A Combinatorial Interpretation of the Lucas-Nomial Coefficients in Terms of Tiling of Rectangular Boxes

M. Dziemiańczuk Institute of Informatics, University of Gdańsk, PL-80-952 Gdańsk, Wita Stwosza 57, Poland mdziemia@inf.ug.edu.pl

Abstract

Generalized binomial coefficients are considered. The aim of this paper is to provide a new general combinatorial interpretation of the Lucas-nomial and (p,q)-nomial coefficients in terms of tiling of *d*-dimensional rectangular boxes. The recurrence relation of these numbers is proved in a combinatorial way. To this end, our results are extended to the case of corresponding multi-nomial coefficients.

Journal of Combinatorial Mathematics and Combinatorial Computing, vol. 88, pp. 225–235, 2014.

1 Introduction

We assume $\mathbb{N} = \{1, 2, ...\}$ and $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$. Let $F = (F_0, F_1, F_2, ...)$ be a sequence of positive integers with $F_0 = 0$. Fix $n, k \in \mathbb{N}_0$ such that $n \ge k$. Then by the *F*-nomial coefficient we mean

$$\binom{n}{k}_{F} = \frac{F_n F_{n-1} \cdots F_{n-k+1}}{F_1 F_2 \cdots F_k},\tag{1}$$

where $\binom{n}{0}_F = 1$.

For example, if we set $F_n = n$ we obtain ordinary binomial coefficients. With the setting $F_n = F_{n-1} + F_{n-2}$ for $n \ge 2$ and $F_0 = 0$, $F_1 = 1$ we obtain the Fibonomial coefficients [4, 5]. These generalized binomial coefficients have been intensively studied in the literature, starting from Carmichael [1], Jarden and Motzkin [6]. The general form of the *F*-nomial coefficients is considered by Kwaśniewski [9, 10] in terminology of special "cobweb" posets.

In this paper we show that for the Lucas sequence [12] we have a new combinatorial interpretation of the corresponding Lucas-nomial coefficients in terms of tiling of d-dimensional rectangular boxes. Recall, the Lucas sequence of the first kind $\{U_n(p,q)\}_{n>0}$ is defined by the following recurrence relation

$$U_n(p,q) = pU_{n-1}(p,q) - qU_{n-2}(p,q), \quad \text{for } n \ge 2,$$
(2)

with initial values $U_0(p,q) = 0$, $U_1(p,q) = 1$ and arbitrary parameters p,q. Therefore, the *F*-nomial coefficients reduce to the Lucas-nomial coefficients with the setting $F_n = U_n(p,q)$ for $n \ge 0$.

Let λ and ρ be two functions $\mathbb{N}_0 \times \mathbb{N}_0 \to \mathbb{N}_0$. Suppose that there is a sequence $F = (F_0, F_1, \ldots)$ such that for any fixed $n \in \mathbb{N}_0$ and any $m, k \in \mathbb{N}_0$ such that m + k = n we have

$$F_n = \lambda(m,k)F_m + \rho(m,k)F_k.$$
(3)

Moreover, we show that F is uniquely designated by λ and ρ (see Corollary 1). Denote by \mathcal{F} family of all sequences F for which we can define such functions λ and ρ with the above property.

Consider N = (0, 1, 2, ...), it is easy to see that $N \in \mathcal{F}$. In this case the functions λ and ρ are constant and equal to one. Family \mathcal{F} contains also Lucas sequences (see Section 4).

Simple algebraic modifications of (3) gives us the following recurrence relation for the *F*-nomial coefficients

$$\binom{n}{m}_{F} = \lambda(m,k) \binom{n-1}{m-1}_{F} + \rho(m,k) \binom{n-1}{m}_{F}$$
(4)

with $\binom{n}{0}_F = 1$.

2 Tiling of *m*-dimensional boxes

We follow the notation of [11]. Take $F \in \mathcal{F}$. Let $n, k \in \mathbb{N}$ such that $n \geq k$. Then a rectangular *m*-dimensional box of sizes

$$V_{k,n}: F_k \times F_{k+1} \times \cdots \times F_n$$

is called the *m*-dimensional *F*-box and denoted by $V_{k,n}$, where m = n - k + 1. By the *m*-dimensional *F*-brick, denoted by V_m , we mean an *m*-dimensional *F*-box of sizes

$$V_m: F_1 \times F_2 \times \cdots \times F_m$$

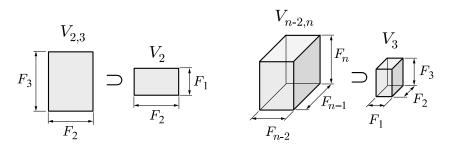


Figure 1: Exemplary F-boxes and its F-bricks.

Following de Bruijn [2], by the *tiling* of the *F*-box $V_{k,n}$ we mean the set of translated and rotated *F*-bricks V_m which interiors are pairwise disjoint and the union is the entire *F*-box $V_{k,n}$ (compare with Fig. 2).

