by H5,Def3;

H8: A divides C & C divides A by H6,H7,L1;

thus ((A is_associated_to B) & (B is_associated_to C))
implies (A is_associated_to C) by H8,Def3;

end;
thus thesis by H9,M1,M2;
end;

42
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theorem
L3: for a,b,c being Element of the carrier of I holds
(a divides b) implies (¢ a divides c¢ D)
proof
let A,B,C be Element of the carrier of I;
assume H1: A divides B;
consider D being Element of the carrier of I such that
H2: AD = B by H1,Defl;
H3: (CA)D = C(AD) Dby VECTSP_1:def 16
.= CB by H2;
H4: CA divides CB by H3,Defil;
thus thesis by H4;
end;

theorem
L6: for a,b being Element of the carrier of I holds
(a divides (ab)) & (b divides (ab)) by Defi;

theorem
L6éa: for a,b,c being Element of the carrier of I holds
a divides b implies a divides (bc)
proof
let a,b,c be Element of the carrier of I;
assume HO: a divides b;
consider d being Element of the carrier of I such that
Hi: ad = b by HO,Defl;
H2: a(dc) = (ad)c by VECTSP_1:def 16
.= bc by Hi;
H3: a divides (bc) by H2,Defi;
thus thesis by H3;
end;

theorem

L26: for a,b being Element of the carrier of I holds
(b divides a & b <> (0.I))
implies (a/b = (0.I) iff a = (0.I))

proof

let a,b be Element of the carrier of I;

assume HO: b divides a & b <> (0.I);

K1: now assume H1: a/b = (0.I);

consider d being Element of the carrier of I such that

H2: d = a/b;

H2a: d = (0.I) by Hi,H2;

H3: a=d b by H2,HO,Defb

43
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(0.I) b by H2a

.= (0.1I) by VECTSP_2:26;
thus a/b = (0.I) implies a = (0.I) by H3;
end; :: K1
K2: now assume Hi: a = (0.I);
consider d being Element of the carrier of I such that
H2: d = a/b;
H3: (0.I) = a by H1

.=d b by H2,HO,Defb;

H4: d = (0.I) by H3,HO,VECTSP_2:15;
thus a = (0.I) implies a/b = (0.I) by H2,H4;
end; :: K2
thus thesis by K1,K2;
end;

theorem
L7: for a being Element of the carrier of I holds
(a <> (0.I)) implies (a/a = (1.I))
proof
let A be Element of the carrier of I;
assume HO: A <> (0.I);
consider A’ being Element of the carrier of I such that
Hi: A’ = A/A;
H2: A divides A by L1;
H3: A’A = A by HO,H1,H2,Defb
.= (1.I)A by VECTSP_2:1;
H5: A’ = (1.I) by HO,H3,IDOMi;
thus thesis by H1,H5;
end;

theorem

L7a: for a being Element of the carrier of I
holds a/(1.I) = a

proof

let a be Element of the carrier of I;

consider A being Element of the carrier of I such that

HO: A = a/(1.1);

Hi: (1.I) <> (0.I) by VECTSP_1: def 21;

H2: (1.I)a = a by VECTSP_2:1;

H3: (1.I) divides a by H2,Defi;

H4: A = A(1.I) by VECTSP_2:1
.= a by HO,H1,H3,Def5;

thus thesis by H4,HO;

end;
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theorem
L8: for a,b,c being Element of the carrier of I holds
(c <> (0.1I)) implies
(((c divides (ab) & c divides a) implies
((ab)/c = (a/c)b)) &
((c divides (ab) & c divides b) implies
((ab)/c = a(b/c))))
proof
let A,B,C be Element of the carrier of I;
assume HO: C <> (0.I);
K1i: now
assume H1: (C divides (AB)) & (C divides A);
consider Al being Element of the carrier of I such that
H2: A1 = (AB)/C;
H3: A1C = AB by H2,H1,HO,Def5;
consider A2 being Element of the carrier of I such that

H4: A2 = A/C;
HE: A2C = A by H4,H1,HO,Def5;
H6: A1C = AB by H3

.= (A2C)B by H5
A2(CB) Dby VECTSP_1:def 16
.= A2(BC)
.= (A2B)C by VECTSP_1i:def 16;
H7: A1 = (A2B) by HO,H6,IDOMi;
HS: (AB)/C = (A/C)B by H7,H2,H4;
thus ((C divides (4B)) & (C divides A)) implies
((AB)/C = (A/C)B) by HS;

end; :: Ki

K2: now

assume H1: (C divides (AB)) & (C divides B);

consider Al being Element of the carrier of I such that
H2: A1 = (AB)/C;

H3: A1 C = A B by H2,H1,HO,Def5;

consider A2 being Element of the carrier of I such that

H4: A2 = B/C;
H5: A2 C = B by H4,H1,HO,Def5;
H6: A1C = AB by H3

A(A2C) Dby H5
.= (AA2)C by VECTSP_1i:def 16;
H7: A1 = (AA2) by HO,H6,IDOMi;
H8: (AB)/C = A(B/C) by H7,H2,H4;
thus ((C divides (4B)) & (C divides B)) implies
((AB)/C = A(B/C)) by H8;
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end; :: K2

thus thesis by K1,K2;
end;

theorem

L8a: for a,b,c being Element of the carrier of I holds
(c <> (0.1) &
¢ divides a & ¢ divides b & c divides (a + b))
implies (a/c) + (b/c) = (a + b)/c
proof
let a,b,c be Element of the carrier of I;
assume HO: ¢ <> (0.I);
assume H1: ¢ divides a & c divides b & c divides (a + b);
consider d being Element of the carrier of I such that

H2: d = a/c;
consider e being Element of the carrier of I such that
H3: e = b/c;

H4: dc = a by H2,H1,H0,Def5;
H5: ec = b by H3,H1,H0,Def5;
H6: a + b = (dc) + (ec) by H4,HS
.= (d + e)c by VECTSP_2:1;
H7: c divides c¢ by L1;
H8: ¢ divides (d + e) c¢ by H6,Hi;
H9: (a + b)/c = ((d + e)c)/c by HE
(d + e)(c/c) by HO,H7,HS,L8
(d + e)(1.I) by HO,L7

.=d + e by VECTSP_2:1;
thus thesis by H9,H2,H3;
end;
theorem

for a,b,c being Element of the carrier of I holds
(c <> (0.I) & c divides a & c divides b) implies
((a/c) = (b/c) iff a = b)
proof
let a,b,c be Element of the carrier of I;
assume HO: ¢ <> (0.I);
assume H1: ¢ divides a & c¢ divides b;
K1: now assume H4: (a/c) = (b/c);
consider d being Element of the carrier of I such that
H5: d = (a/c);
H6: dc = a by HO,H1,H5,Def5;
consider e being Element of the carrier of I such that
H7: e = (b/c);
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H8: ec = b by HO,H1,H7,Def5;
H9: d = e by H5,H7,H4;
H10: a = dc by H6
.= ec by H9
.= b by HS;
thus ((a/c) = (b/c)) implies (a = b) by H10;
end; :: Ki
thus thesis by Ki;
end;

theorem

L8c: for a,b,c,d being Element of the carrier of I holds
(b <> (0.I) &d <> (0.I) & b divides a & d divides c)
implies (a/b)(c/d) = (ac)/(bd)

proof

let a,b,c,d be Element of the carrier of I;

assume HO: b <> (0.I) & d <> (0.I) &

b divides a & d divides c;
consider x being Element of the carrier of I such that

Hi: x = a/b;
consider y being Element of the carrier of I such that
H2: y = c¢/4;

consider z being Element of the carrier of I such that
H3: z = (ac)/(bd);
H4: xb = a by HO,H1,Def5;
H5: yd = ¢ by HO,H2,Def5;
H6: (bd) divides (a «c¢) by HO,Lia;
H7: (bd) <> (0.I) by HO,VECTSP_2:15;
H8: z(bd) = ac by H3,H7,H6,Def5
.= (xb)(yd) Dby H4,H5
.= x(b(yd)) by VECTSP_1:def 16
.= x((by)d) by VECTSP_1:def 16
.= x((yb)d)
.= x(y(bd)) by VECTSP_1:def 16
.= (xy)(bd) by VECTSP_1:def 16;
H9: z = (xy) by H8,H7,IDOMi;
thus thesis by H9,H1,H2,H3;
end;

theorem

L9: for a,b,c being Element of the carrier of I holds
((a <> (0.1I)) & ((ab) divides (ac)))
implies (b divides c)

proof
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let A,B,C be Element of the carrier of I;
assume H1: (A <> (0.I)) & (AB) divides (AC);
consider D being Element of the carrier of I such that
H2: (AB)D = AC by H1i,Defil;
H3: A (BD) = AC by H2,VECTSP_1:def 16;
H9: (A(BD))/A = (A/A)(BD)
proof
Mi: A divides (A(BD)) by L6;
M2: A divides A by L1;
thus thesis by M1,M2,H1,LS8;
end;
H10: (AC)/A = (A/A)C
proof
Mi: A divides (AC) by L6;
M2: A divides A by L1;
thus thesis by M1,M2,H1,L8;

end;
Hii: BD = (1.I)(BD) by VECTSP_2:1
= (A/8)(BD) by L7,H1
= (A(BD))/A by H9
= (AC)/A by H3
= (A/A)C by H10
= (1.1)C by L7,H1
.=C by VECTSP_2:1;
thus thesis by H11,Defl;
end;
theorem

for a being Element of the carrier of I holds
a is_associated_to (0.I) implies a = (0.I)
proof

let A be Element of the carrier of I;

assume HO: A is_associated_to (0.I);

Hi: (0.I) divides A by HO,Def3;

consider D being Element of the carrier of I such that
H2: (0.I)D = A by Hi,Defi;

H3: A = (0.I) by H2,VECTSP_2:26;

thus thesis by H3;

end;

theorem

L10: for a,b,c being Element of the carrier of I holds
((a <> (0.I)) & (ab = a)) implies (b = (1.I))

proof
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let A,B be Element of the carrier of I;
K1: now assume H1: (4 <> (0.I)) & (AB = A);
consider A’ being Element of the carrier of I such that
H2: A’ = A/A;
consider B’ being Element of the carrier of I such that
H3: B’ = (AB)/A;
H6: A’ = (1.I) by H2,L7,H1;
H7: (AB)/A = (A/A) B
proof
Mi: A divides (4B) by L6;
thus thesis by H1,L8,M1;

end;
H8: B’ = (AB)/A by H3
= (A/A)B by H7
= A'B by H2
=B by H6,VECTSP_2:1;

H10: A’ = B’ by H1,H2,H3;

thus (AB = A) implies (B = (1.I)) by H6,H10,HS8;
end; :: Ki

thus thesis by Ki;

end;

theorem

L15: for a,b,c being Element of the carrier of I holds
((c <> (0.1)) & ((ca) is_associated_to (cb)))
implies (a is_associated_to b)

proof

let A,B,C be Element of the carrier of I;

assume HO: (C <> (0.I)) & ((CA) is_associated_to (CB));

Hi: (CA) divides (CB) by HO,Def3;

H2: A divides B by H1,H0,L9;

H3: (CB) divides (CA) by HO,Def3;

H4: B divides A by H3,H0,L9;

thus thesis by H2,H4,Def3;

end;

&

Macro referenced in scrap 8.

B.3 AmpleSets

(correctness Class 49) =
existence
proof
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set M = { b where b is Element of the carrier of I:

b is_associated_to al};

Ki: M is non empty Subset of the carrier of I

proof

K2: now let B be Any;
K3: now assume L1: B € M;
L2: ex B’ being Element of the carrier of I st

B =

B’ & B’ is_associated_to a by L1;

L3: B € (the carrier of I) by L2;
thus (B € M) implies B € (the carrier of I) by L3;

end;

thus (B € M) implies B € (the carrier of I) by K3;

end;

L4: M c= (the carrier of I) by K2,TARSKI:def 3;
L5: M is non empty
proof

H1
H2

: a is_associated_to a by L2;
:a € M by Hi;

thus thesis by H2;
end;
thus thesis by L4,L5;

end;

K4: now let A be Element of the carrier of I;
Hi: (A € M) implies (A is_associated_to a)

proof
assume
M2: ex

A=

Mi: A € NM;
A’ being Element of the carrier of I st
A’ & A’ is_associated_to a by Mi;

M3: A is_associated_to a by M2;
thus thesis by M3;

end;

thus (A € M) iff (A is_associated_to a) by Hi;

end;

K5: for A being Element of the carrier of I holds
(A € M) iff (A is_associated_to a) by K4;
thus thesis by K1,K5;

end;
uniqueness

proof

let M,N be

assume Hi:

assume H2:

non empty Subset of the carrier of I;

for A being Element of the carrier of I holds
(A € M iff A is_associated_to a);

for A being Element of the carrier of I holds
(A € N iff A is_associated_to a);
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H3: for a being Element of the carrier of I holds
(a € M iff a € N)
proof
let A be Element of the carrier of I;
K1: now assume M1: A € M;
M2: A is_associated_to a by H1,Mi;
M3: A € N by M2,H2;
thus (A € M) implies (A € N) by M3;
end;
K2: now assume M1: A € N;
M2: A is_associated_to a by H2,Mi;
M3: A € M by M2,H1;
thus (A € N) implies (A € M) by M3;
end;
thus thesis by K1,K2;
end;

H4: M = N by H3,SUBSET_1:8;

thus thesis by H4;

end;

end;

&

Macro referenced in scrap 13a.

(correctness Classes 5la) =
existence
from SubFamEx;
uniqueness
proof
let F1,F2 be Subset-Family of the carrier of I;
assume A: for A being Subset of the carrier of I holds
A € F1 iff
(ex a being Element of the carrier of I st A = Class a);
assume B: for A being Subset of the carrier of I holds
A € F2 iff
(ex a being Element of the carrier of I st A = Class a);
thus thesis from SubFamComp(A,B);
end;
end;

&

Macro referenced in scrap 13a.

(proof CL1 51b) =
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proof
let a,b be Element of the carrier of I;
assume HO: Class a N Class b <> 0;
HOa: Class a meets Class b by HO,BOOLE:119;
consider Z being Any such that
Hi: Z € Class a & Z € Class b by HOa,BOOLE:def 5;
H2: Z € Class a by Hi;
H2a: Z is Element of the carrier of I by H2;
reconsider Z as Element of the carrier of I by H2a;
H3: Z € Class b by Hi;
H4: Z is_associated_to a by H2,Defhi;
H5: Z is_associated_to b by H3,Defhi;
H6: ¢ € Class a implies ¢ € Class b
proof
assume H7: ¢ € Class a;
H8: c is_associated_to a by H7,Defhi;
H9: a is_associated_to c by H8,L2;
H10: Z is_associated_to ¢ by H4,H9,L2;
Hi1: b is_associated_to Z by H5,L2;
H12: b is_associated_to ¢ by H11,H10,L2;
H13: c is_associated_to b by H12,L2;
Hi14: ¢ € Class b by H13,Defhl;
thus thesis by H14;
end;
H15: ¢ € Class b implies ¢ € Class a
proof
assume H7: ¢ € Class b;

H16: c is_associated_to b by H7,Defhi;
H17: b is_associated_to c¢ by H16,L2;
H18: Z is_associated_to c¢ by H5,H17,L2;
H19: a is_associated_to Z by H4,L2;

H20: a is_associated_to ¢ by H19,H18,L2;
H21: c is_associated_to a by H20,L2;
H22: ¢ € Class a by H21,Defhl;

thus thesis by H22;

end;
H23: ¢ € Class a iff ¢ € Class b by H6,H15;
H24: Class a = Class b by H23,SUBSET_1:8;
thus thesis by H24;
end;

o

Macro referenced in scrap 13b.

(proof CL2 52) =
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proof

let I be domRing;

H3: Class (1.I) € Classes I by Defh2;
thus thesis by H3;

end;

&

Macro referenced in scrap 13b.

(proof CL3 53a) =
proof
let X be Subset of the carrier of I;
assume HO: X € Classes I;
Hi: ex a being Element of the carrier of I st
X = Class a by HO,Defh2;
thus thesis by Hi;
end;

&

Macro referenced in scrap 13b.

(proof K2 53b) =
proof
let X be Any such that HO: X € M;
consider A being Element of the carrier of I such that
Hi: X = Class A by HO,Defh2;
thus thesis by H1;
end;

&

Macro referenced in scrap 14b.

(proof K3 53c) =
proof
let X,Y be Any such that HO: X e M & Y € M & X <> ¥,
assume Hi: X N Y <> §;
consider A being Element of the carrier of I such that
H2: X = Class A by HO,Defh2;
consider B being Element of the carrier of I such that
H3: Y = Class B by HO,Defh2;
H4: X = Y by H1,H2,H3,CL1;
H5: contradiction by HO,H4;
thus thesis by H5;
end;

&
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Macro referenced in scrap 14b.

(proof Kba 54a) =
proof
MO: Class (1.I) € M by Defh2;
consider x being Any such that
Mi: AmpS’ N Class (1.I) = {x} by K5,M0;
M2: x € {x} by ENUMSET1:4;
M3: x € AmpS’ N Class (1.I) by M2,Mi;
M4: x € AmpS’ by M3,BOOLE:def 3;
thus thesis by M4;
end;

o

Macro referenced in scrap 14b.

