STUDIES IN LOGIC, GRAMMAR AND RHETORIC 10 (23) 2007

Mizar Attributes:
A Technique to Encode Mathematical Knowledge
into Type Systems

Christoph Schwarzweller

Department of Computer Science
University of Gdarsk
ul. Wita Stwosza 57, 80-952 Gdaiisk, Poland
schwarzw@math.univ.gda.pl

Abstract. At first glance Mizar attributes look like unary predicates over
mathematical objects enabling a more natural writing and reading. At-
tributes in Mizar, however, serve additional, more important purposes con-
cerning typing of mathematical objects: Using attributes not only new
(sub)types can be introduced, but also the user can characterize further
relations between types and in this way make available existing notations
for new objects. Thereby it should be stressed that these type relations can
stand for elaborated mathematical theorems.

This paper describes the properties and benefits of Mizar attributes from
a user’s perspective. We comprehend the development of Mizar attributes,
and give examples highlighting their use — essentially in the area of algebra.
Concluding we discuss their impact on building mathematical repositories.

1 Introduction

After more than 30 years the Mizar system [6] is still widely-used and under active
development. This is rather seldom for a mechanized reasoning system. The first
presentation of Mizar in 1973 and the first write-up of 1975, that was published in
1977 [14], however, did not even mention proof checking as the main goal. At this
stage Mizar basically was a language supposed to assist authors in the mathematical
editing process. Therefore, though the language was meant to be understood and
processed by a computer, great emphasis was placed on the linguistical component
of the language. The point of reference here was the question how mathematicians
write and present results in their papers. It is this fact, that from the very beginning
an appealing formal language for mathematics was taken into consideration, that
distinguishes Mizar from other systems in the area.

Later, of course, when proof checking for Mizar texts was developed, other items
became equally important and influenced the further design of the Mizar language.
The linguistical roots are still visible anyway and from our point of view provide
the basis of Mizar’s resistance against the course of time. This was again approved

ISBN 978-83-7431-128-1 ISSN 0860-150X 387

Ch. Schwarzweller

by the success in the last couple of years, in which Mizar has evolved to one of the
leading systems in the new area of mathematical knowledge management.

In this paper we appreciate the above mentioned development by focusing on
Mizar attributes. In fact Mizar attributes have changed over the time from a poorly
syntactical device to a powerful technique for defining and manipulating mathemat-
ical types in a user-friendly way — a topic that gains more and more importance,
especially in mathematical knowledge management. We first review the develop-
ment of Mizar attributes from the beginning and describe their present role in
defining Mizar types. Then we illustrate in detail, how using attributes types can
be introduced, refined and extended. The main point here is — in the spirit of
mathematical knowledge management — the generation of a user-friendly environ-
ment, in which the provided knowledge can be reused, even in modified situations.
In doing so, we concentrate on examples from the area of algebra. Finally, we dis-
cuss the impact of Mizar attributes on building large mathematical repositories.

2 Some History: Predicates, Attributes and Types

In the present version of the Mizar language predicates describe properties of math-
ematical objects, and so do attributes. The only difference is that while predicates
may have any number of arguments, attributes must have exactly one. So, for ex-
ample that a number z is even can be described by an attribute (or by a predicate),
while that x is a divisor of y cannot. This was not always so. Although types were
present from the very beginning, the first versions of Mizar employed predicates
only. An attributive format for writing predicates was introduced in 1981 for the
language Mizar-2 [7]. The reason was, as already indicated, a linguistical one. The
new format enabled authors to write predicates in a more familiar form, such as

X is even
x is divisor of y.

Note, that the second predicate has two arguments, thus is not an attribute in
today’s sense, though here written in its attributive form.

This idea was further developed and in 1983 a number of extensions was realized
in Mizar-HPF [7]. So, for example, more than one argument could be placed in
front of the predicate’s name. Also the keyword is could be replaced by are, if
this seemed appropriate. In addition a more natural format for the negation of
predicates using the keyword not was implemented. This more general attributive
format lead to natural formulations such as

X, y are associated
X is not even.

Note, however, that all these phrases are just dealing with the natural writing of
predicates and do not involve any kind of typing.

