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A NUMERICAL METHOD OF BICHARACTERISTICS

FOR QUASI-LINEAR PARTIAL FUNCTIONAL

DIFFERENTIAL EQUATIONS

P. AR LUKOWICZ1, AND W. CZERNOUS1

Abstract — Classical solutions of mixed problems for first order partial functional
differential equations in several independent variables are approximated by solutions of
an Euler-type difference problem. The mesh for the approximate solutions is obtained
by the numerical solution of equations of bicharacteristics. The convergence of explicit
difference schemes is proved by means of consistency and stability arguments. It is
assumed that the given functions satisfy the nonlinear estimates of the Perron type.
Differential systems with deviated variables and differential integral systems can be
obtained from the general model by specializing the given operators.
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1. Introduction

For any metric spaces X and Y , we denote by C(X, Y ) the class of all continuous functions
from X into Y . We will use inequalities between vectors, understanding that the same
inequalities hold between their corresponding components.

Let a > 0, d0 ∈ R+, R+ = [0,+∞), d = (d1, . . . , dn) ∈ R
n
+ and b = (b1, . . . , bn) ∈ R

n be
given where bj > 0 for 1 6 j 6 n. We define the sets

E = [0, a] × [−b, b], D = [−d0, 0] × [−d, d].

Let c = (c1, . . . , cn) = b+ d and

E0 = [−d0, 0] × [−c, c], ∂0E = [0, a] × ([−c, c]\(−b, b)),

Ω = E0 ∪E ∪ ∂0E, Ξ = E × C(D,R).

Suppose that z : Ω → R and (t, x) ∈ E are fixed. We define the function z(t,x) : D → R as
follows:

z(t,x)(ξ, y) = z(t + ξ, x+ y), (ξ, y) ∈ D.

The function z(t,x) is the restriction of z to the set [t−d0, t]× [x−d, x+d] and this restriction
is shifted to the set D. Elements of the space C(D,R) will be denoted by w, w̄ and so on.
We will write ‖ · ‖D for the maximum norm in the space C(D,R). Let

f : Ξ → R
n, f = (f1, . . . , fn), G : Ξ → R, ϕ : E0 ∪ ∂0E → R,
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α0 : E → R, α′ : E → R
n, α′ = (α1, . . . , αn)

be given functions. Write α(t, x) = (α0(t, x), α′(t, x)), (t, x) ∈ E. We require that α(t, x) ∈ E
and α0(t, x) 6 t for (t, x) ∈ E. We consider a problem consisting of the functional differential
equation

∂tz(t, x) +

n∑

j=1

fj(t, x, zα(t,x))∂xj
z(t, x) = G(t, x, zα(t,x)) (1.1)

and the initial-boundary condition

z(t, x) = ϕ(t, x) on E0 ∪ ∂0E. (1.2)

A function v : Ω → R is called a classical solution of the above problem if:
i) v ∈ C(Ω,R) and v is of class C1 on E,
ii) v satisfies equation (1.1) on E and initial boundary condition (1.2) holds.
We are interested in solving problem (1.1), (1.2)numerically.
Write

∆
(j)
+ = {(t, x) ∈ E : xj = bj}, ∆

(j)
−

= {(t, x) ∈ E : xj = −bj},

where 1 6 j 6 n, and

∆ =

n⋃

j=1

(
∆

(j)
+ ∪ ∆

(j)
−

)
.

We will assume that f ∈ C(Ξ,Rn), G ∈ C(Ξ,R), ϕ ∈ C(E0 ∪ ∂0E,R) and that fj < 0 on

∆
(j)
+ × C(D,R) and fj > 0 on ∆

(j)
−

× C(D,R) for 1 6 j 6 n. Note that if this condition is
satisfied, then under natural assumptions on regularity of f , G and ϕ there exists a classical
solution of (1.1), (1.2) and it is unique.

Note that our hereditary setting contains the well-known delay structures as particular
cases.

Example 1.1. Suppose that f̃ , G̃ : Ξ → R are given functions. If we set f(t, x, w) =
f̃(t, x, w(0, 0)) and G(t, x, w) = G̃(t, x, w(0, 0)), then

f(t, x, zα(t,x)) = f̃(t, x, z(α(t, x))), G(t, x, zα(t,x)) = G̃(t, x, z(α(t, x)))

and (1.1) becomes an equation with deviated variables.

Example 1.2. Assume that β, γ : E → R
1+n. For the above f̃ , G̃ we put

f(t, x, w) = f̃

(
t, x,

(γ−α)(t,x)∫

(β−α)(t,x)

w(ξ, y) dy dξ

)
, G(t, x, w) = G̃

(
t, x,

(γ−α)(t,x)∫

(β−α)(t,x)

w(ξ, y) dy dξ

)
,

then

f(t, x, zα(t,x)) = f̃

(
t, x,

γ(t,x)∫

β(t,x)

w(ξ, y) dy dξ

)
, G(t, x, zα(t,x)) = G̃

(
t, x,

γ(t,x)∫

β(t,x)

w(ξ, y) dy dξ

)

and (1.1) becomes a differential integral equation.
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In recent years, a number of papers concerning numerical methods for functional partial
differential equations have been published. The difference methods and monotone iterative
methods for nonlinear parabolic problems were studied in [9, 10]. The quasi-linear first
order functional differential systems and the general class of difference schemes with suitable
interpolation operators were considered in [4]. The monograph [6] contains an exposition of
the theory of difference methods for hyperbolic functional differential problems. The main
problem in these investigations is to find a difference functional equation which is stable
and satisfies the consistency conditions with respect to the original problem with sufficiently
regular functions. A comparison technique is used in the investigation of the stability of
functional difference problems.

We use in the present paper general ideas concerning numerical methods for first order
partial differential equations, which were introduced in [3, 6, 8]. The numerical method
of bicharacteristics for quasi-linear hyperbolic systems was treated in [7]. The unknown
function of only two independent variables was considered in that paper; this constraint can
be omitted, by the proper choice of approximation, which was first proposed in [1].

Results for quasi-linear hyperbolic functional differential problems can be found in [2, 6]
(Chapter 3).

First order partial differential equations with deviated variables and differential integral
equations find applications in different fields of knowledge. Examples of such applications
can be found in [1, 6].

Our motivation to investigate the numerical methods of bicharacteristics is as follows.