(proof K6a 54b) =
proof
let X be Element of M;
consider x being Any such that
Hi: AmpS’ N X = {x} by K5;
H2a: X € Classes I;
H2: X is non empty Subset of the carrier of I by H2a,CL3;
H3: x € {x} by ENUMSET1:4;
H4: x € AmpS’ N X by H3,H1;
H5: x € AmpS’ by H4,BOOLE:def 3;
H5a: x € X by H4,BOOLE:def 3;
H6: ex X being non empty Subset of the carrier of I
st X € M & AmpS’ N X = {x} by H2,H1;
H7: x € AmpS by H5,HS6;
H8: AmpS N X = {x}
proof
K: now let y be Any;
MO: now assume Mi: y € {x};
M2: y = x by M1,ENUMSET1:3;
M3: x € AmpS N X by H5a,H7,BO0LE:def 3;
M4: y € AmpS N X by M3,M2;
thus y € {x} implies y € AmpS N X by M4;
end; :: MO
M5: now assume M6: y € AmpS N X;
M7: y € X by M6,BO0OLE:def 3;
M8: y € AmpS by M6,BOOLE:def 3;
consider zz being Element of AmpS’ such that
M9: y = 2z &
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(ex X being non empty Subset of the carrier of I
st X € M & AmpS’ N X = {zz}) by M8;

M10: y € AmpS’ by M9;

Mi1: y € AmpS’ N X by M7,M10,BO0OLE:def 3;

Mi12: y € {x} by Mii,H1;

thus y € AmpS N X implies y € {x} by M12;

end; :: M5

thus y € {x} iff y € AmpS N X by MO,M5;

end; :: K

thus thesis by K,TARSKI:2;

end;

thus thesis by H7,HS;
end;
<

Macro referenced in scrap 15b.

(proof K6 55) =
proof
HO: AmpS is non empty
proof
MO: Class (1.I) € M by Defh2;
consider x being Any such that
Mi: AmpS’ N Class (1.I) = {x} by K5,M0;
M2: x € {x} by ENUMSET1:4;
M3: x € AmpS’ N Class (1.I) by M2,Mi;
M4: x € AmpS’ by M3,BOOLE:def 3;
M5: x € AmpS by M4,M1,MO;
thus thesis by M5;
end;
reconsider AmpS as non empty set by HO;
H2: now let A be Any;
H2a: now assume H3: A € AmpS;
H3a: A € { x where x is Element of AmpS’:
ex X being non empty Subset of the carrier of
st X € M & AmpS’ N X = { x }} by H3;
consider x being Element of AmpS’ such that
H4: A =x &
(ex X being non empty Subset of the carrier of I
st X € M & AmpS’ N X = {x}) by H3a;
consider X being non empty Subset of the carrier of I
such that H4a: X € M & AmpS’ N X = {x} by H4;
H5: x € {x} by ENUMSET1:4;
H6: x € AmpS’ N X by H4a,HS5;
H7: x € X by H6,BO0LE:def 3;

55



B ADDITIONAL MIZAR CODE

HB8a: x &€ the carrier of I by H7;
H8: A € the carrier of I by H8a,H4;
thus (A € AmpS) implies (A € the carrier of I) by HS8;

end; :: H2a
thus (A € AmpS) implies (A € the carrier of I) by H2a;
end;

H10: AmpS c= the carrier of I by H2,TARSKI:def 3;
thus thesis by H10;
end;

&

Macro referenced in scrap 15b.

(existence AmpleSet 56) =

existence

proof

HO: now

(definition of A’ 18a)

H2: (1.I) € &°
proof
Mi: (1.I) € {(1.1)} by ENUMSET1:4;
thus thesis by M1,BO0OLE:def 2;
end;

H2a: A’ is non empty by H2;

reconsider A’ as non empty set by H2a;

H3: for x being Element of A’ holds x = (1.I) or x € A
proof
let y be Element of A’;
M3: now per cases by BOOLE:def 2;

case A: y € {z where z is Element of A: z <> x};

Al: ex zz being Element of A st y = zz & zz <> x by 4;
A2: y € A by A1,

thus y = (1.I) or y € A by A2;

case B: y € {(1.1)};
Bi: y = (1.I) by B,ENUMSET1:3;
thus y = (1.I) or y € A by Bi;

end; :: cases
M4: y € A’ implies (y = (1.I) or y € A) by M3;
thus thesis by M4;
end;

H4: A’ is non empty Subset of the carrier of I
proof
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M1i: now let x be Any;
M2: now
assume M3: x € A’;
M4: x € the carrier of I

proof

M4a: now per cases by M3,H3;

case A: x = (1.1);

thus thesis by 4;
case B: x € A;
thus thesis by B;

end; :: cases

thus thesis by M4a;

end;
thus x € A’ implies x € the carrier of I by M4;
end; :: M2
thus x € A’ implies x € the carrier of I by M2;
end; :: M1
M5: A’ c= the carrier of I by M1,TARSKI:def 3;
thus thesis by M5;
end;

reconsider A’ as non empty Subset of the carrier of I by H4;
H5: for a being Element of the carrier of I

ex z being Element of A’
st z is_associated_to a
proof
let a be Element of the carrier of I;
MO: now per cases;

case A: a is_associated_to (1.I);

A1: (1.I) is_associated_to a by A,L2;

thus ex z being Element of A’ st z is_associated_to a
by A1,HZ2;

case B: a is_not_associated_to (1.I);
consider z being Element of A such that
Bl: z is_associated_to a by Def8a;
B3: z <> x
proof
assume M1: z = x;
M2: z is_associated_to (1.I) by Mi,H1;
M3: a is_associated_to z by B1,L2;
M4: a is_associated_to (1.I) by M3,M2,L2;
thus thesis by M4,B;
end;
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H6:

B4: z € {zz where zz is Element of &4 : zz <> x}
by B3;

BS5: z € A’ by B4,BOOLE:def 2;

thus ex z being Element of A’ st z is_associated_to a
by B1,B5;

end; :: cases

thus thesis by MO;

end;

for z,y being Element of A’ holds

z <> y implies z is_not_associated_to y

proof

let z,y be Element of A’;

assume MO: z <> y;

M1: now per cases;

case A: z = (1.I) & y = (1.1);
thus thesis by A4,MO;

case B: z = (1.I) & y <> (1.1);

Bli: y € A by B,H3;

B2: not( y € {(1.I)} ) by B,ENUMSET1:3;

B4: y € {zz where zz is Element of A: zz <> x}
by B2,BO0OLE:def 2;

B5a: ex zz being Element of A st y = zz & zz <> x by B4;

B5: y <> x by Bba;

B6: x is_associated_to z by B,H1;

assume B7: z is_associated_to y;

B8: x is_associated_to y by B6,B7,L2;

B9: for z1,z2 being Element of A holds zl <> z2 implies
z1l is_not_associated_to z2 by Def8a;

B10: x is_not_associated_to y by B9,B5,B1;

thus thesis by B10,BS8;

case C: z <> (1.I) &y = (1.1);

Cl: z € A by C,H3;

C2: not( z € {(1.1)} ) by C,ENUMSET1:3;

C4: z € {zz where zz is Element of A: zz <> x}
by C2,BO0LE:def 2;

C5a: ex zz being Element of A st z = zz & zz <> x by C4;

C5: z <> x by Cba;

C6: x is_associated_to y by C,H1;

C6a: y is_associated_to x by C6,L2;

assume C7: z is_associated_to y;

C8: z is_associated_to x by C6a,C7,L2;



B ADDITIONAL MIZAR CODE

C9: for z1,z2 being Element of A holds zl <> z2 implies
z1l is_not_associated_to z2 by Def8a;

C10: z is_not_associated_to x by €9,C5,C1;

thus thesis by C10,C8;

case D: z <> (1.I) & y <> (1.1I);
Di: z € A by D,H3;

D2: y € A by D,H3;

thus thesis by M0,D1,D2,Def8a;

end; :: cases
thus thesis by M1;
end;

H7: A’ is Am of I by H5,H6,Def8a;
thus thesis by H2,H7;

end; :: HO

thus thesis by HO;
end;

end;
<&

Macro referenced in scrap 17hb.

(proof AMP 59a) =

proof

let Amp be AmpleSet of I;

HO: (1.I) € Amp by Def8;

Hi: Amp is Am of I by Def8;

H2: (for a being Element of the carrier of I
ex z being Element of Amp
st z is_associated_to a) &
(for x,y being Element of Amp holds x <> y
implies x is_not_associated_to y) by H1,Def8a;

thus thesis by HO,H2;

end;

&

Macro referenced in scrap 18c.

(proof AMP5 59b) =
proof
let Amp be AmpleSet of I;
assume HO: Amp is_multiplicative;
let x,y be Element of Amp;
assume Hi: y divides x & y <> (0.I);
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M: now per cases;

case A: x <> (0.I);
consider d being Element of the carrier of I such that
H2: d = x/y;
H2a: x = yd by H2,H1,Def5;
consider d’ being Element of Amp such that
H3: d’ is_associated_to d by AMP;
H3a: d is_associated_to d’ by H3,L2;
consider u being Element of the carrier of I such that
H4: u is_unit & du = 4’ by H3a,L11;
H5: ux = u(yd) by H2a
.= (ydu
.= y(du) by VECTSP_1i:def 16
.= y(ud)
.= yd’ by H4;
H5a: yd’ € Amp by HO,Def25;
H6: ux € Amp by Hb5a,H5;
H7: x is_associated_to ux
proof
M1i: x divides x by L1;
M2: x divides ux by M1,L6a;
M3: u divides (1.I) by H4,Def2;
consider e being Element of the carrier of I such that
M4: ue = (1.I) by M3,Defi;
M5: (ux)e = e(ux)
(eu)x by VECTSP_1:def 16
(1.I)x by M4
=X by VECTSP_2:1;
M6: ux divides x by M5,Defil;
thus thesis by M2,M6,Def3;
end;
H8: (1.I)x = x by VECTSP_2:1
.= ux by H7,H6,AMP1;
H9: u = (1.I) by H8,IDOM1,A;

H10: d’ = du by H4
= d(1.I) by HO
=d by VECTSP_2:1;

thus thesis by H10,H2;

case B: x = (0.1);

consider d being Element of the carrier of I such that
MO: d = x/y;

MOa: x = yd by MO,H1,Def5;
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Mi: xy = (0.I)y by B
= (0.I) by VECTSP_2:26;
Mia: x = (0.I) by VECTSP_2:15,M1,H1;

M2: d = (0.I) by VECTSP_2:15,Mia,H1,M0a;
M3: (0.I) is Element of Amp by AMPO;
thus thesis by MO,M3,M2;

end; :: cases
thus thesis by M;
end;
<&

Macro referenced in scrap 18c.

(proof AMPO 61a) =

proof

let Amp be AmpleSet of I;

HOb: for a being Element of the carrier of I
ex z being Element of Amp
st z is_associated_to a by AMP;

consider A being Element of Amp such that

HO: A is_associated_to (0.I) by HOb;

Hi: (0.I) divides A by HO,Def3;

consider D being Element of the carrier of I such

H2: (0.I)D = A by Hi,Defl;

H3: A = (0.I) by H2,VECTSP_2:26;

thus thesis by H3;

end;

&

Macro referenced in scrap 18c.

(proof AMP1 61b) =

proof

let x,y be Element of Amp;
assume HO: x is_associated_to y;
Hil: now per cases;

case A: x = y;

thus x = y by 4;

case B: x <> y;

Bl: x is_not_associated_to y by B,AMP;
B2: contradiction by B1,HO;

thus x = y by B2;

end; :: cases

thus thesis by Hi;

that
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end;

o

Macro referenced in scrap 18c.

(correctness NF 62a) =

existence
proof
K: now let Amp be AmpleSet of I;
let x be Element of the carrier of I;
consider z being Element of Amp such that
HO: z is_associated_to x by AMP;
thus ex zz being Element of the carrier of I st

zz € Amp & zz is_associated_to x by HO;

end; :: K
thus thesis by K;
end;

uniqueness
proof
let z1,z2 be Element of the carrier of I such that
HO: z1 € Amp & z1 is_associated_to x &

z2 € Amp & z2 is_associated_to x;
HOa: z1 is Element of Amp &
z2 is Element of Amp by HO;

Hi: x is_associated_to z2 by HO,L2;
H2: z1 is_associated_to z2 by HO,H1,L2;
H3: z1 = z2 by HOa,H2,AMP1;
thus thesis by H3;
end;

end;

&

Macro referenced in scrap 19.

(proof NF1 62b) =
proof
let Amp be AmpleSet of I;
HO: (1.I) is_associated_to (1.I) by L2;
Hi: (1.I) € Amp by Def8;
H2: NF((1.I),Amp) = (1.I) by HO,H1,Def20;
H3: (0.I) is_associated_to (0.I) by L2;
H4: (0.I) is Element of Amp by AMPO;
H5: NF((0.I),Amp) = (0.I) by H3,H4,Def20;
thus thesis by H2,H5;
end;

&
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Macro referenced in scrap 20a.

(proof NF3 63a) =

proof

let Amp be AmpleSet of I;
let a be Element of the carrier of I;

Ki: n

ow assume HO: a &€ Amp;

Hi: a is_associated_to a by L2;
H2: a = NF(a,Amp) by HO,H1,Def20;

thus
end;
thus
end;

&

a € Amp implies a = NF(a,Amp) by H2;
:: K1
thesis by K1,Def20;

Macro referenced in scrap 20a.

B.4 GCD-Domains

(existence gcdDomain 63b) =

exist

ence

proof

cons

ider F being strict Field;

reconsider F as comRing;

H1i:

F is domRing by VECTSP_2:13;

reconsider F as domRing by Hi;

H2:
let
H3:

now
x,y be Element of the carrier of F;
now per cases;

case A: x <> (0.F) & y <> (0.F);

Al:
A2:
A3:
A4:
A5:

x = (1.F) x by VECTSP_2:1;

(1.F) divides x by Al1,Defi;

y = (1.F) y by VECTSP_2:1;

(1.F) divides y by A3,Defi;

for zz being Element of the carrier of F
st (zz divides x & zz divides y)

holds (zz divides (1.F))

proof

let zz be Element of the carrier of F;
assume MO: zz divides x & zz divides y;
M1i: now per cases;

case AA: zz <> (0.F);

consider zz’ being Element of the carrier of F such

63
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Mii: zz zz’ = (1.F) by AA,VECTSP_1:def 20;
thus zz divides (1.F) by M11,Defi;
case AB: zz = (0.F);
assume M12: zz divides x;
consider d being Element of the carrier of F such that
M13: zzd = x by M12,Defl;
Mi4: x = zzd by M13
(0.F)d by AB
.= (0.F) by VECTSP_2:26;
M15: contradiction by M14,4;
thus zz divides (1.F) by M1i5;

end; :: M1
thus thesis by MO,M1;
end;

thus ex z being Element of the carrier of F st
z divides x &
z divides y &
(for zz being Element of the carrier of F
st (zz divides x & zz divides y)
holds (zz divides z)) by A2,A4,A5;

case B: x = (0.F);
BO: y divides y by L1;
Bi: y (0.F) = (0.F) by VECTSP_2:26;
B2: y divides (0.F) by Bi,Defi;
B3: for z being Element of the carrier of F
st (z divides (0.F) & z divides y)
holds (z divides y);
thus ex z being Element of the carrier of F st
z divides x &
z divides y &
(for zz being Element of the carrier of F
st (zz divides x & zz divides y)
holds (zz divides z)) by B,B0,B2,B3;

case C: y = (0.F);
CO: x divides x by L1;
Ci: x(0.F) = (0.F) by VECTSP_2:26;
C2: x divides (0.F) by C1,Defi;
C3: for z being Element of the carrier of F
st (z divides x & z divides (0.F))
holds (z divides x);
thus ex z being Element of the carrier of F st
z divides x &
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z divides y &

(for zz being Element of the carrier of F
st (zz divides x & zz divides y)

holds (zz divides z)) by C,C0,C2,C3;

end; :: cases
thus ex z being Element of the carrier of F st
z divides x &
z divides y &
(for zz being Element of the carrier of F
st (zz divides x & zz divides y)
holds (zz divides z)) by H3;
end; :: H2
H4: F is gcd-like by H2,Def7;
thus thesis by H4;
end;

&

Macro referenced in scrap 20b.

