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Abstract. Though more and more advanced theorems have been for-
malized in proof systems their presentation still lacks the elegance of
mathematical writing. The reason is that proof systems have to state
much more details — a large number of which is usually omitted by
mathematicians. In this paper we argue that proof languages should be
improved into this direction to make proof systems more attractive and
usable — the ultimate goal of course being a like-on-paper presentation.
We show that using advanced Mizar typing techniques we already have
the ability of formalizing pretty close to mathematical paper style. Con-
sequently users of proof systems should be supplied with environments
providing and automating these techniques, so that they can easily ben-
efit from these.

1 Introduction

Interactive reasoning aims at developing methods and systems to be used to
formalize — state and prove — mathematical theorems in a comfortable way.
The ultimate dream is a system containing all mathematical knowledge in which
mathematicians develop and prove new theories and theorems. Though more and
more advanced pieces of mathematical knowledge are being formalized, we are
still far from this dream — in particular few mathematicians even notice proof
systems.? Formalizing mathematics more or less still is a matter of computer
scientists.

In our opinion the main reason is the clash between how mathematicians and
proof systems work: Any proof system by nature is based on logical rigour to
ensure correctness of formalization. Consequently such systems state theorems
more or less as logical formulae and use a logical calculus doing inferences to
prove them. Mathematicians, however, do not use logic or logical symbols in

3 The most prominent exception is Thomas Hales’ Flyspeck project [Fly14].
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the strong sense of proof systems. They argue rather intuitively assuming that
their arguments can be easily transformed into such a logical reasoning. From
this stem reservations against using proof systems like “Theorems are hard to
read”, “Too much obvious facts has to be explicitly considered”, or “Applying
theorems is too elaborated”.

To illustrate the above we consider the term n — 1 with n € N as an easy
example. In some situations — to apply a theorem or to use n — 1 as an argument
of a function — n—1 has to be a natural number. This is of course obvious if n > 1
(or n # 0), so mathematicians do not care about. Proof systems have to be much
more formal: One has to prove that in this particular situation n —1 € N. This is
of course pretty easy and can for example be done by changing the type of n —1
to N, using the minus function n = 1 or by generating some proof obligation.
Somewhat more involved examples would be (p —1)/2 € N, if p # 2 is a prime
or that (—1)" = —1, if n is odd.

Though there have been efforts to overcome these shortcomings, we claim
that in proof systems this kind of mathematical obviousness should be more
strengthened: Proofs as those in the above example must be invisible for users,
that is automatically identified and conducted. In this paper we show that
Mizar’s attributed types [Miz14,Ban03] can be used to do so: Providing a num-
ber of so-called registrations and redefinitions — stored and made available to
users in a special environment — automates reasoning as sketched in the above
example and therefore allows for a much more mathematicians-like handling of
mathematical knowledge. More concrete, we present examples from number the-
ory — which in particular includes theorems as mentioned above — and deal with
instantiation of algebraic structures.

2 Pocklington’s Theorem

Pocklington’s criterium is a number theoretical result providing a sufficient con-
dition for (large) numbers to be prime. It may be worth mentioning that in the
original work [Pocl4] there is no precisely stated theorem. In the literature one
therefore finds a number of different variants. One version (from [BM92]) reads
as follows.

Let s be a positive divisor of n — 1, s > y/n. Suppose there is an integer
a satisfying:
a" 1 =1 (mod n)

ged(a®= D1 —1,n) =1
for each prime ¢ dividing s. Then n is prime.

One can find several formalizations of Pocklington’s criterium none of which,
however, resembles completely the mathematical formulation. In Mizar [Ric06]
we find for example the following.
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for n,f,d,nl,a,q being Element of NAT

st n-1 = ql™nl *d & ql™nl >d & d >0 & q is prime &
al"(n-’1) mod n = 1 & (al”"((n-’1) div q)-’1) gcd n = 1

holds n is prime;

As we see the minus function -’ and division with remainder though not being
part of the theorem are used. Furthermore besides mod function and prime the
formalization does not use no number theoretical notation, even divisibility is
expressed implicitly.

The formalization found in [Cha08] adds coprime as a number theoretical no-
tation in this way substituting the gcd function. Note, however, that divisibility
is expressed once explicitly using predicate | and once implicitly.

n=2Aan—-1l=qg-ran<g¢g*Ara"t=1 (modn)
A (Vp.prime p A plg — coprime(anT_1 —1) n) — prime n.