Two types of assumptions are needed in the theorem on the stability of classical difference
schemes corresponding to (1.1), (1.2). The first type conditions concern regularity of f and
G. It is assumed that f and G satisfy Perron type estimates with respect to the functional
variable. The second type conditions concern the mesh. It is required that

1

n
−
h0

hj

|fj(P )| > 0 for 1 6 j 6 n, P ∈ Ξ. (1.3)

where h0 and (h1, . . . , hn) are steps of the mesh with respect to t and (x1, . . . , xn). The above
assumption is known as the generalized Courant — Friedrichs — Lewy condition for (1.1),
(1.2).

We show that there are numerical methods for (1.1), (1.2) which are convergent and
assumption (1.3) is omitted.

2. Discretization of mixed problems

Let us denote by F(X, Y ) the class of all functions defined on X and taking values in Y ,
where X and Y are arbitrary sets. Let N and Z be the sets of natural numbers and integers,
respectively. Let us fix our notations on vectors. For x, y ∈ R

n, where

x = (x1, . . . , xn), y = (y1, . . . , yn),

we put

‖x‖ =

n∑

j=1

|xj|, x ⋄ y = (x1y1, . . . , xnyn).
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Consider the set Ω. Let (h0, h
′), h′ = (h1, . . . , hn), stand for steps of the mesh. For

h = (h0, h
′) and (r,m) ∈ Z

1+n where m = (m1, . . . , mn), we define

t(r) = rh0, x(m) = m ⋄ h′, x(m) = (x
(m1)
1 , . . . , x(mn)

n ).

Let us denote by H the set of all h = (h0, h
′) such that there are K0 ∈ N, N ∈ N

n

with the properties K0h0 = d0 and N ⋄ h′ = b. Let K ∈ N be defined by the relation
Kh0 6 a < (K + 1)h0. For h ∈ H we put ‖h‖ = h0 + h1 + . . .+ hn. Write

R
1+n
h = {(t(r), x(m)) : (r,m) ∈ Z

1+n}, Ih = {t(r) : 0 6 r 6 K},

E0.h = E0 ∩ R
1+n
h , ∂0Eh = ∂0E ∩ R

1+n
h .

For Xh being an arbitrary subset of R
1+n
h and for the functions zh : Xh → R and η : Ih → R

we write z
(r,m)
h = z(t(r), x(m)) and η(r) = η(t(r)). We put

Ω(r) = Ω ∩
(
[−d0, t

(r)] × R
n
)

and

‖z‖Ω(r) = max
{
|z(t, x)| : (t, x) ∈ Ω(r)

}
for z ∈ F(Ω,R) and 0 6 r 6 K.

Set
Sh = (E0.h ∪ ∂0Eh) ∩ E.

Now we define a few sets of indexes:

Σ = {σ′ = (σ1, . . . , σn), σk ∈ {0, 1} for 1 6 k 6 n}, (2.1)

Σ̃ = {(σ0, σ
′) : σ0 ∈ {−1, 0}, σ′ ∈ Σ},

and
Σ(s,m) = {(σ0, σ

′) ∈ Σ̃ : (t(s+σ0), x(m+σ′)) ∈ Sh}, (t(s), x(m)) ∈ Sh. (2.2)

Denote
Θ = {θ ∈ F(H,R+) : lim

h→0
θ(h) = 0}.

The numerical method of bicharacteristics consists in replacing problem (1.1), (1.2) by the
system of difference equations for unknown functions

η = (η1, . . . , ηn) and z.

Now we present these difference equations.
The functional differential problems considered in the present paper have the following

property. Equation (1.1) contains the functional variable zα(t,x) which is an element of
the space C(D,R). Numerical solutions of (1.1), (1.2) are functions defined on finite sets.

Therefore we need an approximation operator T̂h in the system of difference equations.
Suppose that (t(s), x(m)) ∈ Sh, 0 6 s 6 K − 1, and ϕh : E0.h ∪ ∂0Eh → R is a given

function. We define
η(s) = x(m), z(s,m) = ϕ

(s,m)
h (2.3)

and
η(r+1) = η(r) + h0f(t(r), η(r), (T̂hz)α(t(r),η(r))), (2.4)
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z(t(r+1), η(r+1)) = z(t(r), η(r)) + h0G(t(r), η(r), (T̂hz)α(t(r) ,η(r))), (2.5)

for s 6 r 6 K − 1. Let us denote by (gh(·, t(s), x(m)), zh) a solution of problem (2.3)–(2.5),
where gh = (gh.1, . . . , gh.n). We write

Êh = {(t(r), gh(t(r), t(s), x(m))) ∈ E : (t(s), x(m)) ∈ Sh, s 6 r 6 K},

Ω̂h = Êh ∪E0.h ∪ ∂0Eh, Ω̂
(r)
h = Ω̂h ∩ ([−d0, t

(r)] × R
n), 0 6 r 6 K.

Remark 2.1. Note that in the numerical method of characteristics (see [1]) we are able
to construct the whole mesh before we start to compute the approximate solution. The
situation is different in the method of bicharacteristics (2.3)–(2.5), because the location of

nodes (t(r+1), x) ∈ Ω̂h depends on the values of the approximate solution zh on the set Ω̂
(r)
h .

Moreover, the approximation operator T̂h, which we define further, depends on the mesh Ω̂h.
Hence the approximate solution zh, the mesh Ω̂h, and the approximation operator T̂h should
be controlled simultaneously in the course of our computations.

2.1. Notation of error. Suppose that v : Ω → R is of class C1. We will denote by

g[v](·, t, x) = (g1[v](·, t, x), . . . , gn[v](·, t, x))

the set of bicharacteristics of equation (1.1) corresponding to v. Then the function g[v](·, t, x)
is the solution of the Cauchy problem

w′(ξ) = f(ξ, w(ξ), vα(ξ,w(ξ))), w(t) = x, (2.6)

where f = (f1, . . . , fn). The numerical procedure (2.3)–(2.5) generates two sets of functions:

{gh}h∈H and {zh}h∈H . The function gh is used to constructe the set Ω̂h whereas zh is

considered as an approximate solution to problem (1.1), (1.2) and zh ∈ F(Ω̂h,R). The idea
of the proof of convergence, together with the content of Remark 2.1, leads to the following
notation of the error of the method (2.3)–(2.5):

[|v − zh|]
(r)
h.E = max{|v(t(i), g[v](t(i), t, x)) − zh(t(i), gh(t(i), t, x))| : (t, x) ∈ Sh, t 6 t(i) 6 t(r)},

[|v − zh|]
(r)
h.∂ = max{|v(t(i), x(m)) − zh(t(i), x(m))| : (t(i), x(m)) ∈ E0.h ∪ ∂0Eh, i 6 r},

[|v − zh|]
(r)
h = max{[|v − zh|]

