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Abstract. Theorems can be considered independent of abstract domains; a theorem
rather depends on a set of properties necessary to prove the theorem correct. Follow-
ing this observation theorems can be formulated and proven more generally thereby
improving reuse of mathematical theorems. We discuss how this view influences the
design of mathematical libraries and illustrate our approach with examples written
in the Mizar language. We also argue that this approach allows for checking whether
particular instantiations of generic algorithms are semantically correct.
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1. Introduction

At the end of the 19th century the interest of mathematicians turned
away from concrete objects as e.g. numbers or points and lines. Since
then more abstract domains like groups, rings, or vector spaces given by
axioms only have been considered. The advantage is obvious and well-
known: besides abstracting away from unnecessary details, this allows
to prove theorems in an abstract setting. So once a theorem is proven
for an abstract domain it holds in every particular domain fulfilling
the axioms of the abstract one. This can be considered as formulating
requirements for theorems: a special domain must fulfill the abstract
domain’s properties in order that the theorem can be applied. However,
this is not the end of the line: often a theorem proven in an abstract do-
main does not depend on all properties given in the domain’s definition;
this can be observed in the corresponding proof where not all properties
are actually used. So we claim that the proper basis of a theorem is a set
of properties rather than an abstract domain. Consequently, theorems
can be considered independent of domains: they exist in their own
merit, and there are different abstract domains in which a theorem
holds.
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2 Christoph Schwarzweller

Using mechanized reasoning systems numerous theorems have been
proven with machine assistance: mathematical facts, even such involved
ones as e.g. the Jordan curve theorem [12] or Robbin’s conjecture [7]
have been verified or indeed been solved mechanically. However, in
mechanized reasoning systems theorems are usually proven with re-
spect to fixed abstract (or nonabstract) domains, too. This interferes
with reuse of theorems and proofs and is, as already mentioned, an
unnecessary restriction.

Libraries of proven theorems are not much developed yet. In fact
some libraries exist, but most of them are not much more than a
collection of proven theorems; they lack special features for process-
ing theorems, in particular for reusing theorems in different domains.
We believe that proving theorems on the one hand, and storing and
processing theorems in a library on the other hand, are two distinct
tasks: the main purpose of a theorem prover is to verify the correctness
of theorems; in contrast the main purpose of a library is to collect
and, more importantly, to allow reusing theorems in probably different
domains. We aim at an approach supporting easy and semantically
correct reuse of theorems. Easy means that reusing a theorem already
proven should work without giving a (detailed) proof that or why a
theorem holds in a different domain. Nevertheless theorems should only
be reusable in a domain if this is semantically correct. We believe that
these issues require a special representation of theorems and domains
focussing on library demands. To this end we propose a properties
based approach: a theorem should be formulated with respect to a
set of properties necessary to prove it. The validity of a theorem in
a particular domain then reduces to checking whether the theorem’s
properties hold in the domain. Hence, the theorem itself need not be
dealt with again.

The Standard Template Library (STL) [9] has shown that it is pos-
sible to design libraries heavily supporting reusability. Parts of STL
algorithms are left abstract using so-called template parameters [18],
which are then instantiated with different types. In this way generic
algorithms are constructed supporting code reuse. However, to result
in an algorithm working correctly, an instantiation has to fulfill certain
requirements: operations have to be present and, more importantly,
semantic properties of these operations are assumed by generic algo-
rithms. Unfortunately, semantic requirements are not checked when
working with the STL, so that errors are detected at runtime only.
To overcome these shortcomings is the goal of the SuchThat project
[14, 8], in which the specification of generic algorithms became part
of the programming language itself: a formal description of require-
ments so that the algorithm works is included. Checking whether an
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instantiation of a generic algorithm is correct is thus nothing else than
checking whether a theorem holds in a particular domain. Hence we
claim that the problem of correct instantiation of generic algorithms
should also be handled using a properties based approach for theorems.