(more ged 65) =
theorem
LO: for Amp being AmpleSet of I
for a,b being Element of the carrier of I holds
gcd(a,b,Amp) divides a & gcd(a,b,Amp) divides b by Def4;

theorem
L4: for Amp being AmpleSet of I
for a,b,c being Element of the carrier of I holds
c divides gcd(a,b,Amp) implies (c divides a & c divides b)
proof
let Amp be AmpleSet of I;
let A,B,C be Element of the carrier of I;
assume Hi: C divides gcd(A,B,Amp);
consider D being Element of the carrier of I such that
H2: CD = gcd(A,B,Amp) by H1,Defil;
H3: gcd(A,B,Amp) divides A by LO;
consider E being Element of the carrier of I such that
H4: gcd(A,B,Amp)E = A by H3,Defil;

H5: C(DE) = (CD)E by VECTSP_1:def 16
= gcd(4,B,Amp)E by H2
= A by H4;

H6: C divides A by H5,Defil;
H7: gcd(A,B,Amp) divides B by LO;
consider E being Element of the carrier of I such that
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H8: gcd(A,B,Amp)E = B by H7,Defil;

H9: C(DE) = (CD)E by VECTSP_1:def 16
= gcd(4,B,Amp)E by H2
=B by HS8;

H10: C divides B by H9,Defl;
thus thesis by H6,H10;
end;

theorem
L13: for Amp being AmpleSet of I
for a,b being Element of the carrier of I
holds gcd(a,b,Amp) = gcd(b,a,Amp)
proof
let Amp be AmpleSet of I;
let A,B be Element of the carrier of I;
consider D being Element of the carrier of I such that
Hi: D = gcd(4,B,Amp);
Hi1: D € Amp by Def4,Hi;
H2: D divides B & D divides A by H1,LO;
H3: for z being Element of the carrier of I
st (z divides B & z divides A)
holds (z divides D) by Hi,Def4;
H4: D = gcd(B,A,Amp) by H11,H2,H3,Def4;
thus gcd(A,B,Amp) = gcd(B,A,Amp) by H1,H4;
end;

theorem
GCD1: for Amp being AmpleSet of I
for a being Element of the carrier of I holds
gcd(a,(0.I),Amp) = NF(a,Amp) &
gcd((0.I),a,Amp) = NF(a,Amp)
proof
let Amp be AmpleSet of I;
let A be Element of the carrier of I;
HO: NF(A,Amp)is_associated_to A by Def20;
Hi: NF(A,Amp) divides A by HO,Def3;
H2: NF(A,Amp)(0.I) = (0.I) by VECTSP_2:26;
H3: NF(A,Amp) divides (0.I) by H2,Defi;
H4: for z being Element of the carrier of I
st (z divides A & z divides (0.I))
holds (z divides NF(A,Amp))
proof
let z be Element of the carrier of I;
assume MO: z divides A & z divides (0.I);
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Mi: A divides NF(A,Amp) by HO,Def3;
thus thesis by M1,MO,L1;
end;
H5: NF(A,Amp) € Amp by Def20;
H6: gcd(A,(0.I),Amp) = NF(A,Amp) by H1,H3,H4,H5,Def4;
thus thesis by H6,L13;
end;

theorem

GCDO: for Amp being AmpleSet of I holds
gecd((0.1),(0.1I),Amp) = (0.1)

proof

let Amp being AmpleSet of I;

H2: gcd((0.1),(0.I),Amp) = NF((0.I),Amp) by GCD1;

H3: NF((0.I),Amp) = (0.I) by NFi;

thus thesis by H2,H3;

end;

theorem
GCD2: for Amp being AmpleSet of I
for a being Element of the carrier of I holds
gcd(a,(1.I),Amp) = (1.I) & gecd((1.I),a,Amp) = (1.1)
proof
let Amp be AmpleSet of I;
let A be Element of the carrier of I;
HO: (1.I) € Amp by Def8;
Hi: (1.I) divides (1.I) by Li;
H2: (1.I)A = A by VECTSP_2:1;
H3: (1.I) divides A by H2,Defi;
H4: for z being Element of the carrier of I
st (z divides A & z divides (1.I))
holds (z divides (1.I));
H5: gcd(A,(1.I),Amp) = (1.I) by HO,H1,H3,H4,Def4;
thus thesis by H5,L13;
end;

theorem

L12: for Amp being AmpleSet of I
for a,b being Element of the carrier of I holds
gcd(a,b,Amp) = (0.I) iff (a = (0.I) & b = (0.I))

proof

let Amp be AmpleSet of I;

let A,B be Element of the carrier of I;

HO: (A = (0.I) & B = (0.I)) implies (gcd(A,B,Amp) = (0.I))
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proof

assume HO: A = (0.I) & B = (0.I);

H3: gcd(A,B,Amp) = NF(A,Amp) by HO,GCD1;
H4: NF(A,Amp) = (0.I) by HO,NF1;

thus thesis by H4,H3;

end;

K: now assume Hi: gcd(A,B,Amp) = (0.I);

(0.I) divides A & (0.I) divides B by H1,Def4;
consider D being Element of the carrier of I such that
(0.I)D = A by H2,Defl;

H4: A = (0.I) by H3,VECTSP_2:26;

consider E being Element of the carrier of I such that
(0.I)E = B by H2,Defl;

H6: B = (0.I) by H5,VECTSP_2:26;

H2:

H3:

H5:

thus (gcd(A,B,Amp) = (0.I)) implies (A = (0.I) & B = (0.

end;

by H4,H6;

thus thesis by HO,K;

end;

theorem

L14: for Amp being AmpleSet of I

for a,b,c being Element of the carrier of I holds
(b is_associated_to c) implies

((gcd(a,b,Amp) is_associated_to gcd(a,c,Amp)) &
(gcd(b,a,Amp) is_associated_to gcd(c,a,Amp)))

proof
let Amp be AmpleSet of I;

let A,B,C be Element of the carrier of I;
assume H1: B is_associated_to C;

B divides C by H1,Def3;

H2:
H3:
H4:
H5:
H6:
H7:
H8:
H9:
H10:
Hii:
H12:
H13:
Hi4:
H15:

gcd(4,B, Amp)
gcd(4,B, Amp)
gcd(4,B, Amp)
gcd(4,B, Amp)
gcd(4,B, Amp)
gecd(4,C, Amp)
gcd (B, A, Amp)
C divides B
gcd(4,C, Amp)
gcd(4,C, Amp)
gecd(4,C, Amp)
gcd(4,C, Amp)
gecd(C,A, Amp)

d
d
d
d

d
b

ivides B by LO;

ivides C by H2,H3,L1;

ivides A by LO;

ivides gcd(A,C,Amp) by H4,H5,Def4;
gcd(B,A,Amp) by L13;

gcd(C,A,Amp) by L13;

ivides gcd(C,A,Amp) by H6,H7,HS8;

y H1,Def3;

divides C by LO;

divides B by H10,H11,L1;

divides A by LO;

divides gcd(A,B,Amp) by H13,H12,Def4;
divides gcd(B,A,Amp) by H7,H8,H14;

68



B ADDITIONAL MIZAR CODE 69

H16: gcd(A,B,Amp) is_associated_to gcd(4,C,Amp)
by H6,H14,Def3;

H17: gcd(B,A,Amp) is_associated_to gcd(C,A,Amp)
by H9,H15,Def3;

thus thesis by H16,H17;

end;

&

Macro referenced in scrap 21.

B.5 Proof of the Basic Properties

(proof TO0 69a) =
proof
let Amp be AmpleSet of I;
let A,B,C be Element of the carrier of I;
consider D being Element of the carrier of I such that
Hi: D = gcd(gcd(A,B,Amp),C,Amp);
consider E being Element of the carrier of I such that
H2: E = gcd(4,gcd(B,C,Amp),Amp);

H3: D divides gcd(A,B,Amp) & D divides C by H1,LO;
H4: D divides A & D divides B & D divides C by L4,H3;
H5: D divides A & D divides gcd(B,C,Amp) by H4,Def4;
H6: D divides E by H2,H5,Def4;

H7: E divides gcd(B,C,Amp) & E divides A by H2,LO;
H8: E divides B & E divides C & E divides A by L4,H7;
H9: E divides C & E divides gcd(4,B,Amp) by H8,Def4;
H10: E divides D by H1,H9,Def4;

Hi1: D is_associated_to E by H6,H10,Def3;

H12: D is Element of Amp by H1,Def4;

H13: E is Element of Amp by H2,Def4;

Hi4: D = E by H11,H12,H13,AMP;

thus thesis by H1,H2,H14;

end;
<&

Macro referenced in scrap 23b.

(proof T1 69b) =
proof
let Amp be AmpleSet of I;
let A,B,C be Element of the carrier of I;
M: now per cases;
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case A: C <> (0.I);
consider D being Element of the carrier of I such that

H1i:

D = gcd(A,B,Amp);

K: now per cases;

case A1: D <> (0.1I);
consider E being Element of the carrier of I such that

H2:
H3:
H4:
H5:
H6:

E = gcd((AC), (BC),Amp);

D divides A & D divides B by H1,LO;

CD divides AC & CD divides BC by H3,L3;
CD divides gcd((AC), (BC),Amp) by H4,Def4;
CD divides E by H5,H2;

consider F being Element of the carrier of I such that

H7:
H3:
H9:

H10:
Hit:
Hi2:

H13:
Hi4:
H15:

Hi6:
H18:

E = (CD)F by H6,Defi;
E divides AC by H2,L0;
E divides BC by H2,L0;
((CD)F) divides AC by H8,HT7;
((CD)F) divides BC by H9,HT7;
(DF) divides A & (DF) divides B
proof
consider G being Element of the carrier of I such that
Mi: ((CD)F)G = AC by H10,Defi;
M2: (C(DF))G ((CD)F)G by VECTSP_1:def 16
.= CA by M1;
M3: (C(DF)) divides C A by M2,Defi;
M4: (DF) divides A by M3,L9,4;
consider G being Element of the carrier of I such that
M5: ((CD)F)G = BC by Hi1,Defi;
M6: (C(DF))G ((CD)F)G by VECTSP_1:def 16
.= CB by M5;
M7: (C(DF)) divides CB by M6,Defl;
M8: (DF) divides B by M7,L9,4;
thus thesis by M4,M8;
end;
DF divides gcd(A,B,Amp) by H12,Def4;
DF divides D by H13,H1;
F divides (1.1I)
proof
Mi: D = D(1.I) by VECTSP_2:1;
M2: DF divides D(1.I) by M1,H14;
thus thesis by M2,L9,A1;
end;
F is_unit by H15,Def2;
ex f being Element of the carrier of I
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st (f is_unit & (CD)f = E) by H7,H16;

H19: (CD) is_associated_to E by H18,L11;

H20: E is_associated_to (CD) by H19,L2;

thus gcd((AC),(BC),Amp) is_associated_to (Cgcd(A,B,Amp))
by H20,H1,H2;

case A2: D = (0.1);

Ni: gcd(A,B,Amp) = (0.I) by A2,Hi;

N2: A = (0.I) & B = (0.I) by Ni,L12;

N3: Cgcd(A,B,Amp) = (0.I) by N1i,VECTSP_2:26;
N4: gcd((AC), (BC), Amp)
ged(((0.1I)C),((0.I)C),Amp) by N2

.= gcd((O.I),((O.I)C),Amp) by VECTSP_2:26
= gcd((O.I),(O.I),Amp) by VECTSP_2:26
= (0.I) by GCDO
.= Cgcd(A,B, Amp) by N3;

N5: gcd((AC), (BC),Amp)(1.1I)
= gcd((AC), (BC),Amp) by VECTSP_2:1
.= Cgcd(A,B, Amp) by N4;

N6: gcd((AC), (BC),Amp) divides Cgcd(A,B,Amp) by N5,Defil;

N7: (Cgcd(A,B,Amp)) (1.1)

Cgcd(A,B, Amp) by VECTSP_2:1

gcd((AC), (BC),Amp) by N4;

N8: Cgcd(A,B,Amp) divides gcd((AC),(BC),Amp) by N7,Defi;

thus gcd((AC),(BC),Amp) is_associated_to (Cgcd(A,B,Amp))
by Def3,N6,N8;

end; ::cases K
thus gcd((AC),(BC),Amp) is_associated_to (Cgcd(A,B,Amp))
by K;

case B: C = (0.1);
Hi: AC = (0.I) by B,VECTSP_2:26;
H2: BC = (0.I) by B,VECTSP_2:26;
H3: gcd((AC), (BC), Amp)
= gcd((0.1),(0.I),Amp) by H1i,H2

.= (0.1) by GCDO
.= (O.I)gcd(A,B,Amp) by VECTSP_2:26
.= Cgcd(A,B, Amp) by B;

H4: gcd((AC), (BC),Amp) (1.1I)

= gcd((AC),(BC),Amp) by VECTSP_2:1

.= Cgcd(A,B, Amp) by H3;
H5: gcd((AC), (BC),Amp) divides (Cgcd(A,B,Amp)) by H4,Defi;
H6: (Cgcd(A,B,Amp)) (1.1)
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Cgcd(A,B, Amp) by VECTSP_2:1

.= gcd((AC), (BC),Amp) by H3;
H7: (Cgcd(A,B,Amp)) divides gcd((AC),(BC),Amp) by H6,Defil;
thus gcd((AC),(BC),Amp) is_associated_to (Cgcd(A,B,Amp))
by H5,H7,Def3;

end; ::cases M
thus thesis by M;
end;
<&

Macro referenced in scrap 23b.

(proof T3 72) =
proof
let Amp be AmpleSet of I;
let A,B,C be Element of the carrier of I;
assume HO: ((C = gcd(A,B,Amp)) & (C <> (0.I)));
consider Al being Element of the carrier of I such that

Hi: A1 = A/C;
consider Bl being Element of the carrier of I such that
H2: B1 = B/C;

M1i: C divides A by Def4,HO;
H3: A1C = A by H1,Def5,M1,HO;
M2: C divides B by Def4,HO;
H4: BIC = B by H2,Def5,M2,HO;
H5: gcd(A,B,Amp) = gcd((A1C),(B1C),Amp) by H3,H4;
H6: gcd((A1C),(B1C),Amp) is_associated_to (Cgcd(A1l,B1,Amp))
by T1;
H7: C is_associated_to (Cgcd(A1,B1,Amp)) by HO,H5,H6;
M3: (C(1.I)) is_associated_to (Cgcd(A1,B1,Amp))
by H7,VECTSP_2:1;
H8: (1.I) is_associated_to gcd(A1l,B1,Amp) by M3,L15,HO;
H9: gcd(A1,B1,Amp) is_associated_to (1.I) by H8,L2;
H10: gcd(A1,Bi,Amp) is Element of Amp by Def4;
Hi1: (1.I) is Element of Amp by Def8;
H12: gcd(A1,B1,Amp) = (1.I) by H9,H10,H1i1,AMP;
H13: ((C = gcd(A,B,Amp)) & (C <> (0.I))) implies
(gcd(A1,B1,Amp) = (1.I)) by H12;
Hi14: ((C = gcd(A,B,Amp)) & (C <> (0.I))) implies
(gcd((A/C),(B/C),Amp) = (1.I)) by Hi,H2,H13;
thus thesis by HO,H14;
end;

&
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Macro referenced in scrap 23b.

(proof T4 73) =
proof
let Amp be AmpleSet of I;
let A,B,C be Element of the carrier of I;

73

consider D being Element of the carrier of I such that

Hi: D = gcd(A,C,Amp);

H2: D divides A & D divides C by H1,Def4;
H2a: D divides C by H2;

H2b: D is Element of Amp by H1,Def4;

consider E being Element of the carrier of I such that

H3: DE = A by H2,Defl;

consider F being Element of the carrier of I such that

H4: DF = C by H2,Defil;
H5: D divides (A + (BC))
proof
M1: D(E+(FB))

4 + (CB) by H3,H4

.= A + (BC);
thus thesis by M1,Defl;
end;

H6: for z being Element of the carrier of I
st (z divides (A + (BC)) & (z divides C))
holds (z divides D)
proof
let Z be Element of the carrier of I;

(DE) + (D(FB)) by VECTSP_2:1
(DE) + ((DF)B) by VECTSP_1i:def 16

assume M1: Z divides (A + (BC)) & (Z divides C);

Mia: (Z divides C) by Mi;

consider X being Element of the carrier of

M2: ZX = C by M1,Defi;

consider Y being Element of the carrier of

M3: ZY = A + (BC) by Mi,Defi;

M4: Z(Y+(-(BX))) (zy) + (Z(-(BX))) by
= (2Y) + (Z2(-(xB)))

(2Y) + (-(2(XB))) by

(2Y) + (-((ZX)B)) by

(4 + (BC)) + (-(CB)) by

A + ((BC) + (-(CB))) by

= A + ((BC) + (-(BC)))

A+ (0. by
= A by

M5: Z divides A by M4,Defl;

I such that

I such that
VECTSP_2:1
VECTSP_2:28
VECTSP_1:def 16
M2,M3

VECTSP_2:1

VECTSP_2:1
VECTSP_2:1;
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end;

&

M6:

Z divides D by Mia,M5,H1,Def4;

thus thesis by M6;

end;

H7: D = gcd((A + (B C)),C,Amp) by H2a,H2b,H5,H6,Def4;
thus thesis by H1,H7;

Macro referenced in scrap 23b.

(proof HY 74a) =
proof

M1:
M7 :
M2:
M3:
M4:
M5:
M6:

end;

&

A=

A(1.I) by VECTSP_2:1;

A is_associated_to A by L2;

A is_associated_to (A(1.I)) by M1,M7;
gcd (4, (AC) ,Amp) is_associated_to
gcd((A(1.1)), (AC),Amp) by M2,L14;
gecd((A(1.1)), (AC), Amp)

is_

associated_to (Agcd((1.I),C,Amp)) by Ti;

Agcd((1.I),C,Amp) = A(1.I) by GCD2

= A by VECTSP_2:1;

gcd((A(1.1)), (AC) ,Amp) is_associated_to A by M5,M4;
thus thesis by M6,M3,L2;

Macro referenced in scrap 25a.