(r)
h.E, [|v − zh|]

(r)
h.∂},

and

[|g[v] − gh|]
(r)
h = max{‖g[v](t(i), t, x) − gh(t(i), t, x)‖ : (t, x) ∈ Sh, t 6 t(i) 6 t(r)},

δΩ̂
(r)
h =

1

2
max

{
‖gh(t(i), t(s), x(m)) − gh(t(i), t(s+σ0), x(m+σ′))‖ :

(t(s), x(m)) ∈ Sh, (σ0, σ
′) ∈ Σ(s,m), s 6 i 6 r

}
,

where Σ(s,m) is defined by (2.2) and 0 6 r 6 K. Then the error of the method (2.3)–(2.5) is
defined by

εh = max
{

[|v − zh|]h, [|g[v] − gh|]h, 2 δΩ̂h

}
. (2.7)
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We prove that for v satisfying (1.1), (1.2), for sufficiently regular f and G and for the

approximation operator T̂h satisfying certain additional conditions, we have

lim
h→0

ε
(r)
h = 0 uniformly with respect to r, 0 6 r 6 K.

2.2. Assumptions on the approximation operator.

Assumption H[T̂h]. The operator T̂h : F(Ω̂h,R) → F(Ω,R) satisfies the conditions:

1) if w ∈ F(Ω̂h,R) then T̂hw ∈ C(Ω,R);

2) if t(r) ∈ Ih and w, w̄ ∈ F(Ω̂h,R) are such functions that

w|bΩ
(r)
h

= w̄|bΩ
(r)
h

then
T̂hw|Ω(r) = T̂hw̄|Ω(r)

(Volterra condition);
3) for each v ∈ C1(Ω,R) and for (gh, zh) satisfying (2.3)–(2.5) there is β ∈ Θ and C1,

C2 ∈ R+ such that for 0 6 r 6 K

‖v − T̂hzh‖Ω(r) 6 [|v − zh|]
(r)
h + C1[|g[v] − gh|]

(r)
h + C2 δΩ̂

(r)
h + β(h). (2.8)

Examples of T̂h, satisfying Assumption H [T̂h], are given in Section 4.

3. Convergence of the numerical method

The main assumptions on f , G and α are the following:

Assumption H[f, G, ϕ]. The functions f : Ξ → R
n and G : Ξ → R are continuous

and there is σ : [0, a] × R+ → R+ such that
1) σ is continuous and nondecreasing with respect to both variables,
2) σ(t, 0) = 0 for t ∈ [0, a] and for each ρ > 1 the maximal solution of the Cauchy

problem
ζ ′(t) = σ(t, ρζ(t)), ζ(0) = 0 (3.1)

is ζ(t) = 0 for t ∈ [0, a];
3) the estimates

‖f(t, x, w) − f(t, x̄, w̄)‖ 6 σ(t, ‖x− x̄‖ + ‖w − w̄‖D),

|G(t, x, w) −G(t, x̄, w̄)| 6 σ(t, ‖x− x̄‖ + ‖w − w̄‖D)

are satisfied on Ξ,
4) there is δ = (δ1, . . . , δn), δj > 0, 1 6 j 6 n, such that for each (t, w) ∈ [0, a]×C(D,R)

and for each j, 1 6 j 6 n, we have

fj(t, x, w) < 0 for x ∈ [−b, b], xj > bj − δj

and
fj(t, x, w) > 0 for x ∈ [−b, b], xj 6 −bj + δj ;

5) the functions α0 ∈ C(E,R), α′ ∈ C(E,Rn) are such that 0 6 α0(t, x) 6 t, α′(t, x) ∈
[−b, b] for (t, x) ∈ E and there is p ∈ R+ such that

|α0(t, x) − α0(t, x̄)| + ‖α′(t, x) − α′(t, x̄)‖ 6 p‖x− x̄‖ on E.
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Theorem 3.1. Suppose that Assumptions H [T̂h], H [f,G, ϕ] are satisfied and

1) the function ϕ : E0 ∪ ∂0E → R is of class C1, the function v : Ω → R is the solution

of (1.1), (1.2) and v is of class C1 on Ω;

2) h ∈ H and h0 is so small that the inequality

h0|fj(t, x, w)| 6 δj for (t, x, w) ∈ Ξ, 1 6 j 6 n,

holds true with δ = (δ1, . . . , δn) from Assumption H [f,G, ϕ];
3) (gh, zh) is the solution of (2.3)–(2.5) and there is ψ0 ∈ Θ such that

‖ϕ(r,m) − ϕ
(r,m)
h ‖ 6 ψ0(h) on E0.h ∪ ∂0Eh.

Then there is ε0 > 0 and ψ ∈ Θ such that for ‖h‖ < ε0 and 0 6 r 6 K we have

max
{

[|v − zh|]
(r)
h , [|g[v] − gh|]

(r)
h , 2 δΩ̂

(r)
h

}
6 ψ(h), (3.2)

where g[v] = (g1[v], . . . , gn[v]) is the set of bicharacteristics of equation (1.1).

Proof. The above condition 2) is sufficient for the numerical bicharacteristics to remain
in the set E, i.e. for any (t, x) ∈ Sh and 0 6 r 6 K we have gh(t(r), t, x) ∈ [−b, b]. This,

together with Assumption H [T̂h], gives the existence and uniqueness of solutions for the
problem (2.3)–(2.5).

Write εh.0 = [|v−zh|]h, εh.1 = [|g[v]−gh|]h and εh.2 = 2 δΩ̂h. We will construct a difference
inequality for the function εh = max{εh.0, εh.1, εh.2}. Suppose that (t, x) ∈ Sh. Once (t, x), v
are fixed, let us denote g = g[v](·, t, x) and gh = gh(·, t, x). Then we have

v(t(r+1), g(t(r+1))) = v(t(r), g(t(r))) +

t(r+1)∫

t(r)

G(s, g(s), vα(s,g(s)))ds, (3.3)

and

g(t(r+1)) = g(t(r)) +

t(r+1)∫

t(r)

f(s, g(s), vα(s,g(s)))ds. (3.4)

It follows from (2.3)–(2.5), that

zh(t(r+1), g
(r+1)
h ) = zh(t(r), g

(r)
h ) + h0G(t(r), g

(r)
h , (T̂hzh)

α(t(r),g
(r)
h

)
), (3.5)

and
g

(r+1)
h = g

(r)
h + h0f(t(r), g

(r)
h , (T̂hzh)

α(t(r),g
(r)
h

)
). (3.6)