The plan of the paper is as follows. In the next section we present
our properties based view on theorems in detail and discuss its impact
on the structure of mathematical libraries. Demands for mathematical
libraries and reasoning systems used are derived. In section 3 and 4 we
show how the Mizar Language [12, 10] allows to systematically develop
theorems and domains based on properties. We present some examples
from (commutative) algebra, in particular from ideal theory. These
examples also illustrate how reuse of theorems is supported due to
the emphasis of properties. Section 5 is devoted to generic algorithms:
we consider the Euclidean algorithm for computing greatest common
divisors and prove its correctness following our approach. This shows
that greatest common divisors can be computed using Euclid’s method
in domains where, in particular, neither multiplication nor addition
is commutative. In the last section we discuss some problems of the
subject and give hints for further work.

2. Requirements for Theorems

In most mechanized reasoning systems properties are solely used for
the description of domains, not of theorems. Domains are defined by a
set of axioms whereas theorems are stated and proven with respect to
domains, hence with respect to a fixed set of axioms. However this is an
unnecessary restriction, because the validity of a theorem is not bound
to a particular domain, but depends on whether certain properties
of the operators involved are true. Therefore we propose to consider
properties as the basic ingredients of theorems. Focussing on properties
allows to describe theorems using as few properties as possible: only
carriers and operators necessary to formulate the theorem’s content and
properties necessary to prove the theorem’s correctness are stated. Thus
properties based theorems are more general, and moreover properties
used in proofs can be considered as requirements domains have to meet
so that a theorem is valid.

Let us consider a straightforward example: an ideal is conventionally
defined over a (commutative) ring R; it is a subset S of R that is closed
with respect to both addition and multiplication with arbitrary ring
elements, that is for all a, b ∈ S and all r ∈ R we have a + b ∈ S and
both r · a ∈ S and a · r ∈ S. It is rather obvious that the set {0} is an
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ideal for an arbitrary ring R where 0 denotes the ring’s zero element;
so we have the following theorem.

Let R be a (commutative) ring. Then {0} is an ideal in R.

However, to prove the theorem by the definition of an ideal it is suffi-
cient to show 0 + 0 = 0 and a · 0 = 0 = 0 · a for all a ∈ R. A closer
inspection shows that this can be done only assuming that addition
is associative, provides a right zero as well as a right complement and
that addition and multiplication are distributive. This gives rise to the
following theorem.1

Let R = (R,+, ∗, 0) be a domain such that + is associative,
0 is a right zero with respect to + and + is right complemen-
tary. Furthermore, assume that + and ∗ distribute. Then {0}
is an ideal in R.

Thus {0} is an ideal in more general domains than rings. In particular
to conclude that {0} is an ideal in a given domain, as e.g. the integers,
it is not necessary to prove that the domain is a ring: it suffices that
the domain fulfills the four properties mentioned above.

In addition theorems based on properties are more robust concerning
generalization of domains, just because unnecessary properties are not
included. Consider again the theorem from above. Suppose it has been
proven in its first version for commutative rings, and noncommutative
rings are introduced. Then it has to be checked whether (the proof
of) the theorem uses commutativity of multiplication. Hence the proof
of the theorem itself has to be taken into consideration again. This is
not necessary for the second, properties based version of the theorem
because commutativity of multiplication is no property the theorem
relies on; the theorem holds because noncommutative rings fulfill all
properties required for (the proof of) the theorem.

Domains can also be considered as established by a set of their
operations’ properties. This holds for both abstract and nonabstract
domains. Of course the definition of operations in nonabstract domains
is crucial for the validity of properties. However, once these properties
have been proven the operations’ definitions become less important:
whether a theorem holds can be expressed solely using properties.
Consider for instance the integers. Whether the example theorem holds
only depends on the properties of integer addition and multiplication,
namely on whether integer addition is associative, right complementary
and provides a right zero, and on whether integer addition and mul-
tiplication distribute. Thus, if a sufficient set of properties is already

1 Provided that the notion of ideals has been introduced not only for (commuta-
tive) rings but for the more general domain also.
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proven, the actual definitions have not to be taken into account again:
the validity of a theorem in a particular domain can be reduced to
checking whether the domain fulfills certain properties.

Summarizing we claim that theorem proving can be decomposed into
two portions: proving general theorems based on properties on the one
hand, and proving properties of particular domains on the other hand.
Consequently, a mathematical library, and in particular the mechanized
reasoning system used, should provide the possibility to

− define properties independently of domains

− combine properties in order to use them in proofs of theorems

− define specific domains by characterizing them in terms of proper-
ties

− infer validity of theorems in domains by comparing sets of proper-
ties.