Mizar-4 [7] in 1986 saw the introduction of a special language construct, the
so-called mode definition, for defining types (both with or without parameters),

388

Mizar Attributes: A Technique to Encode Mathematical Knowledge into ...

that is still used today. Note that in this setting the second predicate from above
should be rather defined as a mode divisor with one parameter. Also the concept
of redefinitions was implemented, which allowed for redefining the type of a functor
in case its arguments are more specific than in the original definition. For example
the union of two finite sets could be redefined to be a finite set again. Note, however,
that the type of finite sets at this stage was not constructed from the type set with
the help of an additional adjective finite.

The development that started in Mizar-4 has been carried on and the present
version of Mizar provides a very flexible type system in which attributes, or more
precisely the adjectives constructed by attribute definitions, play a major role.
Attribute definitions were separated from predicate definitions by the keyword
attr, so that for example the definition of even now looks like

definition

let x be Integer;

attr x is even means 2 divides x;
end;

The negation of the defined attribute, now written using the keyword non, is au-
tomatically generated, so that the above definition introduces both adjectives even
and non even. The negation of predicates in general, however, has not survived.
The actual power of attributes for typing mathematical objects, however, rests on
the rather obvious observation, that an attribute basically defines a subset of the
type given in the definition. This allowed for the following extension of Mizar types.
Radix types, the basic types given by mode definitions, can be equipped with ad-
jectives in this way establishing a new subtype of the original radix type. Of course
the adjective considered must be defined for this radix type. So, for example the
adjective even generated by the above attribute definition together with the radix
type Integer can be used to define the new type even Integer describing all ob-
jects of type Integer, that in addition fulfill the attribute even, in other words all
even integers. In general (see [1] or [16]) Mizar types T have the form

T = a1...a, Rofty,...t

where R is a radix type, the a; are adjectives of R, the t; are terms describing the
parameters of type R and both n and k may be 0. Note that a type T} is a subtype
of a type Ty, if T1’s radix type is a subtype of T5’s radix type and T>’s adjectives
are a subset of T1’s adjectives.

This is a very powerful scheme to describe types of mathematical objects. On
the other hand in this setting it is very easy to define empty types such as for
example the type

empty infinite set.

To prevent Mizar users from wasting time with non-existing mathematical objects,
they are obliged to prove the existence of an object with the newly defined type.
As a consequence empty types are not allowed in Mizar. The power of typing with
adjectives, however, stems from the fact that adjectives can be also employed after
the “main” definition of a type. More adjectives can be added to a type later and

389

Ch. Schwarzweller

even relations between set of adjectives can be stated (and again must be proven),
in the sense that one set of adjectives logically implies another one. This effects
Mizar’s type system in that new subtype relations are introduced not comprised by
the original definition. The consequence is that definitions, notations and theorems
already elaborated for a mathematical type are now inherited to the new estab-
lished subtype. We shall illustrate these techniques in detail in the next section
with examples from the area of algebra.

3 Attributes and Registrations

In the following we show how Mizar attributes can be used to define algebraic types
and subtypes (see also [12]). The main goal is to illustrate how in this context using
attributes enables the reuse of notations and theorems already defined and proven
for other types: By formulating (and proving) registrations the user can show that
a mathematical object fulfills more adjectives than given in its definition, that is
the object indeed have a more elaborated type than the one originally given. Even
more, if the type is parameterized, registrations can be used to show that a more
specific parameter type implies a more specific resulting type. In either case the reg-
istration “enriches” the Mizar checker in the sense that the checker automatically
infers the new type given by the registration, which leads to the automated reuse
of notations and theorems mentioned above. Note that using such registrations no
original definition has to be modified in order to change or refine an object’s type.

3.1 Existential Registrations

In defining algebraic types the radix type describes the carriers and operations of
the algebraic structure. This is carried out in a so-called structure definition. The
result is a new type describing mathematical objects with (at least) the compo-
nents given in the definition. Thus, for example [4,15], the backbone structure for
groups is given by the following structure definition LoopStr providing a carrier, a
binary operation over the carrier and a distinguished element of the carrier. Note,
that at this stage no further properties of the operation such as associativity or
commutativity are required.

definition
struct (ZeroStr) LoopStr
(# carrier -> set,
add -> BinOp of the carrier,
Zero —> Element of the carrier #);
end;

For a structure type Mizar automatically provides selectors allowing to access
the individual components of the object, for example the add of L or the Zero
of L, if L has type LoopStr. It is straightforward in Mizar to introduce the usual