B.6 Proof of the Theorems

(proof HEN1 2 74b) =

gcd((ris)+(sir),r,Amp) = gcd(ris,r,Amp) by T4;
gcd(r,rl,Amp) = (1.I)

(proof H14 76a)

gcd(r,ris,Amp) = gcd(r,s,Amp) by H14,T2;
gcd(r,s,Amp) = (1.I) by H4,H5,H2,K,T3;

H13:
Hi4:

H15:

H16:
H17:

H18:

H19:

gcd((ris)+(sir),r,Amp)

gcd(ris,r,Amp) by H13

= gcd(r,ris,Amp) by L13

= gcd(r,s,Amp) by H15
(1.1) by H16;

gcd((ris)+(sir),dr,Amp)
gcd((ris)+(sir),d,Amp) by H17,T2;
gcd((ris)+(sir),r2s,Amp)
gecd((ris)+(sir),d,Amp)

74
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by H12,H18;
H20: gcd((ri1(s2/gcd(r2,s2,Amp)))+(s1(r2/gcd(r2,s2,4mp))),
r2(s2/gcd(r2,s2,Amp)), Amp) =
gcd((r1(s2/gcd(r2,s2,Amp)))+(s1(r2/gcd(r2,s2,Amp))),
gcd(r2,s2,Amp) , Amp)
by H19,H4,H5,H2;
thus thesis by H20;
end;

&

Macro referenced in scrap 27.

(proof H7 75a) =

proof
M1: gcd(s,sl,Amp) divides sl by Def4;
M2: gcd(s,sl,Amp) divides s by Def4;
consider e being Element of the carrier of I such that
M3: gcd(s,sl,Amp)e = s by M2,Defl;
M4 : gecd(s,s1,Amp) (ed)
= (gcd(s,sl,Amp)e)d by VECTSP_1:def 16
.= sd by M3
.= 82 by K,H2a,H5,Def5;
M5: gcd(s,sl,Amp) divides s2 by M4,Defl;
M6: gcd(s,sl,Amp) divides gcd(sl,s2,Amp) by M1,M5,Def4;
M7: gcd(s,sl,Amp) divides (1.I) by M6,H1;
M8: (1.I)gcd(s,s1,Amp) = gcd(s,sl,Amp) by VECTSP_2:1;
M9: (1.I) divides gcd(s,sl,Amp) by M8,Defl;
M10: gcd(s,s1,Amp) is_associated_to (1.I) by M7,M9,Def3;
Mi1: gecd(s,sl,Amp) is Element of Amp by Def4;
M12: (1.I) is Element of Amp by Def8;
thus thesis by M10,M11,M12,AMP;
end;

&

Macro referenced in scrap 27.

(proof H11 75b) =

proof

HO: d divides d by L1;

HOa: d divides (dr2) by L6;

Hi: r2s = ((1.I)r2)s by VECTSP_2:1
((d/d)r2)s by K,L7
((dr2)/d)s by K,HO,HOa,L8
(d(r2/d))s by K,H2b,H0a,L8
(dr)s by H4

75
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.= s(dr);

thus thesis by Hi;

end;

o

Macro referenced in scrap 27.

(proof H14 76a) =
proof
Mi: gcd(r,rl,Amp) divides rl by Def4;
M2: gcd(r,rl,Amp) divides r by Def4;
consider e being Element of the carrier of I such that

M3:
M4:

M5:
M6:
M7:
M8:
M9:

M12:

end;

&

g

cd(r,rl,Ample =

gcd(r,rl,Amp) (ed)
(gcd(r,r1,Amp)e)d by VECTSP_1:def 16

=rd

r2

by M3
by K,

76

r by M2,Defl;

H2b,H4,DefS;

gcd(r,rl,Amp) divides r2 by M4,Defl;

gcd(r,rl,Amp) divides gcd(rl,r2,Amp) by M1,M5,Def4;
gcd(r,rl,Amp) divides (1.I) by M6,H1;
(1.I)gecd(r,r1,Amp) = gcd(r,r1,Amp) by VECTSP_2:1;
(1.I) divides gcd(r,r1,Amp) by M8,Defl;

M10: gcd(r,rl,Amp) is_associated_to (1.I) by M7,M9,Def3;
Mi1: gecd(r,rl,Amp) is Element of Amp by Def4;

(1.I) is Element of Amp by Def8;

thus thesis by M10,M11,M12,AMP;

Macro referenced in scrap 74b.

(proof H27 76b) =

proof

H10:
Hi1:
H12:
H13:
Hi4:
H15:
H16:
H17:
H18:
H19:
H20:
H21:

dl divides rl1 by H2,Def4;
ri’dl = r1 by H4,H6,H10,Def5;
r1’ divides r1 by H11,Defl;
d2 divides r2 by H3,Def4;
r2’d2 = r2 by H5,H8,H13,Def5;
r2’ divides r2 by H14,Defl;

gcd(rl’,r2’,Amp)
gcd(rl’,r2’,Amp)
gcd(rl’,r2’,Amp)
gcd(rl’,r2’,Amp)
gcd(rl’,r2’,Amp)
gcd(rl’,r2’,Amp)

divides
divides
divides
divides
divides
divides

r1’ by Def4;

r2’ by Def4;

ri by H16,H12,L1;

r2 by H17,H15,L1;
gcd(ril,r2,Amp) by H18,H19,Def4;
(1.1) by H20,Hi;
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H22: (1.I)gcd(rl’,r2’,Amp) = gcd(rl’,r2’,Amp) by VECTSP_2:1;
H23: (1.I) divides gcd(ri’,r2’,Amp) by H22,Defl;

H24: gcd(rl’,r2’,Amp) is_associated_to (1.I) by H21,H23,Def3;
H25: gcd(rl’,r2’,Amp) is Element of Amp by Def4;

H26: (1.I) is Element of Amp by Def8;

H27a: gcd(r1l’,r2’,Amp) = (1.I) by H24,H25,H26, AMP;

thus thesis by H27a,L13;

end;

&

Macro referenced in scrap 28.

(proof H45 77a) =
proof
H28: d1 divides s2 by H2,Def4;
H29: s2°dl = s2 by H4,H9,H28,DefS;
H30: s2’ divides s2 by H29,Defl;
H31: d2 divides s1 by H3,Def4;
H32: s1’d2 = s1 by H5,H7,H31,Def5;
H33: s1’ divides s1 by H32,Defl;
H34: gcd(s1’,s2’,Amp) divides s1’ by Def4;
H36: gcd(s1l’,s2’,Amp) divides s2’ by Def4;
H36: gcd(sl’,s2’,Amp) divides s1 by H34,H33,L1;
H37: gcd(s1l’,s2’,Amp) divides s2 by H35,H30,L1;
H38: gcd(s1’,s2’,Amp) divides gcd(si,s2,Amp) by H37,H36,Def4;
H39: gcd(sl’,s2’,Amp) divides (1.I) by H38,H1;
H40: (1.I)gcd(s1’,s2’,Amp) = gcd(s1’,s2’,Amp) by VECTSP_2:1;
H41: (1.I) divides gcd(s1’,s2’,Amp) by H40,Defl;
H42: gcd(s1’,s2’,Amp) is_associated_to (1.I) by H39,H41,Def3;
H43: gcd(sl’,s2’,Amp) is Element of Amp by Def4;
H44: (1.I) is Element of Amp by Def8;
thus thesis by H42,H43,H44,AMP;
end;

&

Macro referenced in scrap 28.

B.7 Proofs of Correctness

(more def 77b) =
definition
let I be gcdDomain;
let Amp be AmpleSet of I;
let x,y be Element of the carrier of I;
pred x,y are_canonical_wrt Amp means :Defil0a:
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gcd(x,y,Amp) = (1.1I);
end;

theorem
CAN: for Amp,Amp’ being AmpleSet of I
for x,y being Element of the carrier of I holds
X,y are_canonical_wrt Amp iff x,y are_canonical_wrt Amp’
proof
let Amp,Amp’ being AmpleSet of I;
let x,y be Element of the carrier of I;
K1: now assume HO: x,y are_canonical_wrt Amp;
Hi: gcd(x,y,Amp) = (1.I) by HO,Def10a;
H2: for z being Element of the carrier of I
st (z divides x & z divides y)
holds (z divides (1.I)) by Hi,Def4;
H3: (1.I)x = x by VECTSP_2:1;
H4: (1.I)y = y by VECTSP_2:1;
H5: (1.I) divides x by H3,Defi;
H6: (1.I) divides y by H4,Defi;
H7: (1.I) € Amp’ by Def8;
H8: gcd(x,y,Amp’) = (1.I) by H2,H5,H6,H7,Def4;
thus x,y are_canonical_wrt Amp’ by H8,Def10a;
end; :: K1
K2: now assume HO: x,y are_canonical_wrt Amp’;
Hi: gcd(x,y,Amp’) = (1.I) by HO,Defi0a;
H2: for z being Element of the carrier of I
st (z divides x & z divides y)
holds (z divides (1.I)) by Hi,Def4;
H3: (1.I)x = x by VECTSP_2:1;
H4: (1.I)y = y by VECTSP_2:1;
H5: (1.I) divides x by H3,Defi;
H6: (1.I) divides y by H4,Defi;
H7: (1.I) € Amp by Def8;
H8: gcd(x,y,Amp) = (1.I) by H2,H5,H6,H7,Def4;
thus x,y are_canonical_wrt Amp by H8,Def10a;
end; :: K2
thus thesis by K1,K2;
end;

theorem
CAN1: for Amp being AmpleSet of I
for x,y being Element of the carrier of I holds
x canonical y implies gcd(x,y,Amp) = (1.I)
proof
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let A

let x,y be Element of the carrier of I;

mp be AmpleSet of I;

assume HO: x canonical y;
consider Amp’ being AmpleSet of I such that

Hi: gcd(x,y,Amp’) = (1.I) by HO,Defi10;

H2: x,y are_canonical_wrt Amp’ by H1,Defl0a;

H3: x,y are_canonical_wrt Amp by H2,CAN;
H4: gcd(x,y,Amp) = (1.I) by H3,Def10a;

thus
end;

&

thesis by H4;

Macro referenced in scrap 29b.

(consistency addl 79) =

consi
proof

stency

79

Vi: gecd(ril,r2,Amp) = (1.I) & gcd(si,s2,Amp) = (1.I) by A,CAN1;
ri = (0.I) & gcd(r2,s2,Amp) = (1.I) implies
for z being Element of the carrier of I

Ko02:

K03:

holds z = s1 iff z =
proof

(r1s2) + (r2s1)

assume HO: r1 = (0.I) & gcd(r2,s2,Amp) = (1.I);

let z be Element of the carrier of I;

Hi: r2 = NF(r2,Amp)

= (1.1)
H2: (r1s2) + (r2s1)

thus thesis by H3;
end;

by A

gcd((0.I),r2,Amp) by GCD1
gcd(ri,r2,Amp) by HO

by Vi;

(0.I) + (r2s1) by HO,VECTSP_2:26

r2si
(1.I)s1

.= sl
H3: z = sl iff z = (ris2) + (r2sl) by

by VECTSP_2:1
by H1

by VECTSP_2:1;
H2;

ri = (0.I) & (r1(s2/gcd(r2,s2,Amp))) +
(s1(r2/gcd(r2,s2,Amp))) = (0.I)
implies for z being Element of the carrier of I

holds z = s1 iff z =
proof

(0.1)

assume HO: r1 = (0.I) & (ri(s2/gcd(r2,s2,Amp))) +
(s1(r2/gcd(r2,s2,Amp))) = (0.I);

let z be Element of the carrier of I;

Hi: r2 = NF(r2,Amp)

by A

gcd((0.I),r2,Amp) by GCD1



B ADDITIONAL MIZAR CODE 80

Ki2:

K13:

gcd(rl,r2,Amp) by HO

= (1.1) by Vi;
H2: gcd(r2,s2,Amp) = gcd((1.I),s2,Amp) by H1
= (1.1) by GCDZ2;
H2a: (1.I) <> (0.I) by VECTSP_1: def 21;
H3: (0.1)
= (r1(s2/gcd(r2,s2,Amp)))+(s1(r2/gcd(r2,s2,Amp)))
by HO
.= ((0.1I)(s2/gcd(r2,s2,Amp)))+(s1(r2/gcd(r2,s2,Amp)))
by HO

.= (0.I)+(s1(r2/gcd(r2,s2,Amp))) by VECTSP_2:26
= s1(r2/gcd(r2,s2,Amp)) by VECTSP_2:1
= s1((1.I)/gcd(r2,s2,Amp)) by H1
= s1((1.1)/(1.1)) by H2
.= s1(1.I) by L7,H2a
.= s1 by VECTSP_2:1;
H4: z = s1 iff z = (0.I) by H3;
thus thesis by H4;
end;
sl = (0.I) & gcd(r2,s2,Amp) = (1.I) implies
for z being Element of the carrier of I
holds z = r1 iff z = (ris2) + (r2sil)
proof
assume HO: s1 = (0.I) & gcd(r2,s2,Amp) = (1.I);
let z be Element of the carrier of I;
Hi: s2 = NF(s2,Amp) by A
gecd((0.I),s2,Amp) by GCD1
gcd(s1,s2,Amp) by HO

= (1.1) by Vi;
H2: (ri1s2) + (r2s1) = (ri1s2) + (0.I) by HO,VECTSP_2:26
= ris2 by VECTSP_2:1
= r1(1.1) by H1
=ri by VECTSP_2:1;

H3: z = r1 iff z = (r1s2) + (r2sl) by H2;

thus thesis by H3;

end;

s1 = (0.I) & (ri(s2/gcd(r2,s2,Amp))) +
(s1(r2/gcd(r2,s2,Amp))) = (0.I)

implies for z being Element of the carrier of I

holds z = r1 iff z = (0.I)

proof

assume HO: s1 = (0.I) & (ri1(s2/gcd(r2,s2,Amp))) +

(s1(r2/gcd(r2,s2,Amp))) = (0.I);
let z be Element of the carrier of I;
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H1: s2

NF(s2, Amp) by A
gecd((0.I),s2,Amp) by GCD1
gcd(s1,s2,Amp) by HO

= (1.1) by Vi;
H2: gcd(r2,s2,Amp) = gcd(r2,(1.I),Amp) by H1

= (1.1) by GCDZ2;

H2a: (1.I) <> (0.I) by VECTSP_1: def 21;
H3: (0.1)

81

= (r1(s2/gcd(r2,s2,Amp)))+(s1(r2/gcd(r2,s2,Amp)))

by HO

.= (ri1(s2/gcd(r2,s2,Amp)))+((0.I)(r2/gcd(r2,s2,Amp)))

by HO

.= (ri1(s2/gcd(r2,s2,Amp)))+(0.I) by VECTSP_2:26

= r1(s2/gcd(r2,s2,Amp)) by VECTSP_2:1
.= r1((1.1)/gcd(r2,s2,Amp)) by Hi
.= r1((1.1)/(1.1)) by H2
.= r1i(1.I) by L7,H2a
.= rl by VECTSP_2:1;
H4: z = r1 iff z = (0.I) by H3;
thus thesis by H4;
end;

K23: gcd(r2,s2,Amp) = (1.I) &
(ri(s2/gcd(r2,s2,Amp)))+(s1(r2/gcd(r2,s2,Amp)))
implies for z being Element of the carrier of I
holds z = (ri1s2) + (r2s1) iff z = (0.1)
proof
assume HO: gcd(r2,s2,Amp) = (1.I) &
(r1(s2/gcd(r2,s2,Amp)))+(s1(r2/gcd(r2,s2,Amp)))
let z be Element of the carrier of I;

H1i: (0.1)

by HO

(r1(s2/(1.1))) + (s1(r2/(1.1I))) by HO
(r1s2) + (s1(r2/(1.1I))) by L7a
(r1s2) + (sir2) by L7a;
H2: z = (r1s2) + (r2s1) iff z = (0.I) by Hi;
thus thesis by H2;
end;
thus thesis by K02,K03,K12,K13,K23;
end;

&

Macro referenced in scrap 30.