Thereby it is rather a matter of convenience than of necessity whether a
reasoning system supports the last item. The first three items, however,
not only allow to formulate and prove theorems in a more general
setting, but also to check the validity of a theorem in a particular
domain by just comparing the theorem’s and domain’s properties.

3. Formalizing Requirements for Theorems in Mizar

In the following we illustrate the properties based approach using the
Mizar system [10]. The Mizar Mathematical Language and its corre-
sponding proof language were designed to reflect mathematical vernac-
ular. Thus Mizar provides the features we discussed in the last section:
properties of operators can be described independently of domains,
that is with respect to a signature only. These properties then can be
combined to prove theorems and define domains. Again we use the
theory of ideals and the theorem from the last section as an example.2

First, we have to deal with the signature of a theorem, that is we have
to fix carriers and operators used in the theorem’s content. For that
purpose, we use the language construct structure definition. Rings, for
example, are given by a carrier, two binary and two nullary operators,
the latter ones denoting the zero and the unit element. Hence, the
typical signature for rings—called in Mizar doubleLoopStr (see [6])—
can be defined by

2 The basics of the theory of ideals have been formalized in Mizar and are part
of the Mizar Mathematical Library; see [1].
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definition
struct (LoopStr,multLoopStr_0) doubleLoopStr

(# carrier -> set,
add, mult -> BinOp of the carrier,
unity, Zero -> Element of the carrier #);

end;

The terms LoopStr and multLoopStr_0 mentioned in the first line
of the definition denote (already defined) Mizar structures. LoopStr
provides a carrier with one binary operator add and a zero element
Zero, multLoopStr_0 a carrier with one binary operator mult and a
unit element unit. These two structures are now glued together yielding
doubleLoopStr. As a consequence doubleLoopStr is in particular both
a LoopStr and a multLoopStr_0 and all notions that were defined for
these are also available for doubleLoopStr.

Now specific properties of one or more operators are introduced
by defining attributes over structures providing the necessary signa-
ture. Note that in the following definition associativity of addition3

is introduced for LoopStr only, just because a multiplication operator
is not necessary here. Nevertheless, the attribute add-associative
will be available for doubleLoopStr also, as LoopStr is an ancestor of
doubleLoopStr.

definition
let R be non empty LoopStr;
attr R is add-associative

for x,y,z being Element of R holds x+(y+z) = (x+y)+z;
end;

Further properties of structures can be introduced analogously, for
example right_zeroed, right_complementable and distributive,
which are further properties necessary to state the example theorem
of section 2. Please note, that the attribute right_zeroed as well as
the attribute right_complementable can be defined also for LoopStr,
whereas distributive requires a doubleLoopStr, namely an addition
and a multiplication operator.

In the same way properties necessary for a subset S of R to be an
ideal over R can be introduced using attributes. Again, in the first
definition R is a LoopStr, that is R provides no multiplication. Simi-
larly, the other two properties are defined for HGrStr—an ancestor of
multLoopStr_0— giving a carrier and multiplication only.

3 The operator + is just a shorthand for the binary operator add of a structure; it
uses hidden arguments, so that the carrier R of the operator + need not be explicitly
stated.
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definition
let R be non empty LoopStr, S be Subset of R;
attr S is add-closed means
for x,y being Element of R st x in S & y in S
holds x+y in S;

end;

definition
let R be non empty HGrStr, S be Subset of R;
attr S is left-ideal means
for a,x being Element of R st x in S holds a*x in S;

attr S is right-ideal means
for a,x being Element of R st x in S holds x*a in S;

end;

Combining these three properties we get the notion of an ideal.4 Here
we need the signature given by doubleLoopStr, as now both an addi-
tion and a multiplication operator must be provided. It may be worth
mentioning that using our approach we have introduced the notion of
an ideal for much weaker domains than rings; in fact we just used the
signature of rings, but no further properties of the given operators were
necessary. Of course, as we shall see, each theorem usually requires some
ring properties in order to be proven.

definition
let R be non empty doubleLoopStr;
mode Ideal of R is add-closed

left-ideal right-ideal (non empty Subset of R);
end;

We like to mention that the Mizar system expects an existence proof
for such an attributed structure. Otherwise it cannot be used in theo-
rems and further definitions. This is to avoid (theorems about) empty
modes as for instance empty infinite set. In our example one has to
show that for an arbitrary object R of type non empty doubleLoopStr
there exists an object of type non empty Subset of R fulfilling the
attributes add-closed, left-ideal and right-ideal.

