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Abstract—Clearly, there is no definitive standard for cate-
gorizing information contained in mathematical papers. Even
if AMS Mathematics Subject Classification was important for
mathematicians for years, nowadays we can observe growing
popularity of other schemes, e.g. arXiv categories. On the other

hand, in the era of digital information storing one can expect from
the process of classification to be more or less automatic. Further-
more, generic categorization can be done inside the search engine.

At different level, the distinction between such classical tagging
items as lemma, proposition, theorem etc. had the aim of showing
importance of proven facts. Here the automatization is much
harder, or, to be more precise, the results obtained can be far
from the original tagging given by the author. In the paper
we point out some problems and thoughts concerned with the
categorization of mathematical knowledge, illustrating some of
them by examples taken from the Mizar Mathematical Library,
large machine-checked repository of mathematical facts.

I. INTRODUCTION

THE design, construction, and maintenance of mathemat-

ical knowledge repositories is at heart of mathematical

knowledge management. Computer-supported processing of

mathematics such as theorem proving, knowledge retrieval,

distribution over the Internet, or development of lecture ma-

terial is highly driven by the way mathematical knowledge

is represented and maintained. And last but not least, the ac-

ceptance of mathematical knowledge management systems by

mathematicians themselves also depends in essence on how the

knowledge in such systems is represented, developed and used.
Over the last years a lot of efforts have been spent in

building large repositories containing more and more advanced

computer-verified mathematical knowledge, such as for exam-

ple the Mizar Mathematical Library (MML) [8] or the Coq

Library [3]. It is a challenging task to keep such big reposito-

ries manageable in the sense that users can search – and find –

mathematical knowledge supporting their own developments.

This task has been addressed by structuring repositories and

developing efficient search tools. The Coq library, for example,

has been divided into a basic library, a standard library and

a part containing users’ contributions. For MML there exists

a promising search tool – MML Query [2]. Also there have

been efforts to build encyclopedias within the library, that is

to collect knowledge on common topic in adequate places.
Both organization of the library and search tools, however,

ignore two kinds of information mathematicians usually

add to their newly discovered mathematical knowledge

items. Firstly, mathematical knowledge is categorized by

the topic an item – usually a whole article – is about. In

most cases the AMS classification is used, but we are not

aware of a repository supplying an AMS-style categorization

for browsing and searching. Such information is usually

tried to give by appropriate file naming. Secondly, inside

a paper mathematicians categorize items according to their

importance: besides definitions we find for instance lemmas,

(main) theorems, or facts. In repositories each item actually

is a theorem. This stems from using theorem provers to

verify the included knowledge. One finds some exceptions,

where more information is given as a comment, e.g. in

MML theorem POLYNOM5:74 is preceded by the comment

Fundamental Theorem of Algebra identifying it in fact as a

main theorem in the sense above. This, to our knowledge,

however, has no further impact on searching in MML.

We believe that adding such information to the knowledge

in repositories would greatly improve the possibility of both

reading and searching, and even may enhance mathematicians

to – at least – have a little look what’s going on there. It

also would enable a better structuring of the libraries allowing

(possible) new users to get an overview of the repository:

information about both mathematical areas addressed by a

repository and important knowledge from an area that has

already been formalized within the repository can then easily

be generated. In this paper we point out some problems and

thoughts concerned with the categorization of mathematical

knowledge, illustrating some of them by examples taken from

the Mizar Mathematical Library.

The paper is organized as follows: in the second section

we focus on the (informal) classification of mathematical

statements, giving some correspondence of these with knowl-

edge repositories in Section III. Fourth section contains the

description of the experiments with the Mizar formalization

of mathematical text while in the next section we inspect

the repository as a whole. At the end we point out potential

benefits and conclude the paper. We did not expect especially

deep results due to informal nature of the topic and of the

fuzziness of selected categories of propositions, but at least

we can explain the incoherence in obtained experimental data.
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II. IMPORTANCE OF MATHEMATICAL KNOWLEDGE ITEMS

In the following we discuss how mathematicians label their

results with different phrases in order to underline their impor-

tance in the course of an article or a textbook. We start with

definitions from Oxford Dictionary [16] and Encyclopedia

Britannica [6], and analyze how this fits with mathematical

intuition, at the informal level.