First we write a difference inequality for εh.0. Subtracting (3.3) and (3.5) we find that

v(t(r+1), g(t(r+1))) − zh(t(r+1), gh(t(r+1))) = v(t(r), g(t(r))) − zh(t(r), gh(t(r)))+

h0

[
G(t(r), g(t(r)), vα(t(r),g(t(r)))) −G(t(r), gh(t(r)), (T̂hzh)α(t(r),gh(t(r))))

]
+ Γ

(r)
h , (3.7)

where

Γ
(r)
h =

t(r+1)∫

t(r)

[
G(s, g(s), vα(s,g(s))) −G(t(r), g(t(r)), vα(t(r),g(t(r))))

]
ds.
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It follows from the regularity of v, α, f , σ and from the condition σ(t, 0) = 0 that there is
γ0 ∈ Θ such that ∣∣∣Γ(r)

h

∣∣∣ 6 h0γ0(h) for 0 6 r 6 K − 1. (3.8)

Then from (3.7) and from Assumption H [f,G, ϕ] we conclude that

|v(t(r+1), g(t(r+1))) − zh(t(r+1), gh(t(r+1)))| 6

[|v − zh|]
(r)
h.E + h0σ(t(r), ε

(r)
h.1 + ‖vα(t(r),g(t(r))) − (T̂hzh)α(t(r),gh(t(r)))‖D) + h0γ0(h). (3.9)

We have
‖vα(t(r),g(t(r))) − (T̂hzh)α(t(r),gh(t(r)))‖D 6 A(r)(h) +B(r)(h)

where

A(r)(h) = ‖vα(t(r),g(t(r))) − vα(t(r),gh(t(r)))‖D, B(r)(h) = ‖(v − T̂hzh)α(t(r),gh(t(r)))‖D.

Let c̃ ∈ R+ be such a constant that |∂tv(t, x)|, ‖∂xv(t, x)‖ 6 c̃ for (t, x) ∈ Ω. Then

A(r)(h) 6 c̃pε
(r)
h.1.

Since
B(r)(h) 6 ‖v − T̂hzh‖Ω(r),

it follows from Assumption H [T̂h] that there are β and C1, C2 ∈ R+ such that

B(r)(h) 6 ε
(r)
h.0 + C1ε

(r)
h.1 + C2ε

(r)
h.2 + β(h) for 0 6 r 6 K − 1.

We conclude from (3.9) and from the monotonicity of σ that for 0 6 r 6 K − 1

|v(t(r+1), g(t(r+1))) − zh(t(r+1), gh(t(r+1)))| 6 ε
(r)
h.0 + h0σ

(
t(r), c̄ε

(r)
h + β(h)

)
+ h0γ0(h),

and, consequently,

ε
(r+1)
h.0 6 ε

(r)
h.0 + h0σ

(
t(r), c̄ε

(r)
h + β(h)

)
+ h0γ0(h) (3.10)

where c̄ = 2 + c̃p + C1 + C2. In the same way we prove that there is γ1 ∈ Θ such that for
0 6 r 6 K − 1

ε
(r+1)
h.1 6 ε

(r)
h.1 + h0σ

(
t(r), c̄ε

(r)
h + β(h)

)
+ h0γ1(h). (3.11)

Let us now write a difference inequality for εh.2. From (2.4) it follows that

gh(t(r+1), t(s), x(m)) − gh(t(r+1), t(s+σ0), x(m+σ′)) = gh(t(r), t(s), x(m))−

gh(t(r), t(s+σ0), x(m+σ′)) + h0f(t(r), gh(t(r), t(s), x(m)), (T̂hzh)α(t(r),gh(t(r),t(s),x(m))))−

h0f(t(r), gh(t(r), t(s+σ0), x(m+σ′)), (T̂hzh)α(t(r),gh(t(r),t(s+σ0),x(m+σ′)))). (3.12)

Then from (3.6) and from Assumption H [f,G, ϕ] we conclude that

‖gh(t(r+1), t(s), x(m)) − gh(t(r+1), t(s+σ0), x(m+σ′))‖ 6

ε
(r)
h.2 + h0σ(t(r), ε

(r)
h.2 + ‖(T̂hzh)α(t(r),gh(t(r),t(s),x(m))) − (T̂hzh)α(t(r),gh(t(r),t(s+σ0),x(m+σ′))‖D). (3.13)
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A procedure, similar to that used to obtain (3.10), leads to

ε
(r+1)
h.2 6 ε

(r)
h.2 + h0σ(t(r), ĉε

(r)
h + β(h)), 0 6 r 6 K − 1, (3.14)

where
ĉ = 3 + 2C1 + 2C2 + c̃p. (3.15)

Now, from (3.10), (3.11), (3.14), follows the difference inequality

ε
(r+1)
h 6 ε

(r)
h + h0σ(t(r), ρε

(r)
h + β(h)) + h0γ(h), 0 6 r 6 K − 1, (3.16)

where ρ = max{c̄, ĉ} = ĉ and
γ = max{γ0, γ1}. (3.17)

Moreover, the initial estimate ε
(0)
h 6 ψ̄0(h) is satisfied, where

ψ̄0(h) = max{ψ0(h), ‖h′‖}. (3.18)

Consider the Cauchy problem

ζ ′(s) = σ(s, ρζ(s) + β(h)) + γ(h), ζ(0) = ψ̄0(h). (3.19)

It follows from Assumption H [f,G, ϕ] that there is ε0 > 0 such that for ‖h‖ < ε0 there exists
the maximal solution ωh of (3.19) and ωh is defined on [0, a]. Moreover, we have

lim
h→0

ωh(s) = 0 uniformly on [0, a].

The function ωh satisfy the recurrent inequality

ω
(r+1)
h > ω

(r)
h + h0σ(t(r), ρω

(r)
h + β(h)) + h0γ(h), 0 6 r 6 K − 1. (3.20)

It follows from (3.16), (3.20) that

ε
(r)
h 6 ω

(r)
h for 0 6 r 6 K

and, consequently,

max
{

[|g[v] − gh|]
(r)
h , [|v − zh|]

(r)
h , 2δΩ̂

(r)
h

}
6 ωh(a), 0 6 r 6 K.