Now we can formalize the theorem mentioned in section 2 by just
combining the signature, i.e. the appropriate Mizar structure, with the
required properties, i.e. the required attributes:

theorem T0:
for R being add-associative right_complementable

right_zeroed distributive
(non empty doubleLoopStr)

holds {0.R} is Ideal of R;

4 Note that by combining the same properties differently other notions can be
introduced, in our case e.g. left and right ideals.
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Note that R provides exactly the properties necessary to prove the
theorem.5 So the theorem is valid not only in rings, but also in more
general domains. In addition, as already mentioned, the theorem is
easier applicable for a particular domain (even if the domain is in fact
a ring): we have to verify only four properties to apply it, whereas
it takes to prove eight properties to show that a domain is a ring.
In general this phenomenon does not only hold for domains, but also
for defined notions as the following example shows. Having the notion
of ideals (in rings), the following definition of the quotient of ideals
is straightforward: let R be a (commutative) ring, and let I and J be
ideals of R. The quotient I%J of I and J is given by {a ∈ R | a·J ⊆ I},
where a ·J = {a ·j | j ∈ J}. Now, if the sum {i+j | i ∈ I, j ∈ J} of two
ideals I and J is denoted by I + J , one can easily prove the following
theorem:

Let R be a (commutative) ring, and let I,J and K be ideals
of R. Then I % (J + K) = (I % J) ∩ (I % K) holds.

Again, to prove the theorem it is not necessary that R is a commu-
tative ring. But the proof also does not rely on I, J and K fulfilling
all the properties of an ideal, that is being add-closed, left-ideal
and right-ideal: it suffices that I is closed with respect to addition
and that J and K are closed with respect to right multiplication with
arbitrary elements. So, in [1] the following theorem has been proven:

theorem
for R being left_zeroed right_zeroed add-right-cancelable

right-distributive (non empty doubleLoopStr),
I being add-closed (non empty Subset of R),
J, K being right-ideal (non empty Subset of R)

holds I % (J + K) = (I % J) /\ (I % K);

Note, that from the properties of R, I, J and K that have been used in
this version of the theorem, it automatically follows that the theorem
also holds for right ideals in noncommutative rings.

4. Reusing General Theorems in Mizar

In the last section we saw how properties based theorems can be for-
malized using the Mizar language. Now we explain how particular
domains are constructed and how general theorems can be applied to
such domains. As we will see in Mizar both abstract and nonabstract

5 The proof of the example theorem has been carried out and can be found in [1].
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domains are essentially a structure combined with a set of attributes.
Consequently, the validity of general theorems in particular domains
can be checked by comparing these sets of attributes.

Defining abstract domains is straightforward. An abstract ring, for
example, can be defined the same way as ideals in section 3: we just
combine the necessary structure (signature) with the necessary at-
tributes (properties):

definition
mode Ring is Abelian add-associative right_zeroed
right_complementable associative left_unital
right_unital distributive (non empty doubleLoopStr);

end;

Note that this definition again requires an existence proof. The example
theorem T0 from section 3 is true for Rings: the underlying structures
of Ring and T0 are the same and T0’s attributes are a subset of the
attributes a Ring fulfills. And in fact the Mizar checker accepts the
following

theorem
for R being Ring holds {0.R} is Ideal of R by T0;

by just referencing the general theorem T0 from section 3. Please note
again, that it was sufficient to define the notion of ideals for the struc-
ture doubleLoopStr in section 3. The simple fact that the definition of
Ring is based on a doubleLoopStr (and that no attributes were used
to define ideals) guarantees that the notion of ideals is also available
for Rings.