390

Mizar Attributes: A Technique to Encode Mathematical Knowledge into ...

mathematical notation for algebraic operations, in the case of groups x + y for (the
add of L).(x,y) and 0.L for the Zero of L. Note that, in contrast to 0.L, the
binary operation x + y need not explicitly address the structure parameter L. The
reason is that the parameter can be inferred from the type of the arguments x and
y, which is Element of the carrier of L or shorter Element of L. Using these
notations we can now formulate the usual properties of groups in a straightforward
manner as attribute definitions. Note that the following attributes describe unary
predicates over a LoopStr L.

definition
let L be non empty LoopStr;
attr L is add-associative means

for x,y,z being Element of L holds (x + y) + z = x + (y + 2);
attr L is right_zeroed means

for x being Element of L holds x + 0.L = x;
attr L is right_complementable means

for x being Element of L ex y being Element of L st x + y = 0.L;
end;

A group is now obviously a LoopStr L, that fulfills all three just defined at-
tributes. This of course could have been also be defined using ordinary predicates
such as is_add-associative etc. However, though describing group properties —
and thus enabling to prove theorems for groups — predicates cannot be used to
introduce the Mizar type Group. With the attributes from above we can define the
attributed type Group in an existential registration as follows.

registration

cluster add-associative right_zeroed right_complementable
(non empty LoopStr);

end;

definition

mode Group is add-associative right_zeroed right_complementable
(non empty LoopStr);

end;

In an existential registration we summarize the attributes necessary to define a
mathematical object. Note that the radix type non empty LoopStr to be refined
must be explicitly given in the cluster. Because Mizar does not allow for empty
types such a registration demands an existence proof, in which it has to be shown
that there exists a mathematical object of radix type non empty LoopStr fulfilling
the three mentioned adjectives. After that the type Group can be introduced as a
synonym for the registered object. This, however, is not really necessary, because
add-associative right_zeroed right_complementable (nonempty LoopStr)
is already a type for itself, so in fact Group is no more than an abbreviation.

For objects of type Group we can now formulate and prove theorems, that is for
proving properties we can use exactly the definitions of the attributes constituting
the type, and nothing more. Consequently, theorems proven this way are valid in
all groups. For example, we can show that in groups the neutral element is unique:

391

Ch. Schwarzweller

theorem G1:
for G being Group, x,y being Element of G
holds x + y = x implies y = 0.G;

Now, groups are just the most general case. There are numerous more specific
groups such as for example Abelian or solvable groups, which in a manner of speak-
ing are refinements of the original group definition. The use of adjectives supports
not only such refinements of mathematical types, but also guarantuees that theo-
rems for general groups like the example theorem G1 are automatically applicable
to the refined types.

For example, to define Abelian groups, we simply introduce another attribute
describing the additional property of commutativity and show — again in an exis-
tential registration — that there exists a group that fulfills this property. Afterwards
the Mizar type AbGroup describing Abelian groups can be easily defined.

definition
let L be non empty LoopStr;
attr L is Abelian means
for x,y being Element of L holds x + y =y + x;
end;

registration
cluster Abelian Group;
end;

definition
mode AbGroup is Abelian Group;
end;

The key point here is that AbGroup becomes a subtype of Group. This is due to
the fact that both types share the same radix type and the adjectives of Group are
a subset of the adjectives of AbGroup, or the other way round the type AbGroup
widens to the type Group. As a consequence theorem G1 from above works also for
the newly defined type AbGroup:

for G being AbGroup, x,y being Element of G
holds x + y = x implies y = 0.G by G1;

Note that for introducing Abelian groups only one attribute definition (and
an existence proof) were necessary, although afterwards Mizar provides the user
of Abelian groups with a vast number of theorems for this type — all theorems
proven for general groups.

There is, however, more to it than that [4]: We can also define new subtypes
by extending the underlying structure, that is by refining the radix type. Again
the mechanism of adjectives enables the natural reuse of already proven theorems.
Fields, for example, are based on a structure that extends the one of groups by
another binary operation and another element of the carrier. This can be directly
expressed in Mizar by the following structure definition.