Mathematicians use quite a number of phrases to label

knowledge items, most of them of course statements that come

with a proof. The most obvious phrases here are theorem and

proposition, explained in Encyclopedia Britannica by

theorem, in mathematics and logic, a proposition or

statement that is demonstrated

and in Oxford Dictionary by

theorem, a general proposition not self-evident but

proved by a chain of reasoning; a truth established

by means of accepted truths

and

proposition, a formal statement of a theorem or

problem, typically including the demonstration.

So, a theorem and a proposition are essentially the same, only

that proposition underlines that the topic is a formal one. More

interesting that the Oxford Dictionary emphasizes the fact that

a theorem is not self-evident, a view that obviously is shared

by mathematicians. For items that are self-evident we find in

Oxford Dictionary

fact, a thing that is known or proved to be true

This, of course, can be a bit irritating from a mathematician’s

viewpoint, as one can conclude that every theorem is a

fact and vice versa that every fact is a theorem. The usual

mathematician’s use of fact is that a fact either is so obvious

that there is no need for a proof or that the statement (already)

is common knowledge.

Quite similar to facts are corollaries. They describe knowl-

edge that is rather obvious, however, with respect to some

other usually more involved piece of knowledge. The Oxford

Dictionary defines them as

corollary, a proposition that follows from (and is

often appended to) one already proved, a direct or

natural consequence or result

Mathematicians use corollary to label obvious or easy con-

sequences of a just demonstrated theorem. Sometimes, in

fact, this causes the main result of a paper being labeled

as a corollary just because it follows (easily) from another

more general theorem maybe easier to prove than the original

intended result.

The most promiscuous label is the lemma which is explained

in Oxford Dictionary by

lemma, a subsidiary or intermediate theorem in an

argument or proof

Note that here a lemma is just a special kind of theorem, so it

heavily depends on the author whether he considers this result

as intermediate or not. This can have amusing consequences.

For example, the following statement

Suppose a partially ordered set P has the property

that every chain, i.e. totally ordered subset, has an

upper bound in P. Then the set P contains at least

one maximal element.

is known as Zorn’s lemma or as Kuratowski-Zorn lemma.

From its content though, it should be rather labeled as a

theorem – or, as it can be considered as common knowledge

as a fact?

A complete different kind of labeling are examples. Not

restricted to mathematical use we find the following definition

in Oxford Dictionary

example, a thing characteristic of its kind or illus-

trating a general rule

Mathematicians usually use examples for illustrating defini-

tions or properties of proven results. Examples often, however,

include statements that are to be proved, such as the integers

are a ring or every field is a ring. In the sense from above

these two would be facts, so this is not really a problem. But

in general mathematicians are much more generous, especially

in text books or lectures: One of the authors remembers an

algebra lecture in which arithmetics in Z[
√
−5] was illustrated

by an example. Right after the example one learns, that it

follows 2 = 2 + 0 ·
√
−5 is irreducible, but not prime, hence

There are irreducible elements that are not prime.

So hidden in this example actually is (the proof of) a theorem

or a lemma, which in the lecture – and the accompanying text

book – was not more than a remark.

III. IMPORTANCE OF MATHEMATICAL KNOWLEDGE ITEMS

IN REPOSITORIES

In this section we discuss how the phrases from the previous

section can be adapted for use in mathematical repositories.

The goal is to supply repositories with more information than

that each proved mathematical item is a theorem. First of all

there is of course the possibility to just introduce lemma, fact

etc. as synonyms for theorem and leave the labeling to the

user. It may be interesting to see such a strategy would result

in. We, however, would prefer to automatically generate such

information from the repository itself, that is from the proofs

accompanying mathematical items. So, the question is: how

to distinguish between lemmas and theorems and facts in the

sense of the preceding section, if we have at hand the proofs

of probably many different authors only? In the following we

try to elucidate this question by comparing intuitive properties

and intentions of the different kinds of labels.

Let us start with the difference between theorems and

lemmas. A lemma by its mathematical intention describes a

rather technical statement necessary in the course of proving

another statement. One can therefore argue that the proof of a

lemma therefore tends to be longer than the one of theorem.

In a repository the length of a proof strongly depends on

the author though. It looks more promising to focus on the

references, that is on the use of other statements within the

proof. Being more technically the proof of a lemma includes

much more references than the one of a theorem. Another
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criterion can be that a statement of a lemma includes more

detailed preconditions.

More practically we note that knowledge in repositories

usually is grouped by packages or articles. Then a statement

not being referenced inside can be (automatically) considered

as a theorem. In addition, work described in [17] might help.