Constructing specific domains is a bit more elaborate because we
have to take into account the definitions of operations. Let us consider
the integers as an example.6 First we have to provide the signature
of the integers. Here we consider the integers as an algebraic domain,
that is the signature is a doubleLoopStr giving a carrier two binary
operations add and mult and two elements of the carrier, a unity and
a Zero. Further components of the integers can be considered, e.g. to
formalize an ordering, but for our purpose a doubleLoopStr is suffi-
cient. Then we have to define the set of integers INT as well as addition
and multiplication of the integers which are Mizar functors denoted
by addint and multint. Then we can introduce the (ring of) integers
INT.Ring as a Mizar functor yielding a non empty doubleLoopStr, in
which the components are identified with the just mentioned carrier
and operators.7

6 Compare [15] where the ring of integers is defined using the Mizar system.
7 The term in INT is a type coercion ensuring that 1 and 0 are indeed elements

of the set INT as required by the structure definition.
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definition
func INT.Ring -> non empty doubleLoopStr equals

doubleLoopStr(#INT,addint,multint,1 in INT,0 in INT#);
end;

Note, that this definition only glues together the set INT with some
operations on this set; no properties of the operators are included. In
order to apply general theorems to the integers we now have to prove
that certain attributes are fulfilled. In Mizar this is best done using
functorial cluster definitions. Of course, the fact that e.g. the addition
of INT.Ring is associative can also be stated (and proven) as a theorem.
However, clustering has the advantage, that attributes are linked to the
structure: using a cluster definition the Mizar checker can automatically
infer that INT.Ring fulfills the clustered attribute. The number and the
order of attributes in a cluster definition is without meaning and up to
the user. In our example all attributes necessary for INT.Ring to be a
(commutative) ring are put in one cluster definition:

definition
cluster INT.Ring ->

Abelian add-associative right_zeroed
right_complementable well-unital associative
commutative distributive;

end;

It may be worth mentioning that Mizar expects a (coherence) proof
for such a cluster definition: one has to prove that the domain indeed
fulfills the attributes clustered. After the cluster has been registered the
Mizar checker accepts the following integer version of the theorem from
section 3 by just referencing T0. As in the case of Rings this is due to
the fact that the structures involved are both of type doubleLoopStr
and the theorem’s attributes are a subset of the attributes INT.Ring
fulfills due to (the proofs of) the clusters.

theorem
{0.(INT.Ring)} is Ideal of INT.Ring by T0;

Note also, that the above cluster definition provides more properties of
the integers than necessary for the validity of the theorem. For that, it
is sufficient to show that INT.Ring is add-associative right_zeroed
right_complementable and distributive.

We close this section by presenting another Mizar language con-
struct allowing to express—and automate—implications of (sets of)
attributes, conditional cluster definitions. For instance, if a domain is
right-distributive and multiplication is commutative, then the domain
is obviously left-distributive, too. The corresponding cluster definition
looks as follows.

amai-final.tex; 24/09/2002; 17:12; p.10



Designing Mathematical Libraries based on Requirements for Theorems 11

definition
cluster commutative right-distributive ->

left-distributive (non empty doubleLoopStr);
end;

The key point is that a conditional cluster definition enriches the Mizar
checker: notations or theorems, that have been defined or hold for
structures fulfilling the attribute left-distributive, now are defined
or hold for domains fulfilling the attributes right-distributive and
commutative also. Thus conditional cluster definitions can reduce the
number of attributes that has to be proven for a domain in order to
check the validity of a theorem.

5. Requirements for Generic Algorithms

A generic algorithm can be considered as an algorithmic scheme: parts
of the algorithm are left abstract using some kind of type parameter.
These abstract parts may be concerned with data handling [9] or even
with domains the algorithm is dealing with [14]. To get a running algo-
rithm the abstract parts have to be instantiated with concrete pieces of
code. However, it is usually not guaranteed that after instantiation the
resulting nongeneric algorithm works correctly: the instantiation may
lack necessary operations or the operations do not fulfill all require-
ments implicitly given by the generic algorithm. Consider for example a
sorting algorithm; a generic version can be formulated for an arbitrary
domain with a binary relation. However, to actually sort sequences
over a particular domain it is necessary that the binary relation is a
total order. In other words, if the instantiation for the generic sorting
algorithm does not fulfill the requirement that its associated binary
relation is a total order, the instance of the generic sorting algorithm
will not work correctly.