392

Mizar Attributes: A Technique to Encode Mathematical Knowledge into ...

definition
struct (LoopStr, multLoopStr_0) doubleLoopStr
(# carrier -> set,
add, mult -> BinOp of the carrier,
unity, Zero -> Element of the carrier #);
end;

The structure type doubleLoopStr in fact is a merge of two other ones: LoopStr
and multLoopStr as can be seen in the definition. doubleLoopStr provides the
components of both of them — further components can be introduced, but are
not necessary in the case of fields. The main effect of this definition — besides
the introduction of a field structure — is that the type doubleLoopStr becomes a
subtype of both mentioned structure types LoopStr and multLoopStr. The alge-
braic type Field is now defined analogously to groups: Attributes describing field
properties are introduced and after the existential registration we can introduce
the corresponding Mizar type.

definition

mode Field is add-associative right_zeroed right_complementable
Abelian commutative associative left_unital distributive
Field-like non degenerated (non empty doubleLoopStr);

end;

Note, that the three attributes add-associative right_complementable and
right_zeroed defined for LoopStr need not to be introduced for fields, that is for
the type doubleLoopStr, again: Because the radix type doubleLoopStr widens to
the type LoopStr they are available and can be reused.

Now every field is in particular a group with respect to addition, thus group
theorems apply to fields also. As a result of the Mizar type system — and the
definitions of groups and fields based on attributes — this is directly mirrored and
feasible: The radix type of Field is a subtype of the radix type of Group and the
adjectives of Group are a subset of the adjectives of Field. This implies that Field
is a subtype of Group, and hence theorems for type Group are valid for type Field
also. For our example theorem G1 from above we get

for F being Field, x,y being Element of F
holds x + y = x implies y = 0.F by Gi;

3.2 Functional Registrations

When defining algebraic structures functional registrations of attributes are used
to introduce properties of concrete structures, such as integers or polynomials. Of
course these properties can also be shown in theorems, proving for example that
the integers constitute a ring. The main effect of such a functional registration,
however, is again that the type of the mathematical object is extended. In this way
not only theorems already proven for the refined type become available, but also
definitions and notations introduced for mathematical objects of this type.

393

Ch. Schwarzweller

Consider the integers as an example [13]. In Mizar the integers are introduced
as a doubleLoopStr providing the set of integers, addition and multiplication of
integers as well as the numbers 0 and 1. The operations addint and mulint are
defined as binary operations over the set of integers INT and then identified with
the corresponding components of doubleLoopStr in a function definition. Note
that the function In changes the type of 0 and 1 to Element of INT — the proper
type according to the definition of doubleLoopStr.

definition

func INT.Ring -> non empty doubleLoopStr equals
doubleLoopStr (#INT,addint ,multint,In(1,INT),In(0,INT)#);

end;

With this definition the following functional registration shows not only that
INT.Ring fulfills the three attributes constituting a group, but also that INT.Ring
is of type Group — remember that the type doubleLoopStr widens to the type
LoopStr. Of course a (coherence) proof, that the three attributes are fulfilled by
the object INT.Ring, is necessary.

registration
cluster INT.Ring -> add-associative right_zeroed right_complementable;
end;

One consequence of changing the type of INT.Ring is that our theorem G1 from
section 3.1 now applies to INT.Ring also. Note that the “group” parameter G from
theorem G1 has vanished, that is the following is a pure integer version of the
general group theorem G1.

for x,y being Element of INT.Ring
holds x + y = x implies y = 0.(INT.Ring) by G1;

Another effect is that notations defined for the type Group are now available for
INT.Ring, that is for integers. For example, the unary and binary operations - are
defined for general groups the usual way: -x is the element of a group G such that x
+ -x = 0.Gand x - yequals x + (-y). Now INT.Ring having type Group there
is no need to define these operations again for integers, they are just inherited from
Group.

Of course on could argue that this is all obvious and that it could already be
stated in the definition of INT.Ring that this object constitutes a ring. So there
is no need to employ adjectives here. This is right, however, ignores the fact that
later there can occur situations in which additional properties of an object such
as INT.Ring are necessary to go on working. With the rather naive solution from
above this would imply changing the definition in order to adopt the object’s type
according to the additional properties — rather unpleasant, especially in a system
with a large number of users. Using attributes, in contrast, we can easily include
the additional properties into Mizar’s type system — without changing the original
definition.