Having a large proof in a repository one can label its statement

as a theorem. Lemma extraction then generates a number of

statements to be labeled as lemmas.

Facts and corollaries are quite similar. A fact easily follows

from a definition, so that its proof is short, that the proof

contains a given number of references only, and the references

used in its proof are restricted: they include the definition only

plus maybe some other references to basic statements about

basic topics, such as the natural number or Boolean properties.

For corollaries holds almost the same, the only change is that

the role of the definition here is played by a theorem.

There is another important point on lemmas. Though not

having a detailed definition of a lemma, the intuitive use is

to cut off parts of a proof. One can distinguish two reasons

for that: Firstly, it is just to improve readability of the whole

proof. Rather technical parts of the proof are divided from

the main line of argument. Secondly, an intermediate result of

a proof can be considered so important that it is cut off and

stated as a lemma. Of course this distinction is blurred and the

view on a lemma can change over time and depending on the

author/reader. In repositories the first case naturally is much

more present: a lot of technical details have to be explicitely

shown. In MML we find, for instance

theorem :: FUNCT_2:3

for f being Function st

dom f = X & for x st x in X holds f.x in Y

holds f is Function of X,Y;

This property is often used in proofs and is therefore stated

on its own. From the above follows that it can be labeled

as a fact. This however would ignore that it is uninteresting

from a mathematician’s point of view. Therefore we propose

to introduce an additional kind of lemma in mathematical

repositories: a technical lemma. A lemma states an interesting

piece of mathematical knowledge though not being important

enough to be a theorem. By contrast a technical lemma (or

a technical fact) just states a property often necessary in

other proofs. Note that this allows for two kinds of reading

a repository: first, ignoring technical knowledge concentrating

on mathematically interesting knowledge and second, reading

technical knowledge to find statements that can help in one’s

own proof.

We close with a note on examples: identifying examples is

extremely difficult. Not only due to our discussion from the

last section, but one also finds other examples characteristic

of mathematical repositories. In the article FINSEQ_1, for

instance, we find the following definition for segments of

natural numbers

definition

let n be Nat;

func Seg n -> set equals :: FINSEQ_1:def 1

{ k where k is Element of NAT :

1 <= k & k <= n };

end;

and right after that between other theorems the following.

theorem :: FINSEQ_1:2

Seg 1 = { 1 } & Seg 2 = { 1, 2 };

Should this be a theorem (fact) or rather an example? It

obviously illustrates the definition of Seg. On the other hand,

its proof allows to identify it as a fact as the proof is rather

short – about 30 lines of Mizar code – and uses basic theorems

about sets and natural numbers only.

IV. EXPERIMENTS WITH MIZAR

As a testbed for our experiments we have chosen repository

of mathematical texts written in the Mizar language. It is

authored by over 200 authors with nearly 1200 articles – so

we expected from the results not to be meaningless.

A. MML Items Numbering Scheme

Formalization, apart from machine-verification, offers new

possibilities to analyze proofs automatically, even at pure

syntactic level. We focus on references in Mizar proofs, which

can be roughly divided into library references (from other

files), references for exportable items from the current article

and auxiliary labels. More precisely, there are

1) library references, e.g. MMLID:<num1>;

2) library definitional references, e.g. MMLID:def

<num1>;

3) a kind of article self-references – Th<num>: – ex-

portable theorem;

4) the same as above, but for definitions – Def<num>:

– exportable definition (the only definition which is

not exportable is a private predicate or private functor

definition which is not labelled as a rule);

5) internal lemmas – Lm<num>: – Mizar lemma, i.e.

theorem which is not exportable to the database (not

flagged by theorem keyword);

6) auxiliary labels, e.g. A<num>: – the <num> resets

every time main first-level proof block starts;

where <num1> and <num> are numerals.

From the above list first two are obligatory for the author,

the rest is unified after the inclusion of the article in the

Mizar Mathematical Library (the author can use his own

numbering scheme, so potentially also the distinction for

lemmas, theorems etc. is possible). We will see the concrete

example flagged according to the abovementioned rules in the

succeeding subsection.

B. Single Concrete Mizar Article – an Example

As an example, we can take arbitrary article [13] with the

tags marking lemmas, propositions etc. and compare with the

Mizar source. We have chosen this specific file just because it

faithfully reflects the real established mathematical textbook –

A Compendium of Continuous Lattices by Gierz, Hofmann et
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al (CCL for short – [7]). Hence, all facts are categorized by the

authors of the monograph. Furthermore, we were curious how

fifteen years of the evolution of the language and numerous

revisions of the repository affected this article.