Consequently, the correctness of a generic algorithm can be formu-
lated with respect to a set of properties of the algorithm’s operations:
provided that a particular instantiation fulfills these properties, the
resulting nongeneric algorithm will work correctly. Thus the problem of
correct instantiation is nothing else than checking whether a properties
based theorem is valid in a particular domain (which is implicitly given
by the instantiation). In our example, properties necessary for the cor-
rectness of the generic sorting algorithm are reflexivity, antisymmetry,
transitivity and totality of the binary relation. The integers enriched
with their usual order provide these properties, hence the integers
constitute a legal instantiation for a generic sorting algorithm.
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In the following we present a case study on properties based verifi-
cation of generic algorithms: we use the Mizar system to formalize and
prove the correctness of Euclid’s algorithm for computing greatest com-
mon divisors. It is well-known that Euclid’s method works for arbitrary
Euclidean domains [2]. However, our proofs will show that Euclidean
domains provide more properties than necessary to make the method
work.

We model the Euclidean algorithm by the sequence e-seq of re-
mainders computed. However, at this point it is irrelevant how—or
even whether—remainders are computed. Thus we can define e-seq as
a function that, based on two initial values a and b, computes the next
value by just applying a given function g to the two preceding values.
The computation proceeds as long as the second argument of g does
not equal 0.R.

definition
let R be non empty ZeroStr,

g be Function of [:R,R:],R,
a,b be Element of R;

func e-seq(a,b,g) -> Function of NAT,R means
it.0 = a & it.1 = b &
for i being Nat holds
it.(i+1) = 0.R or it.(i+2) = g.(it.(i),it.(i+1));

end;

Next we define two requirements describing the correctness of Euclid’s
method. First, the computation should terminate, in other words e-seq
should eventually yield the value 0. Second, the greatest common di-
visor of the initial values a = e-seq.0 and b = e-seq.1 should be
invariant throughout the computation, that is two consecutive pairs of
values in e-seq should possess the same greatest common divisor. Note
however, that the attributes are defined for arbitrary functions f and
not for e-seq only.

definition
let R be non empty ZeroStr,

f be Function of NAT,R;
attr f is terminating means
ex t being Nat st t > 0 & f.t = 0.R;

end;

definition
let R be non empty doubleLoopStr,

f be Function of NAT,R;
attr f is gcd_computing means
for c being Element of R, i being Nat holds
f.(i+1) = 0.R or
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(c is_gcd_of f.i,f.(i+1) implies
c is_gcd_of f.(i+1),f.(i+2));

end;

Thus proving that e-seq(a,b,g) is terminating and gcd_computing
for all initial values a and b shows the correctness of Euclid’s method
for arbitrary domains R with arbitrary degree function d and arbitrary
function g. However, to do so further properties of the domain R (and
of the function g) are necessary. Essential for termination is the ex-
istence of a degree function well-known from Euclidean rings. Here
we define degree functions isolated from other ring properties by first
introducing a corresponding attribute. We use a somewhat unusual
form of the Euclidean property which we called Left-Euclidean: a is
decomposed into r + q * b, which differs from q * b + r if addition
is not commutative. This allows to prove the requirements from above
without assuming commutativity of addition.8 Note however, that in
case addition is commutative our definition coincides with the usual
one for Euclidean domains which can be expressed as a Mizar cluster
definition.

definition
let R be non empty doubleLoopStr;
attr R is Left-Euclidean means
ex f being Function of the carrier of R,NAT st
for a,b being Element of R st b <> 0.R holds
ex q,r being Element of R st
a = r + q * b & (r = 0.R or f.r < f.b);

end;

definition
let R be Left-Euclidean (non empty doubleLoopStr);
mode DegreeFunction of R

-> Function of the carrier of R,NAT means
for a,b being Element of R st b <> 0.R holds
ex q,r being Element of R st
a = r + q * b & (r = 0.R or it.r < it.b);

end;

Finally, we need to formalize that the function g used by e-seq com-
putes remainders. This can be easily done for arbitrary degree functions
of R, hence for arbitrary structures that are Left-Euclidean as the
following definition shows. Note however, that it is possible to require
other properties for g. Crucial is that the properties required allow to
show that the resulting e-seq is gcd_computing.