(0.1)

(0.I);

(r1(s2/gcd(r2,s2,Amp))) + (s1(r2/gcd(r2,s2,Amp)))

(r1(s2/(1.1))) + (s1(r2/gcd(r2,s2,Amp))) by HO
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(consistency add2 81) =

consi
proof

stency

82

Vi: gecd(ril,r2,Amp) = (1.I) & gcd(si,s2,Amp) = (1.I) by A,CAN1;

KO1:

Ko02:

K03:

rli = (0.I) & s1 = (0.I) implies
for z being Element of the carrier of I
holds z = s2 iff z = r2
proof
assume HO: r1 = (0.I) & s1 = (0.1I);
let z be Element of the carrier of I;
Hi: r2 = NF(r2,Amp) by A

.= gcd((0.I),r2,Amp) by GCD1

.= gcd(rl,r2,Amp) by HO
(1.1 by Vi;
H2: s2 = NF(s2,Amp) by A

.= gcd((0.I),s2,Amp) by GCD1

.= gcd(s1,s2,Amp) by HO

= (1.1 by Vi;
H3: z = s2 iff z = r2 by H1,H2;
thus thesis by H3;
end;
ri = (0.I) & gcd(r2,s2,Amp) = (1.I) implies
for z being Element of the carrier of I
holds z = s2 iff z = r2s2
proof
assume HO: r1 = (0.I) & gcd(r2,s2,Amp) = (1.I);
let z be Element of the carrier of I;
Hi: r2 = NF(r2,Amp) by A

.= gcd((0.I),r2,Amp) by GCD1

.= gcd(rl,r2,Amp) by HO

= (1.1) by Vi;
H2: r2s2 = (1.I)s2 by H1
.= 82 by VECTSP_2:1;

H3: z = s2 iff z = r2s2 by H2;

thus thesis by H3;

end;

ri = (0.I) & (r1(s2/gcd(r2,s2,Amp))) +
(s1(r2/gcd(r2,s2,Amp))) = (0.I)

implies for z being Element of the carrier of I

holds z = s2 iff z = (1.1I)
proof

assume HO: r1 = (0.I) & (ri(s2/gcd(r2,s2,Amp))) +
(s1(r2/gcd(r2,s2,Amp))) = (0.

let z be Element of the carrier of I;

I);
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Hi: r2 = NF(r2,Amp) by A
= gcd((0.I),r2,Amp) by GCD1
= gcd(rl,r2,Amp) by HO
= (1.1) by Vi;
H2: gcd(r2,s2,Amp) = gcd((1.I),s2,Amp) by H1
.= (1.1) by GCDZ2;
H2a: (1.I) <> (0.I) by VECTSP_1: def 21;
H3: (0.1)
= (r1(s2/gcd(r2,s2,Amp)))+(s1(r2/gcd(r2,s2,Amp)))
by HO
.= ((0.1I)(s2/gcd(r2,s2,Amp)))+(s1(r2/gcd(r2,s2,Amp)))
by HO

Ki2:

K13:

.= (0.I)+(s1(r2/gcd(r2,s2,Amp))) by VECTSP_2:26
= s1(r2/gcd(r2,s2,Amp)) by VECTSP_2:1
.= s81((1.I)/gcd(r2,s2,Amp)) by Hi
.= s1((1.1)/(1.1)) by H2
.= s1(1.I) by L7,H2a
.= s1 by VECTSP_2:1;
H4: s2 = NF(s2,Amp) by A
gecd((0.I),s2,Amp) by GCD1
.= gcd(s1,s2,Amp) by H3
= (1.1) by Vi;
thus thesis by H4;
end;
s1 = (0.I) & gcd(r2,s2,Amp) = (1.I) implies
for z being Element of the carrier of I
holds z = r2 iff z = r2s2
proof
assume HO: s1 = (0.I) & gcd(r2,s2,Amp) = (1.I);
let z be Element of the carrier of I;
Hi: s2 = NF(s2,Amp) by A
.= gcd((0.I),s2,Amp) by GCD1
.= gcd(s1,s2,Amp) by HO
= (1.1 by Vi;
H2: r2s2 = r2(1.I) by H1
.= r2 by VECTSP_2:1;
H3: z = r2 iff z = r2 s2 by H2;
thus thesis by H3;
end;
sl = (0.I) & (ri(s2/gcd(r2,s2,Amp))) +
(s1(r2/gcd(r2,s2,Amp))) = (0.I)
implies for z being Element of the carrier of I
holds z = r2 iff z = (1.1I)
proof
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K23:

assume HO: s1 = (0.I) & (ri1(s2/gcd(r2,s2,Amp))) +
(s1(r2/gcd(r2,s2,Amp))) = (0.I);

let z be Element of the carrier of I;

Hi: s2 = NF(s2,Amp) by A

gecd((0.I),s2,Amp) by GCD1

gcd(s1,s2,Amp) by HO

.= (1.1) by Vi;
H2: gcd(r2,s2,Amp) = gcd(r2,(1.I),Amp) by H1
= (1.1) by GCDZ2;
H2a: (1.I) <> (0.I) by VECTSP_1: def 21;
H3: (0.1)
= (ri1(s2/gcd(r2,s2,Amp)))+(s1(r2/gcd(r2,s2,Amp)))
by HO
.= (ri1(s2/gcd(r2,s2,Amp)))+((0.I)(r2/gcd(r2,s2,Amp)))
by HO

.= (r1(s2/gcd(r2,s2,Amp)))+(0.I) by VECTSP_2:26

= r1(s2/gcd(r2,s2,Amp)) by VECTSP_2:1

= r1((1.I)/gcd(r2,s2,Amp)) by H1

= r1((1.1)/(1.1)) by H2

.= r1i(1.I) by L7,H2a

.= rl by VECTSP_2:1;
H4: r2 = NF(r2,Amp) by A
gcd((0.I),r2,Amp) by GCD1
gcd(ri,r2,Amp) by H3

.= (1.1) by Vi;

H5: z = r2 iff z = (1.I) by H4;
thus thesis by H5;
end;
gcd(r2,s2,8mp) = (1.1I) &
(ri1(s2/gcd(r2,s2,Amp)))+(s1(r2/gcd(r2,s2,Amp)))
implies for z being Element of the carrier of I
holds z = r2s2 iff z = (1.I)
proof
assume HO: gcd(r2,s2,Amp) = (1.I) &
(ri1(s2/gcd(r2,s2,Amp)))+(s1(r2/gcd(r2,s2,Amp)))
let z be Element of the carrier of I;
Hi: (0.1)
(ri(s2/gcd(r2,s2,Amp)))+(s1(r2/gcd(r2,s2,Amp)))
by HO
(r1(s2/(1.1)))+(s1(r2/gcd(r2,s2,Amp))) by HO
(r1(s2/(1.1)))+(s1(xr2/(1.1))) by HO
(r1s2)+(s1(r2/(1.1))) by L7a
.= (r1s2)+(sir2) by L7a;
H2: ri1s2 = (0.I) - (sir2) by H1,VECTSP_2:22

(0.1)

(0.I);
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H2a:

H3:
H4:

H5:

H6:
H7:
HS:

H9:
H10:
Hii:

Hi2:
H13:

Hi4:

H15:
H16:
H17:

H18:
H19:

H20:

H21:

thus

end;
thus thes
end;

&

Macro referenced in

(proof D30 85) =

.= —(s1r2) by VECTSP_2:23;
sir2 = (0.I) - (ri1s2) by H1,VECTSP_2:22
.= —(ri1s2) by VECTSP_2:23;
gcd(r2,ri, Amp)

(1.I) by V1,L13;
= gcd(r2,s2,Amp) by T2,H3
= (1.1) by HO;
gcd(r2,-(sir2),Amp) by H4,H2
gcd((1.I)r2,-(s1r2),Amp) by VECTSP_2:1
gecd((1.1)r2,(-s1)r2,Amp) by VECTSP_2:28;
gcd((i I)r2,(-s1)r2,Amp) is_associated_to
r2gcd((1.I),(-s1),Amp) by Ti;
r2gcd((1.I),(-s1),Amp) = r2(1.I) by GCD2
.= r2 by VECTSP_2:1;
(1.I) is_associated_to r2gcd((1.I),(-s1),Amp)
by H5,HS6;
(1.I) is_associated_to r2 by H8,H7;
(1.I) € Amp by AMP;
r2 = NF(r2,Amp) by A
= (1.I) by H9,H10,Def20;
gcd(s2,s1,Amp) = (1.I) by V1,L13;
gcd(s2,s1r2,Amp) = gcd(s2,r2,Amp) by T2,H12
= (1.1) by HO,L13;
gcd(s2,-(r1s2),Amp) by H13,H2a
gecd((1.I)s2,-(r1s2),Amp) by VECTSP_2:1
gecd((1.I)s2,(-r1)s2,Amp) by VECTSP_2:28;
gcd((l I)s2,(-r1)s2,Amp) is_associated_to
s2gcd((1.1I),(-r1),Amp) by Ti;
s2gcd((1.I),(-r1),Amp) = s2(1.I) by GCD2
.= s2 by VECTSP_2:1;
(1.I) is_associated_to s2gcd((1.I),(-r1),Amp)
by H14,H15;
(1.I) is_associated_to s2 by H17,H16;
s2 = NF(s2,Amp) by A
= (1.1) by H18,H10,Def20;
r2s2 = (1.I) by H11,H19,VECTSP_2:1;
z = r2s2 iff z = (1.I) by H20;
thesis by H21;

gcd(r2,r1s2, Amp)

(1.1

(1.1)

is by KO01,K02,K03,K12,K13,K23;

scrap 30.

85
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proof

M1: z2 divides gcd(r2,s2,Amp) by Def4;
M2: gcd(r2,s2,Amp) divides r2 by Def4;
M3: z2 divides r2 by M1,M2,L1;

thus thesis by M3,L6a;

end;

&

Macro referenced in scrap 86b.

(proof D32b 86a) =
proof
consider zz being Element of the carrier of I such that
Mi: zz = z1/z2;
M3: r2s2 <> (0.I) by HO,VECTSP_2:15;
M4a: gcd(r2,s2,Amp) divides r2s2 by D28a,L6a;
M4: z1 = (r2s2)/gcd(r2,s2,Amp) by D28a,D28b,M4a,L8;
M6: z1 <> (0.I) by M4,M3,M4a,D28b,L26;
M7: zz <> (0.I) by M1,M6,D30,D31,L26;
thus thesis by M7,M1;
end;

&

Macro referenced in scrap 86b.

(proof ALG1 86b) =
proof
let Amp be AmpleSet of I;
let ri1,r2,s1,s2 be Element of the carrier of I;
assume HOa: Amp is_multiplicative &
rl,r2 are_normalized_wrt Amp &
s1,s2 are_normalized_wrt Amp;
HOb: r2 € Amp & s2 € Amp &
r2 <> (0.I) & s2 <> (0.I) by HOa,Def27;
HO: r2 = NF(r2,Amp) & s2 = NF(s2,Amp) &
r2 <> (0.I) & s2 <> (0.I) by HOb,NF3;
H3: gcd(rl,r2,Amp) = (1.I) & gcd(s1,s2,Amp) = (1.1)
by HOa,Def27;
H3a: rl canonical r2 & sl canonical s2 by H3,Def10;
M: now per cases;

case B: s1 = (0.1);

Bi: addi(ri,r2,s1,s2,Amp) = ri1 by B,HO,H3a,Deflla;

B2: add2(ri,r2,s1,s2,Amp) = r2 by B,HO,H3a,Def12a;

B3: gcd(addi(rl,r2,s1,s2,Amp),add2(r1,r2,s1,s2,Amp) , Amp)
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gcd(rl,r2,Amp) by B1,B2
= (1.1) by H3;
thus thesis by B3,B2,HOb,Def27;

case D1: (ri1(s2/gcd(r2,s2,Amp)))+(s1(r2/gcd(r2,s2,Amp)))
= (0.ID;
Di11: addi(ri,r2,s1,s2,Amp) (0.I) by D1,HO,H3a,Deflla;
D12: add2(ri,r2,s1,s2,Amp) (1.I) by D1,H0,H3a,Def12a;
D13: gcd(addi(rl,r2,s1,s2,Amp) ,add2(r1,r2,s1,s2,Amp), Amp)
= gcd((0.1),(1.1),Amp) by D11,D12
= (1.1) by GCD2;
Di14: (1.I) € Amp by AMP;
D15: (1.I) <> (0.I) by VECTSP_1i:def 21;
thus thesis by D12,D13,D14,D15,Def27;

case D2: r1 <> (0.I) & s1 <> (0.I) & gcd(r2,s2,Amp) <> (1.1)
& (ri1(s2/gcd(r2,s2,Amp)))+(s1(r2/gcd(r2,s2,Amp)))
<> (0.1);
D21: addi(ri,r2,s1,s2,Amp) =
((r1(s2/gcd(r2,s2,Amp)) )+(s1(r2/gcd(r2,s2,4mp)))) /
gcd((r1(s2/gcd(r2,s2,Amp)))+(s1(r2/gcd(r2,s2,Amp))),
gcd(r2,s2,Amp) , Amp)
by D2,H0,H3a,Deflla;
D22: add2(ri,r2,s1,s2,Amp) =
(r2(s2/gcd(r2,s2,Amp))) /
gcd((r1(s2/gcd(r2,s2,Amp)))+(s1(r2/gcd(r2,s2,Amp))),
gcd(r2,s2,Amp) , Amp)
by D2,H0,H3a,Defl2a;
D256: gcd((ri1(s2/gcd(r2,s2,Amp)))+(s1(r2/gcd(r2,s2,4mp))),
(r2(s2/gcd(r2,s2,Amp))) , Amp)
= gcd((r1(s2/gcd(r2,s2,Amp)))+(s1(r2/gcd(r2,s2,4mp))),
gcd(r2,s2,Amp) ,Amp) by HO,H3,HEN1;
D26a: gcd(r2,s2,Amp) <> (0.I) by HO,L12;
D26: gcd((ri(s2/gcd(r2,s2,Amp)))+(s1(r2/gcd(r2,s2,4mp))),
gcd(r2,s2,Amp) , Amp)
<> (0.I) by D26a,L12;
D27: gcd(
((r1(s2/gcd(r2,s2,Amp)))+(s1(r2/gcd(r2,s2,Amp)))) /
gcd((r1(s2/gcd(r2,s2,Amp)))+(s1(r2/gcd(r2,s2,Amp))),
gcd(r2,s2,Amp), Amp),
((r2(s2/gcd(r2,s2,Amp)))) /
gcd((r1(s2/gcd(r2,s2,Amp)))+(s1(r2/gcd(r2,s2,Amp))),
gcd(r2,s2,Amp) , Amp),
Amp)
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= (1.I) by D26,D25,T3;
reconsider r2,s2 as Element of Amp by HODb;
D28a: gcd(r2,s2,Amp) divides s2 by Def4;
D28b: gcd(r2,s2,Amp) <> (0.I) by HO,L12;
D28c: gcd(r2,s2,Amp) € Amp by Def4;
D28d: s2/gcd(r2,s2,Amp) € Amp by D28a,D28b,D28c,HOa, AMP5;
reconsider z3 = s2/gcd(r2,s2,Amp) as Element of Amp by D28d;
D28: r2z3 € Amp by HOa,Def25;
reconsider z1 = r2(s2/gcd(r2,s2,Amp)) as Element of Amp
by D28;
reconsider z2 =
gcd((r1(s2/gcd(r2,s2,Amp)))+(s1(r2/gcd(r2,s2,Amp))),
gcd(r2,s2,Amp),Amp) as Element of Amp by Def4;
D30: z2 divides z1
(proof D30 85)
D31: z2 <> (0.I) by D28b,L12;
D32a: zl1 / z2 € Amp by D30,D31,AMP5,HOa;
D32b: z1 / z2 <> (0.I)
(proof D32b 86a)
D32: (r2(s2/gcd(r2,s2,Amp))) /
gcd((r1(s2/gcd(r2,s2,8mp))) + (s1 (r2/gcd(r2,s2,4mp))),
gcd(r2,s2,Amp) ,Amp) € Amp by D32a;
thus thesis by D21,D22,D27,D32,D32b,Def27;

(example cases ALG1 33a)

end; ::cases M
thus thesis by M;
end;
<&

Macro referenced in scrap 32.