A typical example are Euclidean domains in which greatest common divisors
can be easily computed using degree functions. The property of being Euclidian

394

Mizar Attributes: A Technique to Encode Mathematical Knowledge into ...

is straightforwardly introduced as usual in an attribute definition. For objects of
type doubleLoopStr fulfilling this attribute a degree function can be defined as
follows. Note that Mizar expects an existence proof in such a definition, therefore
the attribute Euclidian in the definition is essential.

definition
let E be Euclidian (non empty doubleLoopStr);
mode DegreeFunction of E -> Function of the carrier of E,NAT means
(for a,b being Element of E st b <> 0.E holds
(ex q,r being Element of E
st (a=q*b+r& (r=0.Eorit.r < it.b))));
end;

Consequently DegreeFunctions exist only for objects of type Euclidian (non
empty doubleLoopStr). The type of INT.Ring — using the above registrations —
unfortunately does not widen to this type, although the radix types are identical.
If we want to work with the integers as a Euclidean domain, we can, however,
easily repair this “defect” — without changing the original definition of INT.Ring:
Stating an additional registration for INT.Ring, in which we prove that INT.Ring
fulfills the definition of Euclidian.

registration
cluster INT.Ring -> Euclidian;
end;

In this way, the fact that the ring of integers is Euclidean is not only proven,
but also encoded into Mizar’s type system with the consequence that results for
abstract Euclidean domains can be easily reused for integers, among others that
there exists a DegreeFunction of INT.Ring.

The same can be done for algebraic structures with parameters — even if
the additional property such as Euclidian is only valid if the parameter has
additional properties also. Let us consider polynomial rings as an example [10].
Polynomial rings are defined analogously to the ring of integers as a function
Polynom-Ring(n,L) with result type doubleLoopStr. Here the parameter n gives
the number of indeterminates, the parameter L is the ring of coefficients. Then a
number of functional registrations shows that Polynom-Ring(n,L) is of type Ring.
Of course, if L is commutative, so is the resulting polynomial ring. Changing in this
case the type of Polynom-Ring(n,L) to be in addition commutative is straightfor-
ward using a functional registration.

registration
let n be Ordinal,
L be commutative Ring;
cluster Polynom-Ring(n,L) -> commutative;
end;

After this registration the type of the object Polynom-Ring(n,L) remains Ring
if the parameter ring L is not commutative. If, however, L is commutative, that is

395

Ch. Schwarzweller

if L comes with the type commutative Ring, then the type of Polynom-Ring(n,L)
inferred by Mizar is commutative Ring also.

We close this section with an example concerning again Euclidean rings. Poly-
nomial rings are Euclidean, if the coefficient ring is in fact a field and the number of
indeterminates is 1, so that in this case there exist degree functions for polynomi-
als. The type DegreeFunction of E, however, only exists if E fulfills the attribute
Euclidian. This can be easily expressed by the following registration.

registration

let F be Field;

cluster Polynom-Ring(1,F) -> Euclidian;
end;

Again we have two results: The mathematical statement is formally proven
and the type of Polynom-Ring(1,F) for fields F is changed to Euclidian Ring,
so that in this case the type DegreeFunction of Polynom-Ring(1,F) is available.

3.3 Conditional Registrations

The last kind of registration is used to deal with the types of classes of algebraic
structures. This is of particular interest, if the adjectives stated in an object’s
definition imply other adjectives. In this case, conditional registrations allow to
enrich the original type, so that the implied adjectives are automatically inferred.
Of course again a (coherence) proof of the implication is necessary in Mizar.

For example it is obvious that in a commutative ring both left ideals and right
ideals are in fact two-sided ideals. Proving these statements as theorems does not
enrich the object’s type: Notations defined for two-sided ideals are not available
for left or right ideals in commutative rings — even after proving the theorem
showing that they are (theoretically) available. Stating the proofs in the follow-
ing conditional registration the first cluster changes the type left-ideal (non
empty Subset of R) toleft-ideal right-ideal (non empty Subset of R) if
R is commutative. The second cluster does the analogous for right ideals.

registration

let R be commutative Ring;

cluster left-ideal -> right-ideal (non empty Subset of R);
cluster right-ideal -> left-ideal (non empty Subset of R);
end;

Thus after this registration in commutative rings objects of type left- or
right-ideal automatically have type (two-sided) ideal also. Note that to es-
tablish a subset of a commutative ring as an ideal it is then sufficient to show that
the subset is a left (or a right) ideal.