8 We generalized the well-known correctness proof found in text books (see for
example [2]). This proof requires commutative addition if a=q*b+r instead of a=r+q*b
is used. However, there may exist a different proof showing the correctness of Euclid’s
method without assuming commutativity of addition in this case.
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definition
let R be Left-Euclidean (non empty doubleLoopStr),

d be DegreeFunction of R,
g be Function of [:R,R:],R;

pred g computes_mod_wrt d means
for a,b being Element of R st b <> 0.R holds
ex q being Element of R st a = g.(a,b) + q * b &

(g.(a,b) = 0.R or d.(g.(a,b)) < d.b);
end;

After these preparations we can prove the following theorems describing
the correctness of Euclid’s method for computing greatest common
divisors. Not surprising the property Left-Euclidean is sufficient to
prove termination of e-seq (provided of course that the function used
to compute the sequence fulfills the property computes_mod_wrt). The-
orem T2 is more interesting: the properties used to prove the theorem
show that greatest common divisors can be calculated9 in domains R
where neither addition nor multiplication is commutative. Furthermore
R need not be an integral domain, that is R may contain zero divisors.
Note also, that the (proofs of the) theorems holds for arbitrary degree
functions d of R.

theorem T1:
for R being Left-Euclidean (non empty doubleLoopStr),

d being DegreeFunction of R,
g being Function of [:R,R:],R st g computes_mod_wrt d

for a,b being Element of R
holds e-seq(a,b,g) is terminating;

theorem T2:
for R being add-associative associative right-zeroed

right_complementable left-distributive
Left-Euclidean (non empty doubleLoopStr),

d being DegreeFunction of R,
g being Function of [:R,R:],R st g computes_mod_wrt d

for a,b being Element of R
holds e-seq(a,b,g) is gcd_computing;

Similar to section 4 we can now use theorems T1 and T2 to infer
(generic and nongeneric) domains with which the instantiation of the
generic Euclidean algorithm is legal. Assuming, for example, that the
type EuclideanRing has been introduced in Mizar as a doubleLoopStr
and that the appropriate attributes have been clustered, we get the
following theorem.

9 To actually compute greatest common divisors it is also necessary that a is a
greatest common divisor of a and 0.R. To prove this, addition of R must be left
cancelable and 1.R must be a left unity with respect to multiplication.
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theorem
for R being EuclideanRing,

d being DegreeFunction of R,
g being Function of [:R,R:],R st g computes_mod_wrt d

for a,b being Element of R
holds e-seq(a,b,g) is gcd_computing &

e-seq(a,b,g) is terminating by T1,T2;

Please note again that this theorem is accepted by just referencing
theorems T1 and T2, because the attributes of an EuclideanRing are
a superset of the ones used in the theorems.

Consider the integers as a second example. The ring of integers in
particular establishes a Euclidean domain. This is again formalized
in a conditional cluster definition where it is shown that INT.Ring
fulfills the attributes not proven so far.10 After the cluster is registered
the theorem that Euclid’s algorithm instantiated with the integers is
correct, can be proven by just referencing T1 and T2.

definition
cluster INT.Ring -> Euclidean;
end;

theorem
for d being DegreeFunction of INT.Ring,

g being Function of [:INT.Ring,INT.Ring:],INT.Ring
st g computes_mod_wrt d

for a,b being Element of INT.Ring
holds e-seq(a,b,g) is gcd_computing &

e-seq(a,b,g) is terminating by T1,T2;

The same way further parameters occurring in the theorem can be spe-
cialized easily. For instance, the usual absolute value function absint
is a degree function of the ring of integers. Now, if absint is defined
as a DegreeFunction of INT.Ring—which in Mizar includes a proof
that absint indeed is a degree function—the following is accepted by
the Mizar checker.

theorem
for g being Function of [:INT.Ring,INT.Ring:],INT.Ring

st g computes_mod_wrt absint
for a,b being Element of INT.Ring
holds e-seq(a,b,g) is gcd_computing &

e-seq(a,b,g) is terminating by T1,T2;

10 Note that in the cluster the usual property Euclidean and not Left-Euclidean
is proven. This is sufficient due to a conditional cluster definition stating that for
commutative addition Euclidean implies Left-Euclidean. The same holds for the
attributes distributive and left-distributive.
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Thus a properties based approach allows to state the correctness
of generic algorithms at a very abstract level, namely by formalizing
requirements so that the algorithm works. Once the correctness or other
properties of a generic algorithm have been shown with respect to these
requirements, it is then possible to identify correct instantiations by just
comparing properties of theorems and domains.