(proof ALG?2 88) =
proof
let Amp be AmpleSet of I;
let r1,r2,s1,s2 be Element of the carrier of I;
assume HOa: Amp is_multiplicative &
rl,r2 are_normalized_wrt Amp &
s1,s2 are_normalized_wrt Amp;
HOb: gecd(ril,r2,Amp) = (1.I) & gcd(si,s2,Amp) = (1.I) &
s2 € Amp & r2 € Amp by HOa,Def27;
HO: r1 canonical r2 & sl canonical s2 &
r2 <> (0.I) & s2 <> (0.I) &
r2 = NF(r2,Amp) & s2 = NF(s2,Amp)
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by Def27,H0a,HOb,Def10,NF3;
M: now per cases,;

case A: r1 = (0.1);

Al:
A2:
A3:

a
a

ddi(ri,r2,s1,s2,Amp)
dd2(r1,r2,s1,s2,Amp)

s2((r1s2)+(s1r2))
s2(((0.1)s2)+(s1r2))
s2((0.1)+(s1r2))
s2(s1r2)

(s2s1)r2

(s1s2)r2

s1(s2r2)

s1(r2s2)

sl by A,HO,Deflla;
s2 by A,HO,Defl2a;
add2(ri,r2,s1,s2,4mp) ((r1s2)+(s1r2))

by
by
by
by
by

by

.= addi(ri,r2,s1,s2,Amp) (r2s2) by
thus thesis by A3;

case B: s1 = (0.1);

Bi:
B2:
B3:

a
a

ddi(ri,r2,s1,s2,Amp)
dd2(r1,r2,s1,s2,Amp)

r2((ri1s2)+(si1r2))
r2((r1s2)+((0.1)r2))
r2((r1s2)+(0.1))
r2(ris2)

(r2r1)s2

(ri1r2)s2

ri(r2s2)

A2

A
VECTSP_2:
VECTSP_2:
VECTSP_1:

VECTSP_1:

Al;

rl by B,HO,Defilla;
r2 by B,HO,Defi2a;
add2(ri,r2,s1,s2,4mp) ((r1s2)+(s1r2))

by
by
by
by
by

by

.= addi(ri,r2,s1,s2,Amp) (r2s2) by
thus thesis by B3;

B2

B
VECTSP_2:
VECTSP_2:
VECTSP_1:

VECTSP_1:
Bi;

26
1
def 16

def 16

26
1
def 16

def 16

89

case D2: r1 <> (0.I) & s1 <> (0.I) & gcd(r2,s2,Amp) <> (1.I) &

D21:

D22:

(ri1(s2/gcd(r2,s2,Amp)))+(s1(r2/gcd(r2,s2,Amp)))

<> (0.1);

addi(ri,r2,s1,s2,Amp) =
((r1(s2/gcd(r2,s2,Amp)))+(s1(r2/gcd(r2,s2,Amp)))) /
gcd((r1(s2/gcd(r2,s2,Amp)))+(s1(r2/gcd(r2,s2,Amp))),

gcd(r2,s2,Amp) , Amp)

by D2,HO0,Deflia;

add2(r1,r2,s1,s2,Amp) =

(r2(s2/gcd(r2,s2,Amp))) /

gcd((r1(s2/gcd(r2,s2,Amp)))+(s1(r2/gcd(r2,s2,Amp))),
gcd(r2,s2,Amp) , Amp)
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D23:
D24:
D25:
D26:
D27:
D28:
D29:
D30:
D31:
D32:

by D2,HO0,Def12a;

gcd(r2,s2,Amp) <> (0.I) by HO,L12;

gcd(r2,s2,Amp) divides s2 by LO;

gcd(r2,s2,Amp) divides r2 by LO;

gcd(r2,s2,Amp) divides ris2 by D24,L6a;

gcd(r2,s2,Amp) divides sir2 by D25,L6a;

gcd(r2,s2,Amp) divides (ri1s2) r2 by D26,L6a;

gcd(r2,s2,Amp) divides (sir2)r2 by D27,L6a;

gcd(r2,s2,Amp) divides ((ris2)r2)s2 by D28,L6a;

gcd(r2,s2,Amp) divides ((sir2)r2)s2 by D29,L6a;
((r1(s2/gcd(r2,s2,Amp))) +
(s1(r2/gcd(r2,s2,Amp)))) (r2s2)

= ((r1(s2/gcd(r2,s2,Amp))) (r2s2)) +
((s1(r2/gcd(r2,s2,Amp))) (r2s2)) by VECTSP_2:1

.= (((r1s2)/gcd(r2,s2,Amp)) (r2s2)) +

((s1(r2/gcd(r2,s2,Amp))) (r2s2)) by D23,D24,D26,L8

.= (((r1s2)/gcd(r2,s2,Amp)) (r2s2)) +

(((s1r2)/gcd(r2,s2,Amp)) (r2s2)) by D23,D25,D27,L8

.= ((((r1s2)/gcd(r2,s2,Amp))r2)s2) +

(((s1r2)/gcd(r2,s2,Amp)) (r2s2)) by VECTSP_1:def 16

.= ((((r1s2)/gcd(r2,s2,Amp))r2)s2) +

((((s1r2)/gcd(r2,s2,Amp))r2)s2) by VECTSP_1:def 16

.= ((((r1s2)r2)/gcd(r2,s2,Amp))s2) +

((((s1r2)/gcd(r2,s2,Amp))r2)s2) by D23,D26,D28,L8

.= ((((r1s2)r2)/gcd(r2,s2,Amp))s2) +

((((s1r2)r2)/gcd(r2,s2,Amp))s2) by D23,D27,D29,L8

.= ((((r1s2)r2)s2)/gcd(r2,s2,Amp)) +

((((s1r2)r2)/gcd(r2,s2,Amp))s2) by D23,D28,D30,L8

.= ((((r1s2)r2)s2)/gcd(r2,s2,Amp)) +

D33a:
D33:
D34:
D35:
D36:
D37:

.= (((r2(s2/gcd(r2,s2,Amp)))ri1)s2)
.= (((r2(s2/gcd(r2,s2,Amp)))ri1)s2)

.= ((((r2s2)/gcd(r2,s2,Amp))ri)s2)

((((s1r2)r2)s2)/gcd(r2,s2,Amp)) by D23,D29,D31,L8;
gcd(r2,s2,Amp) divides (r2s2) by D25,L6a;
gcd(r2,s2,Amp) divides (r2s2)rl by D33a,L6a;
gcd(r2,s2,Amp) divides (r2s2)sl by D33a,L6a;
gcd(r2,s2,Amp) divides ((r2s2)ri)s2 by D33,L6a;
gcd(r2,s2,Amp) divides ((r2s2)si)r2 by D34,L6a;

(r2(s2/gcd(r2,s2,Amp)) ) ((ris2)+(sir2))
= ((r2(s2/gcd(r2,s2,Amp))) (ris2))+

((r2(s2/gcd(r2,s2,Amp))) (s1r2)) by VECTSP_2:1

+

((r2(s2/gcd(r2,s2,Amp))) (s1r2)) by VECTSP_1:def 16

+

(((r2(s2/gcd(r2,s2,Amp)))s1)r2) by VECTSP_1:def 16

+

(((r2(s2/gcd(r2,s2,Amp)))s1)r2) by D23,D24,D33a,L8

90
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D38:

D39:

D40:

D41:

D42:

.= ((((r2s2)/gcd(r2,s2,Amp))ri)s2) +

((((r2s2)/gcd(r2,s2,Amp))s1)r2) by D23,D24,D33a,L8

.= ((((r2s2)ri1)/gcd(r2,s2,Amp))s2) +
((((r2s2)/gcd(r2,s2,Amp))s1)r2) by D23,D33a,D33,
.= ((((r2s2)ri1)/gcd(r2,s2,Amp))s2) +

L8

((((r2s2)s1)/gcd(r2,s2,Amp))r2) by D23,D33a,D34,L8

.= ((((r2s2)ri1)s2)/gcd(r2,s2,Amp)) +

((((r2s2)s1)/gcd(r2,s2,Amp))r2) by D23,D33,D35,L8

.= ((((r2s2)ri1)s2)/gcd(r2,s2,Amp)) +

((((r2s2)s1)r2)/gcd(r2,s2,Amp)) by D23,D34,D36,L8

.= (((r1(r2s2))s2)/gcd(r2,s2,Amp)) +

((((r2s2)s1)r2)/gcd(r2,s2,Amp))

.= (((r1(s2r2))s2)/gcd(r2,s2,Amp)) +

((((r2s2)s1)r2)/gcd(r2,s2,Amp))

.= ((((r1s2)r2)s2)/gcd(r2,s2,Amp)) +

((((r2s2)s1)r2)/gcd(r2,s2,Amp)) by VECTSP_1:def

.= ((((r1s2)r2)s2)/gcd(r2,s2,Amp)) +

(((s1(r2s2))r2)/gcd(r2,s2,Amp))

.= ((((r1s2)r2)s2)/gcd(r2,s2,Amp)) +

((s1((r2s2)r2))/gcd(r2,s2,Amp)) by VECTSP_1:def

.= ((((r1s2)r2)s2)/gcd(r2,s2,Amp)) +

((s1(r2(r2s2)))/gcd(r2,s2,Amp))

.= ((((r1s2)r2)s2)/gcd(r2,s2,Amp)) +

((s1((r2r2)s2))/gcd(r2,s2,Amp)) by VECTSP_1:def

.= ((((r1s2)r2)s2)/gcd(r2,s2,Amp)) +

(((s1(r2r2))s2)/gcd(r2,s2,Amp)) by VECTSP_1:def

.= ((((r1s2)r2)s2)/gcd(r2,s2,Amp)) +

((((s1r2)r2)s2)/gcd(r2,s2,Amp)) by VECTSP_1:def
((r1(s2/gcd(r2,s2,Amp))) +
(s1(r2/gcd(r2,s2,Amp)))) (r2 s2)

= (r2(s2/gcd(r2,s2,Amp))) ((ris2)+(sir2))

by D32,D37;

16

16

16

16

16;

gcd((r1(s2/gcd(r2,s2,Amp)))+(s1(r2/gcd(r2,s2,Amp))),

gcd(r2,s2,Amp) , Amp)
<> (0.I) by L12,D23;

gcd((r1(s2/gcd(r2,s2,Amp)))+(s1(r2/gcd(r2,s2,Amp))),

gcd(r2,s2,Amp),Amp) divides
((r1(s2/gcd(r2,s2,Amp)))+(s1(r2/gcd(r2,s2,Amp))))
by Def4;

gcd((r1(s2/gcd(r2,s2,Amp)))+(s1(r2/gcd(r2,s2,Amp))),

gcd(r2,s2,Amp),Amp) divides

((r1(s2/gcd(r2,s2,Amp)) )+(s1(r2/gcd(r2,s2,4mp)))) (r2s2)

by D40,L6a;

gcd((r1(s2/gcd(r2,s2,Amp)))+(s1(r2/gcd(r2,s2,Amp))),
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D43:

D44:

D45:

D46:

gcd(r2,s2,Amp) , Amp)

divides gcd(r2,s2,Amp) by Def4;

gcd((r1(s2/gcd(r2,s2,Amp)))+(s1(r2/gcd(r2,s2,Amp))),
gcd(r2,s2,Amp) , Amp)

divides r2 by D25,D42,L1;

gcd((r1(s2/gcd(r2,s2,Amp)))+(s1(r2/gcd(r2,s2,Amp))),
gcd(r2,s2,Amp) , Amp)

divides (r2(s2/gcd(r2,s2,Amp))) by D43,L6a;

gcd((r1(s2/gcd(r2,s2,Amp)))+(s1(r2/gcd(r2,s2,Amp))),
gcd(r2,s2,Amp) , Amp)

divides

(r2(s2/gcd(r2,s2,Amp))) ((r1s2)+(sir2)) by D44,L6a;
addi(rl,r2,s1,s2,Amp) (r2s2)

= (((ri1(s2/gcd(r2,s2,Amp)))+(s1(r2/gcd(r2,s2,Amp)))) /
gcd((r1(s2/gcd(r2,s2,Amp)))+(s1(r2/gcd(r2,s2,Amp))),

gcd(r2,s2,Amp),Amp)) (r2s2) by D21

.= (((r1(s2/gcd(r2,s2,Amp)))+(s1(r2/gcd(r2,s2,Amp))))

(r2s2)) /
gcd((r1(s2/gcd(r2,s2,Amp)))+(s1(r2/gcd(r2,s2,4mp))),
gcd(r2,s2,Amp),Amp) by D39,D40,D41,L8

.= ((r2(s2/gcd(r2,s2,Amp))) ((ris2)+(s1r2))) /

gcd((r1(s2/gcd(r2,s2,Amp)))+(s1(r2/gcd(r2,s2,4mp))),
gcd(r2,s2,Amp),Amp) by D38
.= ((r2(s2/gcd(r2,s2,Amp))) /
gcd((r1(s2/gcd(r2,s2,Amp)))+(s1(r2/gcd(r2,s2,4mp))),
gcd(r2,s2,Amp),Amp)) ((ris2)+(sir2))
by D39,D44,D45,L8
= add2(ri1,r2,s1,s2,Amp) ((ris2)+(si1r2)) by D22;

thus thesis by D46;

(example cases ALG2 33b)

end;

:: cases M

thus thesis by M;

end;

&

Macro referenced in scrap 32.

(consistency multl 92) =

consistency
proof

KO1:

(r1 = (0.I) or s1 = (0.I)) & (r2 = (1.I) & s2 = (1.I))
implies for z being Element of the carrier of I
holds z = (0.I) iff z = risi
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Ko02:

proof
assume HO: (ri1
(r2

(0.I) or s1 =
(1.I) & s2 =

(0.I)) &
(1.1));

Hi: r1 = (0.I) or s1 = (0.I) by HO;

M: now per cases by Hi;
case A: r1 = (0.1);
A1: ris1 = (0.I)s1 by A
.= (0.I) by VECTSP_2
thus thesis by A1l;
case B: s1 = (0.1);
Bi: risi = r1(0.I) by B
.= (0.I) Dby VECTSP_2
thus thesis by B1;

end; :: cases
thus thesis by M;
end;

((r1 = (0.I) or s1 = (0.I)) & (s2 <> (0.I) & r2
implies for z being Element of the carrier of I
holds z = (0.I) iff z = (risi1)/gcd(ril,s2,Amp)

proof
assume HO: (r1 = (0.I) or si1 =
s2 <> (0.1I) & r2

:26;

:26;

(0.1)) &
(1.);

let z be Element of the carrier of I;
Hi: r1 = (0.I) or s1 = (0.I) by HO;

H2: risi = (0.I)
proof
M: now per cases by Hi;
case A: r1 = (0.1);
A1: ris1 = (0.I)s1 by A

= (0.I) by VECTSP_2:26;

thus thesis by Al;
case B: s1 = (0.1);
Bi: risi = r1(0.I) by B

= (0.I) by VECTSP_2:26;

thus thesis by B1;

end; :: cases
thus thesis by M;
end;

H3: gcd(rl,s2,Amp) divides ri by Def4;

H4: gcd(r1l,s2,Amp) divides risl by H3,L6a;

H5: gcd(ril,s2,Amp) <> (0.I) by

HO,L12;

93

(1.1)))

consider d being Element of the carrier of I such that

H6: d = (ris1)/gcd(ri,s2,Amp);

H7: dgcd(rl,s2,Amp) = risl by H6,H4,H5,Defb
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.= (0.I) by H2;
H8: (ri1s1)/gcd(r1,s2,Amp) = d by H6
.= (0.1) by H7,HS,VECTSP_2:15;
thus thesis by HS;
end;

K03: ((r1 = (0.I) or s1 = (0.1I)) & (r2 <> (0.I) & s2 = (1.1)))
implies for z being Element of the carrier of I
holds z = (0.I) iff z = (risi1)/gcd(s1,r2,Amp)
proof
assume HO: (r1 = (0.I) or s1 = (0.I)) &

r2 <> (0.I) & s2 = (1.1);

let z be Element of the carrier of I;
Hi: r1 = (0.I) or s1 = (0.I) by HO;
H2: risl = (0.I)

proof

M: now per cases by Hi;

case A: r1 = (0.1);

Al: ris1 = (0.I)s1 by A

.= (0.1I) by VECTSP_2:26;

thus thesis by Al;

case B: s1 = (0.1);

Bi: risi1 = r1(0.I) by B

.= (0.1I) by VECTSP_2:26;

thus thesis by B1;

end; :: cases
thus thesis by M;
end;

H3: gcd(sl,r2,Amp) divides s1 by Def4;

H4: gcd(s1,r2,Amp) divides risl by H3,L6a;

H5: gcd(s1,r2,Amp) <> (0.I) by HO,L12;

consider d being Element of the carrier of I such that
H6: d = (ris1)/gcd(s1,r2,Amp);

H7: dgcd(sl,r2,Amp) = risl by H6,H4,H5,Defb

.= (0.I) by H2;
H8: (ri1s1)/gcd(s1,r2,Amp) = d by H6
.= (0.1) by H7,HS,VECTSP_2:15;
thus thesis by HS;
end;

K12: ((r2 = (1.I) & s2 = (1.I)) & (s2 <> (0.I) & r2 = (1.1)))
implies for z being Element of the carrier of I
holds z = risl iff z = (risl)/gcd(ri,s2,Amp)
proof
assume HO: r2 = (1.I) & s2 = (1.I) &
s2 <> (0.I) & r2 = (1.1);
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Hi: gcd(rl,s2,Amp) = gecd(r1,(1.I),Amp) by HO

= (1.1) by GCD2;
H2: (ris1)/gcd(ril,s2,Amp) = (ri1s1)/(1.I) by H1
= risi by L7a;

thus thesis by H2;
end;

K13: ((r2 = (1.I) & s2 = (1.I)) & (r2 <> (0.I) & s2 =
implies for z being Element of the carrier of I
holds z = risl iff z = (risl)/gcd(sl,r2,Amp)
proof
assume HO: r2 = (1.I) & s2 = (1.I) &

r2 <> (0.I) & s2 = (1.1);
Hi: gcd(s1l,r2,Amp) = gecd(s1,(1.I),Amp) by HO

= (1.1) by GCDZ2;
H2: (risi1)/gcd(si,r2,Amp) = (ris1)/(1.I) by Hi
.= risi by L7a;

thus thesis by H2;
end;

K23: ((s2 <> (0.I) & r2 = (1.I)) & (r2 <> (0.I) & s2 =
implies for z being Element of the carrier of I
holds z = (ris1)/gcd(ril,s2,Amp) iff

z (ris1)/gcd(s1,r2,Amp)
proof
assume HO: s2 <> (0.I) & r2 = (1.1I) &
r2 <> (0.I) & s2 = (1.1);
Hi: gcd(rl,s2,Amp) = gecd(ri,(1.I),Amp) by HO

= (1.1) by GCD2;
H2: gcd(sl,r2,Amp) = gecd(s1,(1.I),Amp) by HO
= (1.1) by GCD2;

H3: (ris1)/gcd(rl,s2,Amp) = (ris1)/(1.I) by H1
.= (ri1s1)/gcd(s1,r2,Amp) by H2;
thus thesis by H3;
end;
thus thesis by KO01,K02,K03,K12,K13,K23;
end;

&

Macro referenced in scrap 34.