Pragmas are relatively recent concept implemented in the

Mizar language – ::$N is transparent for the verifier since

it begins with two colons – a comment sign, but it allows

the authors to identify the most important items in the article

(apart from the usual possibility of inserting comments).

::$N Baire Category Theorem for Continuous

:: Lattices

theorem Th39: :: Theorem 3.43.7

for L being lower-bounded continuous LATTICE

for D being non empty countable dense

Subset of L,

u being Element of L st u <> Bottom L

ex p being irreducible Element of L st

p <> Top L & not p in uparrow ({u} "/\" D)

proof

let L be lower-bounded continuous LATTICE,

D be non empty countable dense Subset of L,

u be Element of L such that

A1: u <> Bottom L;

A2: for d, y being Element of L st

not y <= Bottom L & d in D holds

not y "/\" d <= Bottom L

proof

let d, y be Element of L such that

A3: not y <= Bottom L;

assume d in D;

then d is dense by Def5; then

A4: y "/\" d <> Bottom L by A3,Def4;

Bottom L <= y "/\" d by YELLOW_0:44;

hence thesis by A4,ORDERS_2:2;

end;

Bottom L <= u by YELLOW_0:44;

then not u <= Bottom L by A1,ORDERS_2:2;

then consider p being irreducible

Element of L such that

Bottom L <= p and

A5: not p in uparrow ({u} "/\" D) by A2,Th36;

take p;

thus p <> Top L by A5,Th9;

thus thesis by A5;

end;

For simplicity of further considerations, we ignore the

structure of the proof (as we do not take into account implicit

mechanisms of the Mizar verifier anyway), hence it can be

represented just as

WAYBEL12:39 = (WAYBEL12:def 5, WAYBEL12:def 4,

YELLOW_0:44, ORDERS_2:2, YELLOW_0:44,

ORDERS_2:2, WAYBEL12:36, WAYBEL12:9)

Observe Th36 and Th9 were resolved into corresponding

library references (the same with Def4 and Def5). Also

multiple uses of the same theorem is visible. Resolving all

items from [13] in this way we collected all tagged items in

Table I.

These results are not very convincing, with one exception:

all three Mizar theorems (out of 44 in the file covering 7

numbered propositions formalized from CCL) with the biggest

TABLE I
TAGGED ITEMS AS TAKEN FROM [13].

MML Item MML exportable item refs in proof
WAYBEL12:33 Proposition 3.43.1 40
WAYBEL12:34 Corollary 3.43.2 11
WAYBEL12:35 Proposition 3.43.3 9
WAYBEL12:36 Corollary 3.43.4 4
WAYBEL12:39 Theorem 3.43.7 – main theorem 6
WAYBEL12:43 Theorem 3.43.8 22
WAYBEL12:44 Corollary 3.43.10 19

TABLE II
MML PROOFS WITH THE BIGGEST NUMBER OF OUTSIDE REFERENCES.

No. MML exportable item Outside references
1 JORDAN13:def 1 218
2 JORDAN9:def 1 203
3 JORDAN15:46 193
4 JORDAN15:47 193
5 JORDAN19:22 193
6 JORDAN19:23 193
7 JORDAN15:44 192
8 JORDAN15:45 192
9 JORDAN19:20 192

10 JORDAN19:21 192

number of outside references were taken as significant by the

authors of CCL.

Some other interestingness measures can be e.g.:

• The length of the proof - measured either by the number

of proof steps or just in terms of words used.

• The number of times a fact is used in a library (as shown

later on in Table III).

• The complexity of premises (longest assumptions usually

imply more technical fact while corollaries have the

premises much simplified).

V. STATISTICAL DATA – MIZAR MATHEMATICAL LIBRARY

Of course, even if the file from the previous section can

represent a real paper written by mathematician, we wanted to

have a wider look for the mathematical knowledge repository,

so similar experiment as in case of the single article we did

on the whole MML (version 4.181.1147). Applying similar

techniques as in the preceding section we collected theorems

in MML which have biggest number of outside references

in Table II, keeping in mind that these are only exportable

theorems, just forgetting about all statements called informally

technical lemmas in Mizar jargon.