For a more involved example we return to groups as described in section 3.1.
There we defined groups G using the attribute right_zeroed describing the axiom
x + 0.G = x. Consequently the following statement is automatically accepted by
the Mizar checker.

396

Mizar Attributes: A Technique to Encode Mathematical Knowledge into ...

for G being Group holds G is right_zeroed;

Now, in a group G we also have 0.G + x = x, that is G is left_zeroed also.
The corresponding statement, however, is not automatically accepted by the Mizar
checker, because the type Group does not include the corresponding attribute
left_zeroed. Of course, one could add this property to the group definition. But
this would imply, that in the definition is more stated than necessary, rather un-
aesthetic from a mathematical point of view. The solution again is a conditional
registration showing that the attributes used to define the type Group imply the
attribute left_zeroed. Note that the antecedent of the cluster is empty, because
all necessary attributes are given by the type Group. After the registration the
Mizar checker automatically accepts the fact that an object of type Group fulfills
the attribute left_zeroed.

registration
cluster -> left_zeroed Group;
end;

for G being Group holds G is left_zeroed;

The same technique can again be applied to parameterized types. We illustrate
this by introducing subgroups. A subgroup is a subset of a group that is itself a
group. This can be easily described by the following mode definition. Note that
it is necessary to explicitly express that the addition and the neutral element are
inherited from the given group G.

definition let G be Group;

mode Subgroup of G -> Group means
the carrier of it c= the carrier of G &
the add of it = (the add of G)||the carrier of it &
the Zero of it = the Zero of G;

end;

Now, as the above definition states, a subgroup of a group is in particular of
type Group. Hence, because — according to section 3.1 — Abelian groups are in
particular groups, the type Subgroup of G where G is an Abelian group exists and
the following statement about Abelian groups is obvious for the Mizar checker.

for G being AbGroup, H being Subgroup of G holds H is add-associative;

Of course a subgroup of an Abelian group is again Abelian. The corresponding
statement, however, is not automatically accepted by the Mizar checker. The reason
is obvious: According to our definition of subgroups the type of a subgroup of G is
Group, even if G is of type Abelian Group. Therefore the Mizar checker cannot infer,
that in this case the attribute Abelian is also fulfilled. In the following conditional
registration we restrict the type of the parameter G to Abelian Group and show
that then each object of type Subgroup of G fulfills the attribute Abelian. As
usual this registration also enriches the Mizar type checker, so that the type for
subgroups of Abelian groups G is changed into Abelian Subgroup of G.

397

Ch. Schwarzweller

registration

let G be Abelian Group;

cluster -> Abelian Subgroup of G;
end;

As a consequence the fact that subgroups of Abelian subgroups are Abelian
is automatically accepted. Even more, because the type Field is a subtype of
AbGroup — note that the defining cluster for Field in section 3.1 includes the
attribute Abelian — this is also true for this type; and in fact for every other
algebraic type widening to the type AbGroup such as for example Ring. Hence all
the following statements are now obvious for the Mizar checker.

for G being AbGroup, H being Subgroup of G holds H is Abelian;
for F being Field, H being Subgroup of F holds H is Abelian;
for R being Ring, H being Subgroup of R holds H is Abelian;

We close this section with a “type version” of a famous result by J. Wedderburn.
Skew fields or division rings [8] differ from fields only in that their multiplication
is not required to be commutative. Finite skew fields however — as J. Wedder-
burn showed — are always commutative. This statement can be formulated as a
conditional registration as follows.

registration
cluster finite -> commutative Skew-Field;
end;

Again this fact could just as well be stated as a theorem. But note that the
registration in fact changes the type finite Skew-Field to Field, because now all
attributes of the Field’s definition are fulfilled. Hence, due to the last registration
in section 3.2, polynomial rings over finite skew fields are Euclidean. As a conse-
quence the type DegreeFunction of Polynom-Ring(1,F) for finite skew fields F
is automatically available, which would not be true if Wedderburn’s theorem would
have been stated as an “ordinary” Mizar theorem.

4 Conclusions

As we have seen Mizar attributes have developed from a pure linguistical phrase
into a powerful technique for defining and manipulating types. Though basically all
the mathematical definitions and statements in section 3 can be expressed without
using attributes and registrations, there are good reasons not to do so, notably in
mathematical repositories.