In Coq [Coql4] a somewhat different version has been formalized using a partial
factorization of n — 1. Therefore lists of natural numbers have been used. Con-
gruence of numbers is here expressed using the Mod-function, and S and pred
denote n 4+ 1 and n = 1, respectively.

V(nqm :nat) (a:Z) (qlist : natlist),

n>1—

n=3 (qxm —

q = product gqlist —

allPrime qlist —

Mod (Exp a (pred n)) 1 n —

allLinCombMod anm gqlist — n < q X q — Prime n.

Though of course correct — and also more or less well-readable — all these for-
malizations rather present themselves as an expression having been proved in a
formal system than as a well-formulated mathematical theorem. In the rest of
this section we will show how preparing a number theoretic environment allows
for the following Mizar formulation of Pocklington’s theorem.

for n being 2_greater natural number,
s being non trivial Divisor of n-1 st s > sqrt(n) &
ex a being natural number
st al"(n-1),1 are_congruent_mod n &
for q being PrimeDivisor of s holds a|~((n-1)/q) - 1 gcd n =1
holds n is prime;

2.1 Preparing Proper Mathematical Notation

The first step is obvious. We have to introduce definitions resembling the math-
ematical objects of concern: Divisor, PrimeDivisor, are_congruent_mod, and
so on. Some of them were already available in the Mizar Mathematical Library,
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some we had to introduce by ourselves. How to do this has been described for
example in [GKN10] and is therefore omitted. However, we also introduced the
<-relation as a Mizar adjective _greater by the following attribute definition.

definition

let n,x be natural number;

attr x is n_greater means x > n;
end;

This at first sight seems to be an unecessary repetition. However, Mizar
adjectives can be used in so-called cluster registrations to automatically extend
and enrich objects’ types. For example, the fact that primes p # 2 are odd can
now be formulated — and proved — not only as a theorem, but also as a cluster
registration:

registration
cluster 2_greater -> odd for PrimeNumber;
end;

As a consequence having p of type 2_greater PrimeNumber Mizar auto-
matically adds the adjective odd to the type of p in this way adding hidden
information about mathematical objects — that mathematicians use implicitly.
In section 2.2 from this then will — also automatically — follow that (p-1)/2
for such p is actually a natural number. To give another example here, the ex-
istence of an arbitrary large prime number can be guaranteed by the following
registration.

registration
let n be natural number;
cluster n_greater PrimeNumber;
end;

Now, if necessary, the user can declare an arbitrary large prime number by
just writing let p be 12345_greater PrimeNumber; or even more generally
by let n be natural number; let p be n_greater PrimeNumber;. Its exis-
tence is guaranteed by the above registration and the fact that p is greater than
12345 or n respectively can be used in the following without any proving or
referencing.

2.2 Automatically Adapting Types

The cluster mechanism of adding adjectives to an object’s type from the last
subsection can be used to automatically adapt tpyes in particular situations.
In this way users — like mathematicians — do not have to deal explicitly with
changing and adapting types to apply functors or theorems.

To deal with the easy example from the introduction first, if n € N is not
equal to 0 the type of n — 1 of course can be changed to natural number. To do
this automatically, we identify properties — given by adjectives — ensuring that
n — 1 € N and formulate corresponding registrations, such as for example



Standard Environments for Formalizing Mathematics 5

registration
let n be non zero natural number;
cluster n-1 -> natural for non zero;
end;

registration

let m be natural number;

cluster m_greater -> non zero for natural number;
end;

Note here that registrations do not stand alone, but are applied in a iterative
matter.* As a consequence the type of n—1 now happens to be natural number
not only if n is non zero, but also if n is m_greater for an arbitrary natural
number m.

We end this section by illustrating how the use of adjectives and cluster
registrations allows to avoid additional helper functions such as minus and di-
vision with remainder to formulate Pocklington’s theorem. Having the following
registration

registration
let n be odd natural number;
cluster (n-1)/2 -> natural;
end;

then, if p is of type 2_greater PrimeNumber the type of (p-1)/2 is not just
real number as given by the type of the division functor /. Together with the
registrations from section 2.1 both adjectives odd and then natural are added
to the type of (p-1)/2. Hence its type in particular is natural number and
(p-1)/2 is therefore accepted as the argument of a function requiring natural
numbers. Note that once the registration has been introduced, no proof obli-
gation for the user shows up, all that’s necessary has — and must have — been
proved in the cluster registration. Using the earlier introduced type Divisor the
following

registration
let n be natural number;
let q be Divisor of nj;
cluster n/q -> natural;
end;

now is an easy generalization of the former case — q = 2 — changing the type of
a quotient to natural number, as necessary in the formulation of Pocklington’s
theorem. Note again that the type of n/q is automatically enriched with adjective
natural, if n and q have the attributed types mentioned in the registration.