6. Conclusion and Future Work

We have described a properties based approach for stating and proving
theorems and discussed its impact on designing libraries. Using proper-
ties instead of domains as the basis for theorems allows to prove more
general theorems. The properties used in proofs can be considered as
requirements for a theorem to be valid. Consequently, once a theorem
has been proven with respect to a set of requirements, checking whether
the theorem is valid in a particular domain reduces to checking whether
the domain fulfills these requirements. We have illustrated our approach
with examples from commutative algebra and generic programming
using the Mizar system, a system that meets the demands necessary to
handle and reuse properties based theorems.

As already mentioned, most mechanized reasoning systems deal with
one theory at a time only. Definitions and theorems are developed with
respect to a fixed set of axioms. The interplay of theorems (and defini-
tions) in different theories is not addressed. This has been observed in
[4] where so-called little theories have been introduced. The little theory
approach proposes to work in different theories due to the amount
of structure required. Theorems are then moved from one theory to
another by means of theory interpretations [16], in this way allowing
to reuse theorems. These ideas have been implemented in the IMPS
system [5].

Another system supporting reuse of theorems by assuming proper-
ties necessary for proofs is Theorema [3]. In Theorema functors with ab-
stract domains as parameters are used to construct new domains. Then
theorems about functors, that is about the domain constructed, can be
proven requiring certain properties of the parameterized domains. Thus
these theorems hold for all domains matching the requirements used in
the proof. Theorema is implemented on top of Mathematica [19].

However, using properties based theorems causes new questions:
which kind of properties should be used to describe requirements for
theorems? Recalling the example theorem from section 2, it is of course
possible to define a property 0-ideal combining all the requirements
necessary to prove the theorem. Thus, it is always possible to find
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exactly one property describing the requirements of a theorem. That is
not what we have in mind. We believe that the answer to this problem
is given by the application domain: common notions used there, like
e.g. right-associative and commutative in abstract algebra, correspond
to the properties that should be used [17].

Another problem is that a set of minimal requirements for a theorem
cannot always be found: the same theorem can be proven in more than
one way by assuming different incomparable sets of properties. We il-
lustrate this phenomenon with an example given in [13]: multiplication
of elements of an algebraic domain with natural numbers can be defined
in two ways, multiplication from the left and from the right. Then n ·a
stands for a+(a+(. . . (a+a) . . .) and a·n for (. . . (a+a)+a) . . .)+a)+a.
However in nonassociative domains n · a and a · n are not necessarily
the same. Consequently, one starts with two definitions of this kind of
multiplication, one for left- and one for right-multiplication. Then it is
straightforward to prove that n · a equals a · n using that addition of
the underlying domain is associative and that there exists a unity with
respect to addition. However, another proof shows that this also holds
if addition is just commutative. Now, a question comes up: what to do
if the property n · a = a · n is to be used in another proof? Obviously,
there is the possibility of choosing an associative or a nonassociative do-
main, leading to different proofs, and hence again to two theorems with
different requirements. It is hardly possible to predict which theorem
will be more important for future work, so both seem to deserve their
place in the library. On the other hand, storing two or more versions
of the same theorem will ultimately bloat the library.

On the other hand using properties based theorems can result not
only in generalization of domains but also of methods. For instance, the
properties of the domain R used to show the correctness of Euclid’s algo-
rithm in section 5 were in fact necessary only to prove that gcd(a, b) =
gcd(b,g(a, b)) where g is the function yielding the remainder of a and b.
The rest of our proofs is not affected by properties of R. Consequently,
greatest common divisors can be computed in a domain R, if there are
a function g with gcd(a, b) = gcd(b, g(a, b)) and a well-founded relation
< with g(a, b) < b for all a, b ∈ R. Properties of R allowing to prove this
property of g are then sufficient to compute greatest common divisors
in R independent of the function g realizes.
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