Firstly, we consider the use of attributes in mathematical repositories user-
friendly. Attributes allow to enrich algebraic structures with additional properties
without changing the original definition. In this way attributes also support the
reuse of already proven theorems: Refining a type by adding additional attributes

398

Mizar Attributes: A Technique to Encode Mathematical Knowledge into ...

does not exclude the use of theorems formulated for the original type. In addition
new type relations can be established. Secondly, typing with attributes shortens
the number of theorems to be stored in a mathematical repository. Note that the
example theorem from section 3.1 need to be stored only once for the type Group,
although we presented versions for four different algebraic structures; a number
that could be easily enlarged. Thirdly, attributes allow to handle algebraic struc-
tures in a mechanized reasoning system similarly to the way mathematicians do.
Mathematicians change their view on an algebraic structure if this seems conve-
nient. For example group theorems are applied to fields without thinking about the
type coercion that actually takes place. As we have seen Mizar attributes not only
enable such a dealing with algebraic structures but in addition allow for automating
even ambitious theorems in a mathematical repository.

We believe that especially the linguistical motivation for introducing attributes
to the Mizar language permitted in later years the development of a typing tech-
nique that is extremely well-suited for the development of mathematical reposito-
ries. So, we wait and hope for further “linguistical inspiration” from Mizar. In this
spirit

Andrzeju, wszystkiego najlepszego!

References

1. G. Bancerek, On the Structure of Mizar Types; Electronic Notes in Theoretical Com-
puter Science, vol. 85(7), Elsevier, 2003.

2. N.G. de Bruijn, The Mathematical Vernacular, a language for mathematics with typed
sets,; in P. Dybjer et al. (eds.), Proc. of the Workshop on Programming Languages,
Marstrand, Sweden, 1987.

3. J.H. Davenport, MKM from book to computer: a case study; in: A. Asperti, B. Buch-
berger, and J. Davenport (eds.), Proc. of MKM 2003, Lecture Notes in Computer
Science 2594, pp. 17-29, 2003.

4. E. Kusak, W. Leonczuk and M. Muzalewski, Abelian Groups, Fields and Vector
Spaces; Formalized Mathematics, vol. 1(2), pp. 335-342, 1990.

5. F. Kamareddine and R. Nederpelt, A refinement of de Bruijn’s formal language of
mathematics; Journal of Logic, Language and Information, vol. 13(3), pp. 287-340,
2004.

6. The Mizar Homepage, www.mizar.org.

7. R. Matuszewski and P. Rudnicki, Mizar: The First 30 Years; Mechanized Mathemat-
ics and Its Applications, vol. 4(1), pp. 3-24, 2005. http://mizar.org/people/romat/
MatRud2005.pdf

8. M. Muzalewski, Construction of Rings and Left-, Right-, and Bi-Modules over a Ring;
Formalized Mathematics, vol. 2(1), pp. 3-11, 1991.

9. P. Rudnicki and A. Trybulec, Mathematical Knowledge Management in Mizar; in: B.
Buchberger, O. Caprotti (eds.), Proc. of MKM 2001, Linz, Austria, 2001.

10. P. Rudnicki and A. Trybulec, Multivariate Polynomials with Arbitrary Numbers of
Variables; Formalized Mathematics, vol. 9(1), pp. 95-110, 2001.

11. P. Rudnicki and A. Trybulec, On the integrity of a repository of formalized mathe-
matics; in: A. Asperti, B. Buchberger, and J. Davenport (eds.), Proc. of MKM 2003,
Lecture Notes in Computer Science 2594, pp. 162-174, 2003.

399

Ch. Schwarzweller

12.

13.

14.

15.

16.

P. Rudnicki, A. Trybulec and C. Schwarzweller, Commutative Algebra in the Mizar
System; Journal of Symbolic Computation, vol. 32(1/2), pp. 143-169, 2001.

C. Schwarzweller, The Ring of Integers, Fuclidean Rings and Modulo Integers; For-
malized Mathematics, vol. 8(1), pp. 29-34, 1999.

A. Trybulec, Informationslogische Sprache Mizar; Dokumentation-Information, Heft
33, llmenau, 1977.

W.A. Trybulec, Vectors in Real Linear Space; Formalized Mathematics, vol. 1(2),
pp. 291-296, 1990.

F. Wiedijk, Writing a Mizar Article in Nine Easy Steps; available from
http://www.mizar.org/project/bibliography.html.

400