4 Actually Mizar rounds up an object’s type by adding all adjectives from clusters
available in the environment, see [Ban03].
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3 Abstract Mathematical Structures and Intstantiations

Another main topic is moving between mathematical structures: Mathematical
proofs receive their elegance from noting that a given domain constitutes a spe-
cial structure and applying theorems from it. Here both jumping to completely
different structures as well as inheriting from more general structures is of con-
cern. In proof systems, however, this goes along with a type coercion. The type
of an element of a ring is different from the one of a real number, of an element
of a group or a topological space. Much effort has been spent to ease users of
proof systems to move between and to apply theorems from different structures,
see e.g. [GPWZ02], [Ball4], [RST01], [Sch07].

Here we deal with another topic connected with inheriting from general struc-
tures: Functions and properties defined in a general structure are to be refined
or extended in a more conrete one. As a running example we consider great-
est common divisors in different domains. The greatest common divisor and a
number of its basic properties can be defined for arbitrary ged domains. Note,
however, that one cannot define a gcd function, just because in general the ged
is not unique. In gecd domains we therefore end up with a type a_gcd:®

definition
let L be non empty multMagma;
let x,y,z be Element of L;
attr z is x,y-gcd means
z divides x & z divides y &
for r being Element of L
st r divides x & r divides y holds r divides z;
end;

definition

let L be gcdDomain;

let x,y be Element of L;

mode a_gcd of x,y is x,y-gcd Element of L;
end;

In more concrete gecd domains — so-called instantiations — such as the ring
of integers or polynomial rings the notion of a ged now is adopted — actually
changed into a gcd function — by just saying that the ged is greater than 0
or the ged is monic, respectively. However, these additional properties apply
only to objects of the more concrete type — Integer and Polynomial — whereas
a_gcd expects arguments of the more general type Element of L, where L is a
gcdDomain. To easily adopt mathematical refining techniques we need a way to
— automatically — identify these types.

5 One can of course also define the set of geds for given z and y, but we found it more
convenient to use Mizar types here.
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3.1 Preparing the Instantiation

Instantiations of abstract structures are defined by gluing together the corre-
sponding objects and operations in the appropriate structure, in our example
doubleLoopStr. So the ring of polynomials with coefficients from a structure L
can be defined by

definition
let L be Ring;
func Polynom-Ring L -> strict non empty doubleLoopStr equals
doubleLoopStr (#POLYS,polyadd (L) ,polymult (L) ,1_.(L),0_. (L)#);
end;

where POLYS is the set of objects with type Polynomial of L. So we are left
with two different types Polynomial of L and Element of the carrier of
Polynom-Ring L, the latter one being the type of the — abstract — ring elements.
As a consequence special properties of polynomials can be only defined for the
concrete type Polynomial of L, such as for example an adjective monic . Even
after its definition, monic is not available for objects of type Element of the
carrier of Polynom-Ring L:

definition
let L be Ring,
p be Polynomial of L;
attr p is monic means Leading-Coefficient p = 1.L:
end;

now let L be Ring;
let p be Element of the carrier of Polynom-Ring L;
p is monic;

1> *106: Unknown attribute

end;

This is unsatisfying not only because it is obvious that p in this example is ac-
tually a polynomial, but also because it prevents the combination of monic with
the former defined type a_gcd. The solution is to automatically cast abstract
types into concrete ones, here Element of the carrier of Polynom-Ring L
into Polynomial of L. Again attributes — and a so-called redefinition — allow
both to describe such situations and to enhance Mizar type checking: First an
attribute polynomial-membered describes sets containing only elements of type
Polynomials of L. Then for such sets the type of its elements can be redefined
into Polynmial of L — because the attribute polynomial-membered ensures
that this cast is possible.”

S In fact exactly this has to be proved in the redefinition.
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definition
let L be non empty ZeroStr;
let X be set;
attr X is L-polynomial-membered means
for p be set st p in X holds p is Polynomial of L;
end;

definition
let L be Ring;
let X be non empty L-polynomial-membered set;
redefine mode Element of X -> Polynomial of L;
end;

All that remains now is stating — and proving — a cluster saying that the
type the carrier of Polynom-Ring L can automatically be enriched with the
adjective polynomial-membered

registration

let L be Ring;

cluster the carrier of Polynom-Ring L -> L-polynomial-membered;
end;

and objects of type Element of the carrier of Polynom-Ring L are auto-
matically identified as objects also having the concrete type Polynomial of L.
Therefore notions defined for Polynomial of L — such as for example monic —
are also available for objects of type Element of the carrier of Polynom-Ring
L.