Then assertion (3.2) is satisfied with ψ(h) = ωh(a) and this complete the proof of the
theorem. �

Remark 3.1. If all assumptions of Theorem 3.1 are satisfied with σ(t, s) = Ls, for
(t, s) ∈ [0, a] × R+, where L ∈ R+, then we have the estimates

ε
(r)
h 6 ψ̄0(h) exp[Lĉa] +

Lβ(h) + γ(h)

Lĉ
(exp[Lĉa] − 1) for L > 0

and
ε
(r)
h 6 ψ̄0(h) + γ(h)a for L = 0,

for 0 6 r 6 K, where ĉ, γ, ψ0(h) are given by (3.15), (3.17), (3.18), respectively.
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4. Approximation operators

We give examples of the operator T̂h satisfying Assumption H [T̂h]. Our investigations start
with a method of, roughly speaking, uniformization of the mesh. By the uniformity we
mean that the j-th coordinate of a node is a multiplicity of hj, 0 6 j 6 n; the mesh Ω̂h

is uniform only with respect to the 0-th (i.e., time) coordinate. Defining Eh = Ω ∩ R
1+n
h

and Ωh = E0.h ∪ Eh ∪ ∂0Eh, we get a uniform mesh on Ω. We wish to approximate the
values of the function zh : Ω̂h → R at uniform nodes of Ωh, to be able to use the well-known
interpolation operator Th : F(Ωh,R) → C(Ω,R) (see [6, Chapter 5]).

Let h ∈ H and let Q be a finite subset of Ih × [−c, c], with the property

Q ∩ ({t(r)} × [−c, c]) 6= ∅ for 0 6 r 6 K. (4.1)

Later on we take Q = Ω̂h. We will define the “uniformization” operator

U : F(Q,R) → F(Ωh,R).

For this purpose, some auxiliary notation will be needed. Let us define the families of
intervals:

F =
{
{t} × [a, b) : (t, a), (t, b) ∈ R

1+n
h

}

and
F

(r,m) =
{
F ∈ F : (t(r), x(m)) ∈ F , F ∩Q 6= ∅

}
,

and a number
d(r,m) = min

{
‖b− a‖ : {t} × [a, b) ∈ F

(r,m)
}
.

Then we put

Q(r,m) = Q ∩
( ⋃

F∈F
(r,m)
min

F
)
,

where
F

(r,m)
min =

{
{t} × [a, b) ∈ F

(r,m) : ‖b− a‖ = d(r,m)
}
.

Due to (4.1), thus defined Q(r,m) is nonempty.

Definition 4.1. Take (t(r), x(m)) ∈ Ωh and z ∈ F(Q,R). We put

( Uz)(t(r), x(m)) =
κ∑

ν=1

wνz(Pν), (4.2)

for some {P1, . . . , Pκ} = P (r,m) ⊂ Q(r,m). Two cases are distinguished here.

I. Suppose that (t(r), x(m)) ∈ Q. We put then P (r,m) = {(t(r), x(m))} and w1 = 1.
II. Otherwise, if (t(r), x(m)) /∈ Q, we choose any nonempty subset P (r,m) of Q(r,m) and any

nonnegative wν such that
κ∑

ν=1

wν = 1. (4.3)

Example 4.1. A simple approximation may be done in the following way. In case II of
the above Definition, we take an arbitrarily chosen one-element subset P (r,m) = {(t(r), p)} of
Q(r,m) and we put w1 = 1.
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Example 4.2. A more complicated approximation may be constructed using Shepard’s
interpolation. In case II of the above Definition, we take P (r,m) = Q(r,m) and we put

wν = ‖pν − x(m)‖−1

( κ∑

i=1

‖pi − x(m)‖−1

)
−1

, 1 6 ν 6 κ,

where Pν = (t(r), pν), 1 6 ν 6 κ.

We will prove that Definition 4.1 is suitable for our purposes, i.e. assures the fulfillment
of Assumption H [T̂h].

Note that for (t(r), p) ∈ Q(r,m), we have ‖p− x(m)‖ 6 d(r,m). If we take Q = Ω̂h, then

‖p− x(m)‖ 6 d(r,m) 6 δΩ̂
(r)
h + ‖h′‖. (4.4)

4.1. Interpolation operator Th and approximation operator T̂h. Now we describe
the interpolation operator Th : F(Ωh,R) → F(Ω,R) presented in [6].

Suppose that z : Ωh → R. For (t, x) ∈ Ω three cases will be distinguished.
I. Then there is (r,m) ∈ Z

1+n such that (t(r), x(m)), (t(r+1), x(m+1)) ∈ Ωh and t(r) 6 t 6

t(r+1), x(m) 6 x 6 x(m+1), where m + 1 = (m1 + 1, . . . , mn + 1). We define

(Thz)(t, x) =

(
1 −

t− t(r)

h0

) ∑

σ′∈Σ

z(r,m+σ′)

(
x− x(m)

h′

)σ′(
1 −

x− x(m)

h′

)1−σ′

+

(
t− t(r)

h0

) ∑

σ′∈Σ

z(r+1,m+σ′)

(
x− x(m)

h′

)σ′(
1 −

x− x(m)

h′

)1−σ′

where (
x− x(m)

h′

)σ′

=

n∏

j=1

(
xj − x

(mj )
j

hj

)σj

,

and (
1 −

x− x(m)

h′

)1−σ′

=
n∏

j=1

(
1 −

xj − x
(mj )
j

hj

)1−σj

and we take 00 = 1 in the above formulas.
II. Suppose that |xj | > N̄jhj for some j, 1 6 j 6 n, where N̄ = (N̄1, . . . , N̄n) ∈ N

n is
defined by the relation N̄ ⋄ h′ 6 c < (N̄ + 1) ⋄ h′. Then we put Thz(t, x) = Thz(t, x̃), where

x̃j =





xj , |xj| 6 N̄jhj

−N̄jhj , xj < −N̄jhj

N̄jhj, xj > N̄jhj ,

1 6 j 6 n.

III. The last case is Kh0 < t 6 a. Then we set Thz(t, x) = Thz(Kh0, x).
Note that Th is a linear operator from F(Ωh,R) to C(Ω,R). For fixed r, 0 6 r 6 K, we

define Ω
(r)
h = Ωh ∩ Ω(r), and for zh : Ω

(r)
h → R we put

‖zh‖Ω
(r)
h

= max
{
|z

(i,m)
h | : (t(i), x(m)) ∈ Ω

(r)
h

}
.
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It is easy to see that the estimate

‖Thzh‖Ω(r) = ‖zh‖Ω
(r)
h

(4.5)

holds for −K0 6 r 6 K.
Let Q = Ω̂h in Definition 4.1. Then we define

T̂hw = Th Uw (4.6)

for w ∈ F(Ω̂h,R).