The results appeared a bit surprising for us. As we mention

exportable “theorem” items, why definitions are ranked so high

(in fact accidentally we counted all exportable items, not only

theorems)? We checked that the article with the MML identi-

fier JORDAN13 [18] contains only this single definition, and

nearly 4500 lines and 1200 numbered statements in there are

only to justify the existence and the uniqueness of the object

called span for simple closed curve in the Euclidean plane.

Furthermore, most of facts from JORDAN15 and JORDAN19

are just mirror cases, hence the identical number of references.
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The solution is to extract some technical lemmas (and here

methods similar to those described e.g. in [20] might help) but

inspecting the proof we have seen that the complication of the

construction of the object makes it at least not sufficiently

justified. What can be done easily in this case is that two

lemmas can be formulated outside of the definition block

and complicated proofs can be replaced by straightforward

references. But in such a case the policy of the Library

Committee of the Association of Mizar Users is not to export

such lemmas to the public database.
MML item INT_5:49 is number 19 with 151 theorems

referenced in the proof – the first not-Jordan fact if we take into

account the number of library references (the law of quadratic

reciprocity).
Observe that we count here only explicit references, and

many additional implicit arguments, such as even just rules

of reasoning or definitional expansions can potentially break

the expected results. Nearly 80% of MML items immediately

depend on at least one of these implicit type mechanisms

(according to [1]), but as long as the Mizar system lacks

the proof object generation which can be called by ordinary

user, with the flexible level of verbosity, these results are not

binding. For example, by proper application of mechanism

of registration of clusters [8], the proofs can be significantly

shortened.
Potentially, the weight of the theorem should be seen

from a wider perspective – it depends also on the context,

so formalizing significant and complicated result one might

merge theorems taken from various theories, e.g. category

theory etc. In such context, e.g. arithmetical theorems just

vanish and even Fundamental Theorem of Arithmetic could

obtain no explicit reference in such informal proof.
Just as a curiosity, we checked the three fundamental

theorems proven within MML and one of the probably best

known as the formalization challenge – and the number of

library references in proof were as follows:

• Fundamental Theorem of Integral Calculus – 13;

• Fundamental Theorem of Arithmetic – 42;

• Fundamental Theorem of Algebra – 81;

• Jordan Curve Theorem – 1(!).

A. The Statistics of MML

The Mizar Mathematical Library contains 51,762 Mizar

theorems (which should be named propositions or facts rather

than theorems).
Nearly one third of them can be treated either useless or

terminal objects at the current state of the library because:

• 16,354 were not used in the MML;

• 14,940 were used exactly once.

Here we can count additionally 5,725 Mizar lemmas

(marked Lm) and not exportable – which are used at least

once.
According to definitions from Section 2 some 14% of

propositions is more or less trivial:

• 4,686 corollaries (propositions justified by a single li-

brary reference);

TABLE III
IMPORTANT LEMMAS IN MML AND THE COMPLEXITY OF THEIR PROOFS

Name of the fact MML Identifier Refs Used
1 Alexander’s Lemma WAYBEL_7:31 32 2
2 Contraction Lemma ZF_COLLA:12 12 0
3 Dickson’s Lemma DICKSON:freg 15 8 0
4 Dynkin Lemma DYNKIN:24 5 1
5 Fatou’s Lemma MESFUN10:7 29 0
6 Gauss Lemma INT_5:41 117 2
7 Koenig Lemma TREES_2:30 34 0
8 Lebesgue’s Lemma UNIFORM1:6 39 1
9 Sperner’s Lemma SIMPLEX1:47 114 1

10 Urysohn Lemma URYSOHN3:20 54 3
11 Yoneda Lemma YONEDA_1:freg 3 51 0
12 Zassenhaus Lemma GROUP_9:93 4 1
13 Zorn Lemma ORDERS_1:65 17 9

• 2,371 trivial propositions or facts (no library references

or no proof at all).

Only 9,439 propositions have ten on more references, but

hopefully it allows the human reader of the proofs to track

the idea of the proof, splitting large and complex proofs for

small verifiable steps. Here, the readability can be an objective;

total 333,172 references in proofs of 51,762 theorems gives

an average 6.44 references in a proof. Only 2,669 theorems’

proofs (which makes about 5% of all MML propositions)

contain more than 20 references, so we can establish 100 refs

as a good threshold for a Mizar theorem to be a technical

lemma.