3.2 Extending Definitions in the Instantiation

Working in an environment containing the clusters and redefinitions from the
last section users can now extend and combine properties defined for different
types — abstract ring elements and concrete polynomials — according to their
needs. First — if not already provided in the standard environment — one has
to ensure that the instantiation establishes the abstract structure, here that
Polynom-Ring L is a gcd domain.

registration

let L be Field;

cluster Polynom-Ring L -> Euclidian;
end;

Then all is set: Both abstract notions from gcdDomain and concrete ones for
Polynomials are available and can be easily used. The definition for polynomial
ged function, for example, is now just combining notions a_gcd and monic.
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definition
let L be Field;
let p,q be Element of the carrier of Polynom-Ring L;
func p gcd q -> Element of the carrier of Polynom-Ring L means
it is a_gcd of p,q & it is monic;
end;

Please note again, that notion monic has been introduced for objects of type
Polynomial of L, whereas notion a_gcd for objects of type Element of the
carrier of Polynom-Ring L. To nicely complete the development of polyno-
mial geds one should in addition provide the following registration enriching the
type of the just defined ged function — to make available properties of polynomial
geds without the need of referencing its definition.”

registration
let L be Field;
let p,q be Element of the carrier of Polynom-Ring L;
cluster p gcd q -> monic p,q-gcd;

end;

4 Conclusion and Further Development

We have seen how thorough preparation of Mizar environments using regis-
trations and redefinitions to manipulate mathematical objects’ types not only
improves working in a special mathematical theory, but also enables automatic
use of hidden information — information that is used implicitly but is not stated
by mathematicians. It is this kind of obvious knowledge and inferences that
proof systems must enable in order to attract more users. We claim that further
development of the presented techniques will lead to both more convenience in
formalizing mathematics and more recognition of proof systems by mathemati-
cians.

In this context we want to discuss briefly two further items that seem impor-
tant to us. Firstly, a lot of theorems mathematicians do not mention in proofs
can actually be presented as term reductions, just because they describe equal-
ities, such as for example (=1)" = —1,if nisodd, v —v =0, a A b = aq, if
a <borxu =x. Of course it depends on the proof assistant to which extend
such equalities/reductions are automatically applied. Mizar, however, provides
a language construct similar to clustering that enables users enriching the proof
process by particular reductions [Korl3], so for example

registration
let n be odd natural number;
reduce (-1)|°n to -1;

end;

" There is a relatively new Mizar environment directive — expansion — that also serves
for autmatically applying definitions.
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After such a registration the Mizar prover automatically identifies the left
term with the term on the right side, so that — even depending on the object’s
type — equalities are automatically performed and accepted.

now let n be odd natural number;
5% (-1)|"n = -5;

end;

Unfortunately not all examples from above can be registered this way, be-
cause at the moment reductions must be to proper subterms.

The second point concerns the use of ellipses, a constituent mathematicians
use to eliminate logical formulae describing finite sequences. In [CO01] we find,
for example, Pocklington’s theorem as follows:

Let ne N, n > 1 with n — 1 = ¢ - m such that ¢ = ¢; -+ - ¢; for certain
primes qi,...q. Suppose that a € Z satisfies a®~! = 1 (mod n) and

gcd(a%1 —1,n)=1foralli=1,...t. If ¢ > 4/n, then n is a prime.

The Coq version of Pocklington’s theorem mentioned in section 2 actually for-
malizes this theorem and therefore uses lists of natural numbers. Mizar already
offers the use of ellipses, but only if the underlying formula is existential [Kor12],
like for example in the following theorem.

for n being non zero natural number,
X being integer number holds
x,0 are_congruent_mod n or ... or x,(n-1) are_congruent_mod n;

This, however, unfortunately does not allow to formulate Pocklington’s theorem
with the use of ellipses. In particular the use of ellipses for indexed variables is
necessary here.

Summarizing, proof assistants should be capable of automatically identifying
and performing obvious mathematical arguments and shortcuts, that is argu-
ments left out by working mathematicians. In our opinion the way to do so is
not strengthening the proof assistant’s inference system, but making its proof
languages more flexible and adaptable by using language constructs like those
presented in the paper: They allow to explicitly state theorems behind mathe-
maticians’ obvious arguments and then enrich the proof process by automatically
applying them. In this way users — or developers by providing standard environ-
ments for formalizing mathematics — can adapt the proof process according to
their particular needs.
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