4.2. Properties of the operator U and approximation operators. To prove that
the the above-defined operator T̂h satisfies Assumption H [T̂h], we introduce an auxiliary

mesh Ω̃h. Suppose that v ∈ C1(Ω,R) and consider the set of bicharacteristics g[v](·, t, x),
(t, x) ∈ Sh. Then we write

Ẽh = {(t(r), g[v](t(r), t, x)) ∈ E : (t, x) ∈ Sh, 0 6 r 6 K}

and
Ω̃h = Ẽh ∪E0.h ∪ ∂0Eh, Ω̃

(r)
h = Ω̃h ∩ Ω(r), 0 6 r 6 K.

Moreover, with Q = Ω̃h taken in Definition 4.1, we put

T̃hw = Th Uw (4.7)

for w ∈ F(Ω̃h,R). We define δΩ̃h analogously to δΩ̂h, by putting g instead of gh in the
definition of the latter. Similarly to (4.4), we have

‖p− x(m)‖ 6 d(r,m) 6 δΩ̃
(r)
h + ‖h′‖ (4.8)

for (t(r), p) ∈ Q(r,m).

We will use the restriction operators Rh : F(Ω,R) → F(Ωh,R), R̂h : F(Ω,R) → F(Ω̂h,R)

and R̃h : F(Ω,R) → F(Ω̃h,R), defined by

Rhv = v|Ωh
, R̂hv = v|bΩh

and R̃hv = v|eΩh

for v ∈ F(Ω,R).

Lemma 4.1. Suppose that 0 6 r 6 K, h ∈ H, and

1) v ∈ C1(Ω,R), c̃ ∈ R+ are such that |∂tv(t, x)|, ‖∂xv(t, x)‖ 6 c̃ on Ω;

2) (gh, zh) is a solution of the difference system (2.3)–(2.5),
3) g[v](·, t, x) is the set of bicharacteristics for (1.1).

Then:

(i) ‖UR̃hv − Rhv‖Ω
(r)
h

6 c̃
(
δΩ̃

(r)
h + ‖h′‖

)
,

(ii) ‖ThRhv − v‖Ω(r) 6 c̃‖h‖,

(iii) ‖T̃hR̃hv − v‖Ω(r) 6 c̃
(
δΩ̃

(r)
h + 2‖h‖

)
,

(iv) ‖T̃hR̃hv − T̂hzh‖Ω(r) 6 [|v − zh|]
(r)
h + c̃ [|g[v] − gh|]

(r)
h + c̃ δΩ̂

(r)
h + c̃γ(h),

where

γ(h) = δΩ̃
(r)
h + 2‖h‖. (4.9)
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Proof. (i) Let us take Q = Ω̃h in Definition 4.1. We should estimate the difference
∣∣∣( UR̃hv − Rhv)(t(i), x(m))

∣∣∣

for (t(i), x(m)) ∈ Ω(r). In case I from that Definition, i.e., when (t(i), x(m)) ∈ Ω̃h, the above
difference vanishes. In case II, the assertion follows from relations (4.3), (4.4) and from the
mean value theorem.

(ii) We omit the proof of this part, which is similar to the proof of Lemma 5.27 in [6].
(iii) The estimate follows from the triangle inequality, involving (i), with relation (4.5)

applied to its left-hand side, and (ii).

(iv) Since from (4.6), (4.7) we have T̃hR̃hv − T̂hzh = Th( UR̃hv − Uzh), relation (4.5)
implies

‖T̃hR̃hv − T̂hzh‖Ω(r) = ‖UR̃hv − Uzh‖Ω
(r)
h

.

Let (t(i), x(m)) ∈ Ω
(r)
h be such that

‖UR̃hv − Uzh‖Ω
(r)
h

=
∣∣∣( UR̃hv − Uzh)(t(i), x(m))

∣∣∣ .

Two possibilities can occur, either (a) (t(i), x(m)) ∈ Eh.0 ∪ ∂0Eh, or (b) (t(i), x(m)) 6∈
Eh.0 ∪ ∂0Eh.

Consider the case (a). Then (t(i), x(m)) ∈ Ω̂h ∩ Ωh and (t(i), x(m)) ∈ Ω̃h ∩ Ωh, and twice
the case I from Definition 4.1 holds, namely

UR̃hv(t(i), x(m)) = R̃hv(t(i), x(m))

and
Uzh(t(i), x(m)) = zh(t(i), x(m)).

Moreover, R̃hv(t(i), x(m)) = v(t(i), x(m)), and hence
∣∣∣( UR̃hv − Uzh)(t(i), x(m))

∣∣∣ = |v(t(i), x(m)) − zh(t(i), x(m))| 6 [|v − zh|]
(r)
h.∂ 6 [|v − zh|]

(r)
h .

Then (iv) is proved in the case (a). Consider now the case (b). From Definition 4.1 it follows
that

Uzh(t(i), x(m)) =

κ∑

ν=1

wνzh(Pν) (4.10)

for some Pν ∈ Ω̂h, wν > 0. We have x(m) ∈ [−b, b], hence Pν ∈ {t(i)} × [−b, b], and

Pν = (t(i), gh(t(i), αν)) for some αν ∈ Sh, 1 6 ν 6 κ.

Then we define the set {P̄ν}
κ
ν=1 ⊂ Ω̃h by

P̄ν = (t(i), g[v](t(i), αν)), 1 6 ν 6 κ.

Then
|v(P̄ν) − v(Pν)| 6 c̃ ‖g[v](t(i), αν) − gh(t(i), αν)‖ 6 c̃ [|g[v] − gh|]

(r)
h . (4.11)

Moreover, we have

|v(P̄ν) − zh(Pν)| = |v(t(i), g[v](t(i), αν)) − zh(t(i), gh(t(i), αν))| 6 [|v − zh|]
(r)
h.E 6 [|v − zh|]

(r)
h .

(4.12)
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We put

A =

κ∑

ν=1

wνv(Pν) and Ā =

κ∑

ν=1

wνv(P̄ν).

Due to the continuity of v(t(i), ·) and relation (4.3), the iterative use of the intermediate
value theorem gives us the existence of a point y ∈ conv{gh(t(i), αν)}κ

ν=1 ⊂ R
n such that

v(t(i), y) = A.

Similarly, there exists a point ỹ ∈ R
n such that

v(t(i), ỹ) = UR̃hv(t(i), x(m)).

From the relation y ∈ conv{gh(t(i), αν)}κ
ν=1 and from (4.4)

‖y − x(m)‖ 6 max
16ν6κ

‖gh(t(i), αν) − x(m)‖ 6 δΩ̂
(r)
h + ‖h′‖.