(consistency mult2 95) =
consistency
proof
Vi: gecd(ril,r2,Amp) = (1.I) & gcd(si,s2,Amp) = (1.I)
by AS,CAN1;
K02: (r1 = (0.I) or s1 = (0.I)) & (s2 <> (0.I) & r2 =

95
(1.1)))
(1.1)))

(1.1))
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implies for z being Element of the carrier of I
holds z = (1.I) iff z = s2/gcd(rl,s2,Amp)
proof
assume HO: (r1 = (0.I) or s1 = (0.I)) &
s2 <> (0.I) & r2 = (1.1);
Hi: r1 = (0.I) or s1 = (0.I) by HO;
M: now per cases by Hi;
case A: r1 = (0.1);
Al: gcd(ri,s2,Amp)

gcd((0.I),s2,Amp) by A

NF(s2, Amp) by GCD1
.= 82 by AS;

A2: s2/gcd(ril,s2,Amp) = s2/s2 by Al

(1.I) by L7,HO;

thus thesis by A2;
case B: s1 = (0.1);

Bi: (1.I) = gcd(s1,s2,Amp) by Vi
= gcd((0.I),s2,Amp) by B
= NF(s2,Amp) by GCD1
.= s2 by AS;
B2: gcd(ri,s2,Amp) = gcd(ri,(1.I),Amp) by Bi
= (1.1) by GCD2;

B2a: (1.I) <> (0.I) by VECTSP_1: def 21;

B3: s2/gcd(ril,s2,Amp) = (1.I)/(1.I) by B1,B2
.= (1.I) by L7,B2a;

thus thesis by B3;

end; :: cases
thus thesis by M;
end;

K03: (r1 = (0.I) or s1 = (0.I)) & (r2 <> (0.I) & s2 = (1.1I))
implies for z being Element of the carrier of I
holds z = (1.I) iff z = r2/gcd(sl,r2,Amp)
proof
assume HO: (r1 = (0.I) or s1 = (0.I)) &
r2 <> (0.I) & s2 = (1.1);
Hi: r1 = (0.I) or s1 = (0.I) by HO;
M: now per cases by Hi;
case A: s1 = (0.1);
Al: gcd(si,r2,Amp)

gcd((0.I),r2,Amp) by A

NF(r2, Amp) by GCD1
.= r2 by AS;

A2: r2/gcd(sl,r2,Amp) = r2/r2 by Al

(1.I) by L7,HO;

thus thesis by A2;
case B: r1 = (0.1);
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Bi: (1.I) = gcd(ri,r2,Amp) by Vi
= gcd((0.I),r2,Amp) by B
= NF(r2,Amp) by GCD1
.= r2 by AS;
B2: gcd(s1,r2,Amp) = gcd(s1,(1.I),Amp) by Bi
= (1.1) by GCDZ2;

B2a: (1.I) <> (0.I) by VECTSP_1: def 21;

B3: r2/gcd(sl,r2,Amp) = (1.I1)/(1.1I) by B1,B2
.= (1.I) by L7,B2a;

thus thesis by B3;

end; :: cases
thus thesis by M;
end;

Ki12: (r2 = (1.I) & s2 = (1.1)) & (82 <> (0.I) & r2 = (1.1I))
implies for z being Element of the carrier of I
holds z = (1.I) iff z = s2/gcd(ri,s2,Amp)
proof
assume HO: r2 = (1.I) & s2 = (1.I) &

s2 <> (0.I) & r2 = (1.1);
Hia: (1.I) <> (0.I) by VECTSP_1: def 21;
Hi: gcd(rl,s2,Amp) = gecd(rl,(1.I),Amp) by HO
.= (1.I) by GCD2;
H2: s2/gcd(rl,s2,Amp) = (1.I)/(1.I) by HO,H1
(1.I) by Hia,L7;

thus thesis by H2;
end;
K13: (r2 = (1.I) & s2 = (1.1)) & (r2 <> (0.I) & s2 = (1.1I))
implies for z being Element of the carrier of I
holds z = (1.I) iff z = r2/gcd(sl,r2,Amp)
proof
assume HO: r2 = (1.I) & s2 = (1.1I) &
r2 <> (0.I) & s2 = (1.1);
Hia: (1.I) <> (0.I) by VECTSP_1: def 21;
Hi: gcd(s1,r2,Amp) = gecd(s1,(1.I),Amp) by HO
.= (1.I) by GCD2;
H2: r2/gcd(sl,r2,Amp) = (1.I)/(1.I) by HO,H1
.= (1.I) by H1a,L7;
thus thesis by H2;
end;
K23: (s2 <> (0.I) & r2 = (1.1)) & (r2 <> (0.I) & s2 = (1.1I))
implies for z being Element of the carrier of I
holds z = s2/gcd(rl,s2,Amp) iff z = r2/gcd(sl,r2,Amp)
proof
assume HO: s2 <> (0.I) & r2 = (1.1I) &

97
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r2 <> (0.I) & s2 = (1.1);

Hi: gcd(rl,s2,Amp) = gecd(r1,(1.I),Amp) by HO
(1.I) by GCD2;
gcd(s1,(1.I),Amp) by HO
(1.I) by GCD2;

H3: s2/gcd(rl,s2,Amp) = (1.I)/(1.I) by HO,H1

.= r2/gcd(s1,r2,Amp) by HO,H2;

thus thesis by H3;

end;
thus thesis by K02,K03,K12,K13,K23;
end;

&

Macro referenced in scrap 34.

H2: gcd(sl,r2,Amp)

(proof D13 98) =
proof
Hi: gecd(r2,s2,Amp) <> (0.I) by HO,L12;
H2: gcd(r2,s2,Amp) divides s2 by LO;
H3: gcd(r2,s2,Amp) divides r2 by LO;
H4: gcd(r2,s2,Amp) divides r1 s2 by H2,L6a;
H5: gcd(r2,s2,Amp) divides s1 r2 by H3,L6a;
H6: (0.1)
= (ri1(s2/gcd(r2,s2,Amp)))+(s1(r2/gcd(r2,s2,Amp)))
by D
.= (r1s2)/gcd(r2,s2,Amp)+(s1(r2/gcd(r2,s2,Amp)))
by H1,H2,H4,LS
.= (r1s2)/gcd(r2,s2,Amp)+(sir2)/gcd(r2,s2, Amp)
by H1,H3,HS,LS;
consider e being Element of the carrier of I such that
H7: gcd(r2,s2,Amp)e = r2 by H3,Defl;
consider f being Element of the carrier of I such that
H8: gcd(r2,s2,Amp)f = s2 by H2,Defi;
H9: gcd(r2,s2,Amp) ((e s1)+(fri1))
= (gcd(r2,s2,Amp) (es1))+(gcd(r2,s2,Amp)(f r1))
by VECTSP_2:1
.= ((gcd(r2,s2,Amp) e)si)+(gcd(r2,s2,Amp)(fri))
by VECTSP_1:def 16
.= ((gcd(r2,s2,Amp)e)s1)+((gcd(r2,s2,Amp)f)rl)
by VECTSP_1:def 16
.= (r2s1)+(s2r1) by H7,H8
= (s2r1)+(r2s1)
.= (r1s2)+(s1r2);
H10: gcd(r2,s2,Amp) divides (ri1s2)+(sir2) by H9,Defi;
Hii: (0.1)
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(r1s2)/gcd(r2,s2,Amp)+(sir2)/gcd(r2,s2,Amp) by H6
((r1s2)+(s1r2))/gcd(r2,s2,Amp) by H1,H4,H5,H10,L8a;
H12: (0.1)

(0.I)gcd(r2,s2,Amp) by VECTSP_2:26

.= ((r1s2)+(s1r2)) by H11,H1,H10,Def5;

thus thesis by H12;

end;

&

Macro referenced in scrap 33b.

(proof ALG3 99) =
proof
let Amp be AmpleSet of I;
let r1,r2,s1,s2 be Element of the carrier of I;
assume HOa: Amp is_multiplicative &
rl,r2 are_normalized_wrt Amp &
s1,s2 are_normalized_wrt Amp;
H3: gcd(rl,r2,Amp) = (1.I) & gcd(sl,s2,Amp) = (1.I) &
s2 € Amp & r2 € Amp by HOa,Def27;
HO: rl1 canonical r2 & sl canonical s2 &
r2 <> (0.I) & s2 <> (0.I) &
r2 = NF(r2,Amp) & s2 = NF(s2,Amp)
by Def27,HOa,H3,Def10,NF3;
H2: gcd(ri,s2,Amp) <> (0.I) & gcd(si,r2,Amp) <> (0.I)
by HO,L12;
M: now per cases;

case A: r1 = (0.I) or s1 = (0.1);
A1: multi(ri,r2,s1,s2,Amp) = (0.I) by A,HO,Def13;
A2: mult2(ri,r2,s1,s2,Amp) = (1.I) by A,HO,Defi4;
A3: gcd(multi(ri,r2,s1,s2,Amp) ,mult2(rl,r2,s1,s2,Amp), Amp)
gcd((0.I),(1.I),Amp) by A1,A2
.= (1.1) by GCD2;
A4: (1.I) € Amp by AMP;
A5: (1.I) <> (0.I) by VECTSP_1i:def 21;
thus thesis by A2,A3,A4,A5,Def27;

case C: s2 <> (0.I) & r2 =
Ci: multi(ri,r2,sl,s2,Amp)
by C,HO,Def13;
C2: mult2(ri,r2,s1,s2,Amp) = s2/gcd(rl,s2,Amp) by C,HO,Defi4;
C3: gcd(si,r2,Amp) = (1.I) by C,GCD2;
C4: r2/gcd(si,r2,Amp) = (1.1)
proof

(1.1);
= (ris1)/gcd(r1,s2,Amp)
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Mi: (1.I) <> (0.I) by VECTSP_1: def 21;
M2: r2/gcd(si,r2,Amp) (1.1)/(1.1) by C,C3
(1.1) by M1,L7;

thus thesis by M2;
end;
C5: gcd(ril,s2,Amp) divides rl1 by Def4;
C6: gcd(ri,s2,Amp) divides risl by C5,L6a;
C7: (ris1)/gcd(ri,s2,Amp)
(r1/gcd(r1,s2,Amp))s1 by H2,C5,C6,L8
.= (r1/gcd(r1,s2,Amp))(s1/(1.I)) by L7a
.= (r1/gcd(ri,s2,Amp))(s1/gcd(s1,r2,Amp)) Dby C3;
C8: s2/gcd(rl,s2,Amp)
= (s2/gcd(r1,s2,Amp))(1.1) by VECTSP_2:1
.= (s2/gcd(rl,s2,Amp))(r2/gcd(s1,r2,Amp)) by C4;
C9: gcd(multi(ri,r2,s1,s2,Amp) ,mult2(rl,r2,s1,s2,Amp), Amp)
= gcd((ris1)/gecd(rl,s2,Amp),s2/gcd(rl,s2,Amp), Amp)
by C1,C2
.= gcd((r1/gcd(r1,s2,Amp)) (s1/gecd(s1,r2,Amp)),
(s2/gcd(r1,s2,Amp)) (r2/gcd(s1,r2,Amp) ) ,Amp)
by C7,C8
.= (1.I) by HO,H3,HEN2;
Ci0a: gcd(ri,s2,Amp) divides s2 by Def4;
C10b: gcd(ri,s2,Amp) <> (0.I) by HO,L12;
C10: s2/gcd(ri,s2,Amp) <> (0.I) by HO,C10a,C10b,L26;
Clla: gcd(ri,s2,Amp) € Amp by Def4;
reconsider zz = gcd(ri,s2,Amp) as Element of Amp by Cilla;
reconsider s2 as Element of Amp by H3;
Cil: s2/zz € Amp by AMP5,C10a,C10Db,HOa;
thus thesis by €2,C9,C10,C11,Def27;

case D: r2 <> (0.I) & s2 =
Di: multi(rl,r2,s1,s2,Amp)
by D,HO,Def13;
D2: mult2(ri,r2,s1,s2,Amp) = r2/gcd(sl,r2,Amp) by D,HO,Def14;
D3: gcd(ril,s2,Amp) = (1.I) by D,GCD2;
D4: s2/gcd(rl,s2,Amp) = (1.I)
proof
Mi: (1.I) <> (0.I) by VECTSP_1: def 21;
M2: s2/gcd(ril,s2,Amp) = (1.I)/(1.I) by D,D3
= (1.1) by M1,L7;

(1.1);
= (ris1)/gcd(s1,r2,Amp)

thus thesis by M2;
end;
D5: gcd(sl,r2,Amp) divides si1 by Def4;
D6: gcd(sl,r2,Amp) divides (r1 s1) by D5,L6a;
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D7: (ri1s1)/gcd(s1,r2,Amp)
= r1(s1/gcd(s1,r2,Amp)) by H2,D5,D6,L8
.= (r1/(1.1))(s1/gcd(s1,r2,Amp)) by L7a
.= (r1/gcd(r1,s2,Amp))(s1/gcd(s1,r2,Amp)) by D3;
D8: r2/gcd(s1,r2, Amp)
= (r2/gcd(s1,r2,Amp))(1.I) by VECTSP_2:1
.= (r2/gcd(s1,r2,Amp))(s2/gcd(rl,s2,Amp)) by D4;
D9: gcd(multi(ri,r2,s1,s2,Amp) ,mult2(rl,r2,s1,s2,Amp), Amp)
= gcd((ris1)/gecd(s1,r2,Amp),r2/gcd(s1,r2,Amp), Amp)
by D1,D2
.= ged((r1/gecd(rl,s2,Amp)) (s1/gecd(s1,r2,Amp)),
(s2/gcd(r1,s2,Amp)) (r2/gcd(s1,r2,Amp) ), Amp)
by D7,D8
.= (1.I) by HO,H3,HEN2;
Di0a: gcd(sl,r2,Amp) divides r2 by Def4;
D10b: gcd(s1l,r2,Amp) <> (0.I) by HO,L12;
D10: r2/gcd(s1,r2,Amp) <> (0.I) by HO,D10a,D10b,L26;
Dila: gcd(sl,r2,Amp) € Amp by Def4;
reconsider zz = gcd(si,r2,Amp) as Element of Amp by Dila;
reconsider r2 as Element of Amp by H3;
Di1: r2/zz € Amp by AMP5,D10a,D10b,HOa;
thus thesis by D2,D9,D10,D11,Def27;

(example cases ALG3 36)

end; :: cases
thus thesis by M;
end;
<&

Macro referenced in scrap 35.