B. Important Lemmas

In Table III we collected some well-known mathematical

lemmas. Although as a rule, lemmas should be rather of

intermediate character, statistical data on MML shows that

many of them were proven just for their importance, not

reusability. This table unleashes however the importance of the

Zorn Lemma – it was referenced 9 times in MML. The other

important lemmas formalized in Mizar are rarely mentioned.

Notable exceptions are zeroes in case of Dickson’s and Yoneda

lemmas, because they do not need be referenced due to the

mechanism of registration of clusters.

In case of items numbered 7, 9, and 10 the primary results

were misleading – in fact the lemmas were straightforward

corollaries, hence we gave the complexity of proof of the

original technical lemma.

Our feeling was that repositories have much more lemmas

than theorems. Experiments have shown that in case of Mizar

these numbers are comparable. We performed additional ex-

periments both on mathematical books (with the ratio of lem-

mas : theorems : corollaries as 260 : 94 : 23) and on computer

repositories (e.g. in Isabelle’s AFP we counted ratio 27523 :

1061 : 513). The MML is closer to mathematical textbook

with the exception of the (bigger) number of corollaries.

VI. POTENTIAL GAIN: FORMALIZED MATHEMATICS

JOURNAL

Formalized Mathematics (ISSN 1426-2630) is a journal

publishing papers automatically generated from Mizar ab-

ADAM GRABOWSKI, CHRISTOPH SCHWARZWELLER: TOWARDS AUTOMATICALLY CATEGORIZING MATHEMATICAL KNOWLEDGE 67



stracts. As the first issue is dated back in 1990, and the

Mizar language itself evolves much faster than the translating

software, its syntax is relatively modest.

As of the time of writing this paper, to ensure better human-

readability of the journal one of the following constructions

were used before the propositions (we observed the keyword

“theorem” is not used in FM):

• “One can prove the following proposition...”

• “The following propositions are true...”

• “Next we state (three, several, ...) propositions...”

• “We now state the proposition...”

with sentences of the form

• “One can check that...”

• “Note that...”

• “One can verify that there exists...”

• “Observe that there exists...”

reserved for registrations which can have even more complex

proofs than the aforementioned propositions.

Also

• “Let us observe...” or

• “... can be characterized by the condition...”

kept for Mizar redefinitions can be better used in some other

context.

At least corollaries (or trivial theorems, if really needed)

identified in the previous section can be introduced by phrases

of the form

• “It is easily seen” or

• “As a direct corollary of ... we get...”

We hope that such suggestions will be implemented in

future issues of the Formalized Mathematics journal.

VII. CONCLUSION

At first glance, automatic tagging of propositions seems to

be useless for machine math-assistants – it is meaningless

whether the prover uses lemma or theorem as a hint. But

it can be of bigger importance if we take into account that

the described statistics offer a kind of interestingness measure

for knowledge discovery. Here potentially theorems with more

complex proofs can give more possibilities for reuse.

In our opinion the point is that though mathematicians

don’t use tags consistently, one can adapt (and extend) these

notations to improve organization of mathematical knowledge

in repositories. Furthermore, our experiments give evidence

that to a certain extent these notations can be attached automat-

ically. Such general classification rules and the improvement

of Mizar library are the main contribution of our work. We can

also enhance the presentation of the formal text to be more

attractive to ordinary mathematician.

If we take into account the possibility of labeling proposi-

tions by the author, the Mizar syntax is rather fixed – here

other systems are a bit more flexible: Isabelle [11], offers

interchangeability of corollary and lemma keywords de-

pending on author’s choice. The same with Coq [3], where

Theorem and Lemma are present.

The importance of theorems can be measured in many ways

– but if e.g. we resolve all dependencies contained in a single

proof, the notions of lemma and corollary can loose their

intended meaning. But as the compression of the text made

the syntactical differences between various formal languages

unimportant for the value of the de Bruijn factor [21], the

simple measure we have chosen for our considerations also

seems to be acceptable. Furthermore, revisions of handwritten

proofs with the help of automatic theorem-provers as proposed

by Urban [19] or the linking between both informal (as

Wikipedia) or other machine-checked formal repositories (e.g.

Archive of Formal Proofs) to eliminate accidental tagging

can offer a kind of error-correction. On the other hand, the

distinction between various kinds of machine-verified facts

might catch the human’s eye much better, which looks like

one of the potential aims for computer math-assistants.
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