Let Q(i,m) be a set from Definition 4.1 with Q = Ω̃h. Since (t(i), ỹ) ∈ convQ(i,m), we have
from (4.8)

‖ỹ − x(m)‖ 6 max
{
‖p− x(m)‖ : (t(i), p) ∈ Q(i,m)

}
6 δΩ̃

(r)
h + ‖h′‖

Then

‖ỹ − y‖ 6 ‖ỹ − x(m)‖ + ‖x(m) − y‖ 6 δΩ̂
(r)
h + γ(h)

and, consequently,

|v(t(i), ỹ) − v(t(i), y)| 6 c̃δΩ̂
(r)
h + c̃γ(h). (4.13)

Now, from (4.11)–(4.13), we have

|UR̃hv(t(i), x(m))− Uzh(t(i), x(m))|6 |UR̃hv(t(i), x(m))−A| + |A−Ā| + |Ā− Uzh(t(i), x(m))|6

|v(t(i), ỹ) − v(t(i), y)| +
κ∑

ν=1

wν |v(t(i), Pν) − v(t(i), P̄ν)| +
κ∑

ν=1

wν |v(t(i), P̄ν) − zh(t(i), Pν)| 6

c̃δΩ̂
(r)
h + c̃γ(h) +

κ∑

ν=1

wν

(
c̃[|g[v] − gh|]

(r)
h + [|v − zh|]

(r)
h

)
=

c̃δΩ̂
(r)
h + c̃γ(h) + c̃[|g[v] − gh|]

(r)
h + [|v − zh|]

(r)
h .

Then (iv) is proved also in the case (b). This completes the proof of Lemma 4.1. �

Remark 4.1. Note that from the classical theorems on the continuous dependence of
solutions of Cauchy problems on the initial data

lim
h→0

δΩ̃
(r)
h = 0 for 0 6 r 6 K

follows. Then from Lemma 4.1, (iii) and (iv) it follows that condition 3) from Assumption

H [T̂h] is fulfilled by the approximation operator T̂h defined by (4.6).



A numerical method of bicharacteristics 35

5. Error estimate

Lemma 5.1. Suppose that all assumptions of Theorem 3.1 are satisfied with σ(t, s) = Ls,
for (t, s) ∈ [0, a] × R+, where L ∈ R+, and

1) c̃ ∈ R+ is such that |∂tv(t, x)|, ‖∂xv(t, x)‖ 6 c̃ on Ω;

2) A ∈ R+ is such that

‖f(t, x, vα(t,x))‖ 6 A on Ω;

3) the estimates

|f(t, x, w) − f(t̄, x, w)| 6 L|t− t̄|, ‖G(t, x, w) −G(t̄, x, w)‖ 6 L|t− t̄|

hold on Ξ;

4) the above-defined (see Definition 4.1 and (4.6)) approximation operator T̂h is used in

the numerical method (2.3)–(2.5).
Then (3.2) holds with

ψ(h) = max{ψ0(h), ‖h′‖} exp[Lĉa] +
Lβ(h) + γ(h)

Lĉ
(exp[Lĉa] − 1) for L > 0

and

ψ(h) = max{ψ0(h), ‖h′‖} + γ(h)a for L = 0,

where β(h) = c̃(L∗ + 4)‖h‖, ĉ = 3 + 5c̃ + c̃p, γ(h) = h0L(1 + A)(1 + c̃p)/2, and L∗ =
max{1, A} exp[L(1 + c̃p)a].

Proof. If we take the prescribed approximation operators, Lemma 4.1 assures the fulfill-
ment of Assumption H [T̂h] with C1 = C2 = c̃, hence ĉ.

Condition 2) implies

‖g[v](s, t, x) − g[v](t(r), t, x)‖ 6 A|s− t(r)|,

which, together with the global Lipschitz condition for f and G with constant L, gives

‖G(s, g[v](s, t, x), vα(s,g[v](s,t,x))) −G(t(r), g[v](t(r), t, x), vα(t(r),g[v](t(r),t,x)))‖ 6

L|s− t(r)|(1 + A)(1 + c̃p)

and a similar estimate for f . Recalling the definition of γ0 and γ1 from the proof of Theorem
3.1 and integrating the above inequality over [t(r), t(r+1)], we get

γ0(h) = γ1(h) =
1

2
h0L(1 + A)(1 + c̃p),

which is also the formula for γ(h).
Again, Lemma 4.1, together with the definition of β and γ̃, gives

β(h) = 2c̃
(
δΩ̃

(K)
h + 2‖h‖

)
.

Moreover, from the classical theorem on the continuous dependence on the initial data and
from the definition of δΩ̃h it follows that δΩ̃

(r)
h 6 L∗‖h‖/2 for all r, 0 6 r 6 K. This implies

β(h) = 2c̃(L∗/2 + 2)‖h‖.

Putting the above inequalities together and using the formulas from Remark 3.1, we get the
claimed error estimate. �
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6. Numerical examples

Example 6.1. Let n = 2, a 6 1 and E = [0, a] × [−1, 1]2, E0 = {0} × [−1, 1]2, ∂0E =
[0, a] × ([−1, 1]2 \ (−1, 1)2) . Consider the mixed problem

zt(t, x) + [−2x1 − q(x2)]zx1(t, x) + [−2x2 + q(z(t, tx1, tx2))]zx2(t, x) =

exp(t(x2
1 − x2

2))[(x2
1 − x2

2)(1 − 4t) + 2t(x2q(z(t, tx1, tx2)) − x1q(x2))], (6.1)

z(t, x, y) =






1 on E0,

et(1−x2
2) on ∂0E ∩ {|x1| = 1},

e−t(1−x2
1) on ∂0E ∩ {|x2| = 1}.

(6.2)

where

q(x) =
1

p
g

(x
4

)
, g(x) =






−p, x 6 −p,

−x ln(|x|), |x| < p, x 6= 0,

0, x = 0,

p, x > p,

(6.3)

with p = exp(−1). Note that g, and hence q, is continuous and non-Lipschitz; nevertheless,
the conditions of the convergence theorem are fulfilled, since for σ(t, p) = a1p + a2p| ln p|,
a1, a2 > 0, and for ρ > 1 the only solution of the Cauchy problem (3.1) with is ζ(t) = 0,
t ∈ [0, a]. The solution of the problem is given by z̃(t, x) = et(x2

1−x2
2). For problem (6.1),

(6.2) we use the numerical method of bicharacteristics (2.3)–(2.5), involving approximation

operator T̂h = Th U, with U from Example 4.1. Denote by (gh, zh) the solution of this
method. For fixed t(r), 0 6 r 6 K, we put

ε
(r)
h. max = max{|(zh − v)(t(r), y)| : (t(r), y) ∈ Ω̂h},

ε
(r)
h.mean =

(
#{y : (t(r), y) ∈ Ω̂h}

)
−1 ∑

(t(r),y)∈bΩh

|(zh − v)(t(r), y)|.