(proof ALG4 101) =
proof
let Amp be AmpleSet of I;
let r1,r2,s1,s2 be Element of the carrier of I;
assume HOa: Amp is_multiplicative &
rl,r2 are_normalized_wrt Amp &
s1,s2 are_normalized_wrt Amp;
HOb: gecd(ril,r2,Amp) = (1.I) & gcd(si,s2,4mp) = (1.I) &
s2 € Amp & r2 € Amp by HOa,Def27;
HO: r1 canonical r2 & sl canonical s2 &
r2 <> (0.I) & s2 <> (0.I) &
r2 = NF(r2,Amp) & s2 = NF(s2,Amp)
by Def27,HOa,HOb,Def10,NF3;
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Hi: gcd(ri,s2,Amp) <> (0.I) & gcd(si,r2,Amp) <> (0.I)

by HO,L12;
M: now per cases,

case A: r1 = (0.I) or s1 = (0.1);
A1: multi(ri,r2,s1,s2,Amp) = (0.I) by A,HO,Def13;

A3: multi(ri,r2,s1,s2,Amp)(r2s2) = (0.I) by A1,VECTSP_2:26;

K: now per cases by 4;

case Al: r1 = (0.1I);

A4 mult2(rl,r2,s1,s2,Amp) (risi1)
mult2(ri,r2,s1,s2,4mp) ((0.I)s1) by Al

= mult2(rl,r2,s1,s2,Amp) (0.1) by VECTSP_2:26
.= (0.1) by VECTSP_2:26;
thus thesis by A4,A3;
case A2: s1 = (0.1I);
A5: mult2(rl,r2,s1,s2,Amp) (risi1)
= mult2(rl,r2,s1,s2,Amp)(r1(0.I)) by A2
= mult2(rl,r2,s1,s2,Amp) (0.1) by VECTSP_2:26
= (0.I) by VECTSP_2:26;

thus thesis by A5,A3;
end; :: case K
thus thesis by K;

case C: s2 <> (0.I) & r2 = (1.1);
Ci: multi(ri,r2,s1,s2,Amp) = (ris1)/gcd(ri,s2,Amp)
by C,HO,Def13;
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C2: mult2(rl,r2,s1,s2,Amp) = s2/gcd(rl,s2,Amp) by C,HO,Defi4;

C3: gcd(ril,s2,Amp) divides rl1 by Def4;

C4: gcd(ri,s2,Amp) divides risl by C3,L6a;

C5: gcd(ril,s2,Amp) divides (risl)s2 by C4,L6a;
C6: ((r1s1)/gcd(r1,s2,Amp)) (r2s2)
((r1s1)/gcd(r1,s2,Amp)) ((1.I)s2) by C

C8: gcd(ril,s2,Amp) divides s2 by Def4;

C9: gcd(ri,s2,Amp) divides s2r1 by C8,L6a;

C10: gcd(ril,s2,Amp) divides (s2ri)si by C9,L6a;

Ci1: (s2/gcd(rl,s2,Amp)) (risi)
= ((s2/gcd(rl,s2,Amp))ri)si by VECTSP_1:def
= ((s2 ri1)/gcd(ri,s2,Amp))sl by H1,C8,C9,L8
= ((s2r1)s1)/gcd(ri,s2, Amp) by H1,C9,C10,L8
.= ((r1s2)s1)/gcd(r1l,s2,Amp)
.= (ri1(s2s1))/gcd(r1,s2,Amp) by VECTSP_1:def
.= (r1(s1s2))/gcd(r1,s2,Amp)

((r1s1)/gcd(r1,s2,Amp))s2 by VECTSP_2:
((r1s1)s2)/gcd(r1,s2,Amp) by H1,C4,C5,L8;

1

16

16
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C12:

((r1s1)s2)/gcd(r1,s2, Amp) by VECTSP_1:def 16;
multi(rl,r2,s1,s2,Amp) (r2s2)

= ((r1s1)/gcd(r1,s2,Amp))(r2s2) by C1
((r1s1)s2)/gcd(r1,s2, Amp) by C6
(s2/gcd(r1,s2,Amp)) (risl) by C11

= mult2(rl,r2,s1,s2,Amp) (ris1) by C2;

thus thesis by C12;

case E: not(ri

El:
E2:
E3:
E4:
E5:
E6:
E7:

E8:
E9:

E10:
El1:
E12:
E13:
Eil4:

E15:

(0.I) or s1 = (0.1)) &
not(r2 = (1.I) & s2 = (1.1)) &
not(s2 <> (0.I) & r2 (1.1)) &
not(r2 <> (0.I) & s2 (1.1));
multi(rl,r2,s1,s2,4mp) =
(r1/gcd(r1,s2,Amp))(s1/gcd(s1,r2,Amp)) by E,HO,Def13;
mult2(rl,r2,s1,s2,4mp) =
(r2/gcd(s1,r2,Amp)) (s2/gcd(rl,s2,Amp)) by E,HO,Defi4;
gcd(rl,s2,Amp) divides r1 by Def4;
gcd(sl,r2,Amp) divides s1 by Def4;
(gcd(r1,s2,Amp)gcd(sl,r2,Amp)) divides risl by E3,E4,Lla;
(gcd(r1,s2,Amp)gcd(sl,r2,Amp)) divides (risi)r2
by E5,L6a;
(gcd(r1,s2,Amp)gecd(sl,r2,Amp)) divides ((risi)r2)s2
by E6,L6a;
(gcd(r1i,s2,Amp)ged(sl,r2,Amp)) <> (0.I) by H1,VECTSP_2:15;
((r1/gcd(r1,s2,Amp)) (s1/gcd(s1,r2,Amp))) (r2 s2)
= ((r1s1)/(gcd(r1,s2,Amp)gcd(s1,r2,Amp))) (r2 s2)
by H1,E3,E4,L8c

.= (((r1s1)/(gcd(r1,s2,Amp)gcd(sl,r2,Amp)))r2)s2

by VECTSP_1:def 16

.= (((r1s1)r2)/(gcd(r1,s2,Amp)gcd(sl,r2,Amp)))s2

by E8,E5,E6,L8

.= (((r1s1)r2)s2)/(gcd(rl,s2,Amp)gcd(sl,r2, Amp) )

by ES8,E6,E7,LS;
gcd(s1l,r2,Amp) divides r2 by Def4;
gcd(rl,s2,Amp) divides s2 by Def4;
(gcd(s1,r2,Amp)gecd(rl,s2,Amp)) divides r2s2
by E10,E11,L1a;
(gcd(s1,r2,Amp)ged(rl,s2,Amp)) divides (r2s2)ri
by E12,L6a;
(gcd(s1,r2,Amp)gecd(rl,s2,Amp)) divides ((r2s2)ri)si
by E13,L6a;
((r2/gcd(s1,r2,Amp)) (s2/gcd(ri,s2,Amp))) (risl)
= ((r2s2)/(gcd(s1,r2,Amp)gcd(rl,s2,Amp))) (risl)
by H1,E10,E11,L8c
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.= (((r2s2)/(gcd(s1,r2,Amp)gcd(rl,s2,Amp)))ri)si
by VECTSP_1:def 16

.= (((r2s2)r1)/(gcd(s1,r2,Amp)gcd(rl,s2,Amp))) sl
by ES,E12,E13,L8

.= (((r2s2)r1)s1)/(gcd(sl,r2,Amp)gcd(rl,s2,Amp))
by ES,E13,E14,L8

.= ((r1(r2s2))s1)/(gcd(sl,r2,Amp)gcd(rl,s2,Amp))

.= (r1((r2s2)s1))/(gcd(sl,r2,Amp)gcd(rl,s2,Amp))
by VECTSP_1:def 16

.= (r1(s1(r2s2)))/(gcd(sl,r2,Amp)gcd(rl,s2,Amp))

.= (r1((s1r2)s2))/(gcd(sl,r2,Amp)gcd(ri,s2,Amp))
by VECTSP_1:def 16

.= ((r1(s1r2))s2)/(gcd(sl,r2,Amp)gcd(rl,s2,Amp))
by VECTSP_1:def 16

.= (((r1s1)r2) s2)/(gcd(si,r2,Amp)gcd(ri,s2,Amp))
by VECTSP_1:def 16;

El16: multi(rl,r2,s1,s2,Amp) (r2s2)

= ((r1/gcd(r1,s2,Amp))(s1/gcd(sl,r2,Amp)))(r2 s2)
by El

.= (((r1s1)r2)s2)/(gcd(rl,s2,Amp)gcd(sl,r2,Amp))
by E9

.= ((r2/gcd(s1,r2,Amp)) (s2/gcd(ri,s2,Amp))) (risl)
by E15

.= mult2(rl,r2,s1,s2,Amp) (risi1)
by E2;

thus thesis by E16;

(example cases ALG4 37)

end; ::cases
thus thesis by M;
end;
<&

Macro referenced in scrap 35.
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C Indices

C.1 Files
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"GCD.MIZ" Defined by scraps 6a, 7c, 8, 9b, 13ab, 14a, 17b, 18bc, 19, 20ab, 21, 23b, 26,

29b, 30, 32, 34, 35.

C.2 Macros

<CaseA 12a> Referenced in scrap 11b.

<CaseB 12b> Referenced in scrap 11b.

<Cases 11b> Referenced in scrap 1la.

<C1usters 40e> Referenced in scrap 6b.
(consistency addl 79) Referenced in scrap 30.
(consistency add2 81) Referenced in scrap 30.
(consistency multl 92) Referenced in scrap 34.
(consistency mult2 95) Referenced in scrap 34.
<C0nstructors 40b> Referenced in scrap 6b.
<C0rrectness Classes 51a> Referenced in scrap 13a.
(Correctness Class 49> Referenced in scrap 13a.
(correctness NF 62a) Referenced in scrap 19.
(deﬁnition of A’ 18a> Referenced in scrap 56.
(deﬁnitions 40c> Referenced in scrap 6b.

(env 6b> Referenced in scrap 6a.

(example cases ALG1 33a) Referenced in scrap 86b.

example cases ALG2 33b) Referenced in scrap 88.
example cases ALG3 36) Referenced in scrap 99.
example cases ALG4 37) Referenced in scrap 101.
existence Am 2 15a> Referenced in scrap 14b.
existence Am 3 15b> Referenced in scrap 15a.
existence Am 4 16a> Referenced in scrap 15b.
(existence AmpleSet 56) Referenced in scrap 17b.
(eXistence Am 14b> Referenced in scrap 14a.

(
(
(
(
(
(

(existence gecd 2 22b) Referenced in scrap 22a.

(existence gcdDomain 63b) Referenced in scrap 20b.

(existence gecd 22a) Referenced in scrap 21.
<m0re def 77b> Referenced in scrap 29b.
(more div 40g) Referenced in scrap 8.
(more gcd 65) Referenced in scrap 21.
<n0tation 40a> Referenced in scrap 6b.
(proof ALG1 86b) Referenced in scrap 32.
(proof ALG2 88) Referenced in scrap 32.
(proof ALG3 99) Referenced in scrap 35.
(proof ALG4 101) Referenced in scrap 35.
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(proof AMPO 61a) Referenced in scrap 18c.
(proof AMP1 61b) Referenced in scrap 18c.
(proof AMP5 59b) Referenced in scrap 18c.
(proof AMP 59a) Referenced in scrap 18c.
(proof CL1 51b) Referenced in scrap 13b.
(proof CL2 52) Referenced in scrap 13b.
(proof CL3 53a) Referenced in scrap 13b.
(proof D13 98) Referenced in scrap 33b.
(proof D30 85) Referenced in scrap 86b.
(proof D32b 86a) Referenced in scrap 86b.
(proof H11 75b) Referenced in scrap 27.
(proof H14 76a) Referenced in scrap 74b.
(proof H27 76b) Referenced in scrap 28.
(proof H45 77a) Referenced in scrap 28.
(proof H7 75a) Referenced in scrap 27.
(proof H9 74a) Referenced in scrap 25a.
(proof HEN1 2 74b) Referenced in scrap 27.
(proof HEN1 27) Referenced in scrap 26.
(proof HEN2 2 29a) Referenced in scrap 28.
(proof HEN2 28) Referenced in scrap 26.
(proof K2 53b) Referenced in scrap 14b.
(proof K3 53c) Referenced in scrap 14b.
(proof Kba 54a) Referenced in scrap 14b.
(proof K6a 54b) Referenced in scrap 15b.
(proof K6 55) Referenced in scrap 15b.
(proof K7 16b) Referenced in scrap 16a.
(proof K8 17a) Referenced in scrap 16a.
(proof L1la 1la) Referenced in scrap 10a.
(proof L11 10a) Referenced in scrap 9b.
(proof L1 9a) Referenced in scrap 8.
(proof NF1 62b) Referenced in scrap 20a.
(proof NF3 63a) Referenced in scrap 20a.
(proof T0 69a) Referenced in scrap 23b.
(proof T1 69b) Referenced in scrap 23b.
(proof T2 2 25b) Referenced in scrap 25a.
(proof T2 25a) Referenced in scrap 23b.
(proof T3 72) Referenced in scrap 23b.
(proof T4 73) Referenced in scrap 23b.
(proofL11b 10b) Referenced in scrap 10a.
<Schemes 40f> Referenced in scrap 6b.
<the0rems 40d> Referenced in scrap 6b.
(txtpr 7b) Referenced in scrap 6a.

(
(

uniqueness gcd 23a) Referenced in scrap 21.

vocabulary 7a) Referenced in scrap 6b.
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C.3 Some Keywords

/: 18c, 23b, 26, 27, 28, 29a, 30, 33ab, 34, 36, 37, 40g, 59b, 72, 74b, 75b, 79, 81,
86ab, 88, 92, 95, 98, 99, 101. S

addi: 30, 32, 33ab, 86b, 88.

add2: 30, 32, 33ab, 86b, 88.

ALG1: 32, 86b.

ALG2: 32, 88.

ALG3: 35, 99.

ALG4: 35, 101.

Am: 14a, 14b, 15ab, 17b, 18a, 56, 59a.

AmpleSet: 17b, 18bc, 19, 20a, 21, 23b, 2ba, 26, 27, 28, 29b, 30, 32, 34, 35, h9ab,
6la, 62ab, 63a, 65, 69ab, 72, 73, 77b, 86b, 88, 99, 101.

are_canonical_wrt: 29b, 77b.

are_normalized_wrt: 29b, 32, 35, 86b, 88, 99, 101.

assume: 9a, 10b, 11a, 17a, 22b, 2ba, 27, 28, 30, 34, 40g, 49, 5lab, 53ac, 54b, 55, 56,
59b, 61b, 63ab, 65, 72, 73, 77b, 79, 81, 86b, 88, 92, 95, 99, 101.

begin: 6a.

canonical: 29b, 30, 34, 77b, 86b, 88, 99, 101.

carrier: 7b, 7c, 8, 9ab, 10ab, 11a, 12ab, 13ab, 14a, 15ab, 16ab, 17b, 18c, 19, 20ab,
21, 22ab, 23ab, 25a, 26, 27, 28, 29b, 30, 32, 34, 35, 40g, 49, 51ab, 53abc, 54b,
55, b6, 59ab, 61a, 62a, 63ab, 65, 69ab, 72, 73, 7ba, 76a, 77b, 79, 81, 86ab, 88,
92, 95, 98, 99, 101.

case: 11b, 33ab, 36, 37, 56, 59b, 61b, 63b, 69b, 86b, 88, 92, 95, 99, 101.

Class: 13a, 13b, 16b, 17a, blab, 52, b3abc, b4a, bb

Classes: 13a, 13b, 14b, 52, b3a, b4b.

clusters: 6b.

consider: 9a, 10b, 11a, 14b, 16b, 17a, 18a, 22ab, 27, 28, 40g, 51b, 53bc, b4ab, 55,
56, b9b, 61a, 62a, 63b, 65, 69ab, 72, 73, 7ba, 76a, 77b, 86ab, 92, 98

constructors: 6b.

definition: 7c, 13a, 14a, 17b, 18b, 19, 20b, 21, 29b, 30, 34, 40g, 56, 77b.

definitions: 6b.

divides: 7c, 8, 9a, 10b, 1la, 12ab, 18c, 20b, 21, 22ab, 23a, 27, 36, 37, 40g, 59b,
6la, 63b, 65, 69ab, 72, 73, 7bab, 76ab, 77ab, 85, 86ab, 88, 92, 98, 99, 101.

domRing: 7b, 7c, 13ab, 14ab, 17b, 18b, 19, 20b, 40g, 52, 63b.

Element: 7b, 7c, 8, 9ab, 10ab, 11la, 12ab, 13ab, 14a, 15ab, 16ab, 17a, 18abc, 19,
20ab, 21, 22ab, 23ab, 2bab, 26, 27, 28, 29b, 30, 32, 33a, 34, 35, 36, 40g, 49,
5lab, b3abc, 54b, 55, 56, 59ab, 61ab, 62ab, 63ab, 65, 69ab, 72, 73, 7hba, 76ab,
T7ab, 79, 81, 86ab, 88, 92, 95, 98, 99, 101.

environ: 6a.

func: 13a, 19, 21, 30, 34, 40g.

ged: 20b, 21, 22a, 23b, 2bab, 26, 27, 28, 29ab, 30, 33ab, 34, 36, 37, 63b, 65, 69ab,
72, 73, T4ab, Tba, T6ab, 77ab, 79, 81, 85, 86ab, 88, 92, 95, 98, 99, 101.

ged-like: 20b, 63b.
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gcdDomain: 20b, 21, 29b, 30, 34, 77b.

if: 30, 34.

is_associated_to: 7c, 9b, 10ab, 11a, 13a, 14a, 16ab, 17a, 18ac, 19, 22b, 23ab, 25a,
40g, 49, 51b, 56, b9ab, 61ab, 62ab, 63a, 65, 69ab, 72, 74a, 7ba, 76ab, 77a, 81.

is_multiplicative: 18b, 18c, 32, 35, b9b, 86b, 88, 99, 101.

is_not_associated_to: 7c, 14a, 16a, 18c, 56, 59a, 61b.

is_no_unit: 7c

is_unit: 7c, 9b, 10ab, 12ab, 59b, 69b.

mode: 14a, 17b, 20b.

multi: 34, 35, 36, 37, 99, 101.

mult2: 34, 35, 36, 37, 99, 101.

NF: 19, 20a, 30, 34, 62b, 63a, 65, 79, 81, 86b, 88, 95, 99, 101.

notation: 6b.

not_divides: 7c.

now: 9a, 10b, 11b, 14b, 23a, 40g, 49, 54b, 55, 56, 59b, 61b, 62a, 63ab, 65, 69b, 77b,
86D, 88, 92, 95, 99, 101.

pred: 7c, 18b, 29b, 77b.

proof: 8, 9b, 10ab, 12b, 13b, 14b, 15b, 16ab, 17a, 18c, 20a, 22ab, 23ab, 25a, 26
27, 28, 32, 33b, 35, 40g, 49, blab, 52, b3abc, b4ab, b5, 56, 59ab, 61lab, 62ab,
63ab, 65, 69ab, 72, 73, T4ab, Thbab, 76ab, 77ab, 79, 81, 85, 86ab, 88, 92, 95,
98, 99, 101.

reserve: 7b, 17b, 20b.

schemes: 6b.

Subset: 13a, 13b, 14a, 15ab, 16a, 17b, 49, 51a, 53a, 54b, 55, 56

Subset-Family: 13a, 5la.

theorem: 8, 9b, 13b, 18c, 20a, 23b, 26, 32, 35, 40g, 65, 77b.

theorems: 6b.

vocabulary: 6b.