Consider now the Lax scheme for (6.1), (6.2). We denote the solution of this classical method

by z̄h. Then we define the errors ε̄
(r)
h. max, ε̄

(r)
h.mean in a similar way as above, with z̄h instead of

zh and with Ωh instead of Ω̂h.
We put h0 = 10−4, h1 = h2 = 2 · 10−2, a = 0.25 and obtain the following experimental

values of the above-defined errors.

t(r) ε̄
(r)
h. max ε

(r)
h. max ε̄

(r)
h.mean ε

(r)
h.mean

0.0625 2.548768 · 10−4 3.157028 · 10−5 1.287677 · 10−4 8.305750 · 10−6

0.1250 1.514947 · 10−3 5.104396 · 10−5 8.485705 · 10−4 1.453428 · 10−5

0.1875 4.166585 · 10−3 6.373904 · 10−5 2.473140 · 10−3 1.918148 · 10−5

0.2500 8.442145 · 10−3 7.185911 · 10−5 5.190896 · 10−3 2.258027 · 10−5

The approximate computing time for the classical method on a PC, with the AMD
DuronTM, 1.4 GHz CPU, cache of size 64 kB and 256 MB RAM, is 31 s compared to 1750 s
for the numerical method of bicharacteristics.
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For the same domain and another set of steps of the mesh, h0 = 5·10−3, h1 = h2 = 2·10−3,
the errors of the classical Lax scheme become greater than 106 for r > 19. The errors of our
method are given below.

t(r)
ε
(r)
h. max ε

(r)
h.mean

0.0625 1.544952 · 10−3 4.181424 · 10−4

0.1250 2.509618 · 10−3 7.121527 · 10−4

0.1875 3.146780 · 10−3 9.196634 · 10−4

0.2500 3.563794 · 10−3 1.065446 · 10−3

The approximate computing time for the numerical method of bicharacteristics, on the
same machine, is 85 s.

Example 6.2. We set n = 1, τ = 1, and

E = [0, a] × [−1, 1], E0 = {0} × [−1.5, 1.5], ∂0E = ([0, a] × [−1.5, 1.5]) \ E.

Consider the mixed problem

∂tu(t, x) + q

( γ(x)∫

β(x)

u(t, s) ds

)
(1 + ∂xu(t, x)) − 2x∂xu(t, x) = F (t, x), (6.4)

u(t, x) =
1

2
t(1 + 2t+ x4) for (t, x) ∈ E0 ∪ ∂0E, (6.5)

where

β(x) =
5

4
x−

1

4
, γ(x) =

5

4
x+

1

4
, F (t, x) = 2t+ x2(1 − 4t) + (1 + 2tx) q(g̃(t, x))

and

g̃(t, x) =






t

[
625

2048

(
−x5 + x4 +

26

15
x3 +

34

25
x2 −

9

5
x

)
+

1

2
t−

4189

30720

]
, x ∈ [−1,−0.6],

t

(
1

2
t+

25

32
x2 +

1

96

)
, x ∈ (−0.6, 0.6),

t

[
625

2048

(
x5 + x4 −

26

15
x3 +

34

25
x2 +

9

5
x

)
+

1

2
t−

4189

30720

]
, x ∈ [0.6, 1].

The solution of the problem is given by ṽ(t, x) = t(t+ x2).
We compare the method to the classical Lax scheme and define the errors of both methods

in the same way as in the previous Example. Moreover, we use the numerical method of
bicharacteristics involving the Shepard interpolation (i.e., we implement the approximation

operator T̂h with the aid of U from Example 4.2), and denote its errors by ε̃
(r)
h. max and ε̃

(r)
h.mean.

Taking h0 = 10−5, h1 = 2 · 10−3, a = 0.25, we obtain the following experimental values
of the errors.

t(r)
ε̄
(r)
h. max ε

(r)
h.max ε̃

(r)
h. max ε̄

(r)
h.mean ε

(r)
h.mean ε̃

(r)
h.mean

0.0625 7.598918 · 10−4 5.159632 · 10−6 1.557761 · 10−6 6.896522 · 10−4 1.203477 · 10−6 7.579235 · 10−7

0.1250 2.959015 · 10−3 1.728652 · 10−5 2.505059 · 10−6 2.564387 · 10−3 3.323471 · 10−6 1.265340 · 10−6

0.1875 6.503220 · 10−3 3.428650 · 10−5 2.955749 · 10−6 5.422428 · 10−3 6.699800 · 10−6 1.552376 · 10−6

0.2500 1.132334 · 10−2 5.437411 · 10−5 3.030813 · 10−6 9.120413 · 10−3 1.141974 · 10−5 1.661398 · 10−6
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The approximate computing time for the classical method on the Intel R©XeonTMCPU
3.06 GHz machine cache of size 512 kB and 4 GB RAM, is 14 s compared to 440 s for the
numerical method of bicharacteristics with the single-node approximation and 670 s for the
Shepard variant.

For the same domain and another set of steps of the mesh, h0 = h1 = 5 · 10−4, the errors
of the classical Lax scheme become greater than 106 for r > 53. The errors of our method,
in both variants, are given below.

t(r)
ε
(r)
h. max ε̃

(r)
h. max ε

(r)
h.mean ε̃

(r)
h.mean

0.0625 7.956374 · 10−5 7.951170 · 10−5 2.673792 · 10−5 2.672484 · 10−5

0.1250 1.300688 · 10−4 1.297184 · 10−4 4.680133 · 10−5 4.674174 · 10−5

0.1875 1.564073 · 10−4 1.553630 · 10−4 6.244022 · 10−5 6.233182 · 10−5

0.2500 1.643924 · 10−4 1.621890 · 10−4 7.500613 · 10−5 7.485633 · 10−5

The approximate computing time for the numerical method of bicharacteristics, on the
same machine, is 1 s.

Remark 6.1. The huge values of errors of the classical Lax scheme in the second exper-
iment from Example 6.1 and in the second experiment from Example 6.2 are due to the fact
that the steps of the mesh don’t satisfy the CFL condition (1.3).

The method described in the present paper has a potential for applications in the numer-
ical solution of first order nonlinear differential equations with deviated variables and first
order integral differential equations.
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