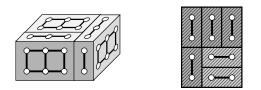


Figure 2: Exemplary tilings of F-boxes.

The next observation is due to Kwaśniewski [9, 10] (see also references therein). He proposes a new general combinatorial interpretation for a wide family of generalized binomial coefficients. Here we reformulate it in terms of tilings of F-boxes.

Observation 1. If an m-dimensional F-box $V_{k,n}$ is tiled with F-bricks V_m then the number of these bricks is equal to $\binom{n}{m}_F$, where m = n - k + 1.

Proof. Observe that the "volume" of the F-box $V_{k,n}$ is equal to $F_nF_{n-1}\cdots F_k$ and the "volume" of any F-brick V_m is $F_1F_2\cdots F_m$. Finally, the number of bricks of the tiling is equal to

$$\frac{\text{volume of } V_{k,n}}{\text{volume of } V_m} = \frac{F_n F_{n-1} \cdots F_k}{F_1 F_2 \cdots F_m} = \binom{n}{m}_F.$$

Theorem 1. Let $F \in \mathcal{F}$ and $m, n \in \mathbb{N}$ such that $n \ge m$, set k = n - m. Then any m-dimensional F-box $V_{k+1,n}$ can be tiled with F-bricks V_m and the number of these bricks satisfies the following recurrence relation

$$\binom{n}{m}_{F} = \lambda(m,k) \binom{n-1}{m-1}_{F} + \rho(m,k) \binom{n-1}{m}_{F}$$
(5)

with $\binom{n}{0}_F = 1$.

Proof. The proof is by induction on n. For n = 1 the box $V_{1,1}$ has a trivial tiling. Suppose n > 1. Assume that any F-box $V_{i,n-1}$ has a tiling by F-bricks V_{n-i} for $1 \le i \le n-1$.

Consider the last size of the box $V_{k+1,n}$ which is equal to F_n . By the definition of the family \mathcal{F} , we have that F_n is the sum of two numbers $\lambda(m,k)F_m$ and $\rho(m,k)F_k$ for certain functions λ and ρ , where n = m+k. Therefore, we may "cut" the box $V_{k+1,n}$ into two disjoint sub-boxes A and B of sizes

$$A: F_{k+1} \times F_{k+2} \times \cdots \times F_{n-1} \times (\lambda(m,k) \cdot F_m),$$

$$B: F_{k+1} \times F_{k+2} \times \cdots \times F_{n-1} \times (\rho(m,k) \cdot F_k),$$

and we handle them separately (see Fig. 3).

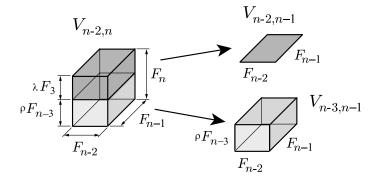


Figure 3: An illustration of the proof for the 3-dimensional case.

Step 1: Tiling the box A.

Observe that the first (m-1) sizes of A define the box $V_{k+1,n-1}$ and by the induction hypothesis, it can be tiled with bricks V_{m-1} . The last size of A might be covered by the last size of the brick V_m exactly $\lambda(m,k)$ times. Therefore, the whole A might be tiled.

Step 2: Tiling the box B.

Note that the last size of B is $\rho(m, k)$ times greater than F_k . Therefore, let us divide again the box B into $\rho(m, k)$ boxes along this coordinate. Since we are using rotated bricks V_m , we permute sizes of B to get $\rho(m, k)$ boxes of sizes $F_k \times F_{k+1} \times \cdots \times F_{n-1}$. And by the induction hypothesis, it can be tiled with bricks V_m .

We have divided the box $V_{k+1,n}$ into two disjoint sub-boxes $V_{k+1,n-1}$ and $V_{k,n-1}$ and tiled them separately in two steps. Therefore, the whole box $V_{k+1,n}$ might be tiled. If we sum up the number of bricks in corresponding tilings of sub-boxes A and B we obtain the recurrence relation (5) which completes the proof.

Now we give another formula for *F*-nomial coefficients which follows from the recurrence relation (5). Fix $n, k \in \mathbb{N}_0$ such that $n \geq k$ and let $\pi \in \mathcal{P}_k(n)$ be a k-subset of the n-set. By $\overline{\pi}$ we mean the set $\{1, 2, \ldots, n\} \setminus \pi$. Denote by $w^{n,k}(\pi)$ the product

$$w^{n,k}(\pi) = \prod_{i=1}^{k} \lambda(i, \pi_i - i) \prod_{i=1}^{n-k} \rho(\overline{\pi}_i - i, i).$$

Theorem 2. Let $F \in \mathcal{F}$ and $n, k \in \mathbb{N}_0$. Then we have

$$\binom{n}{k}_{F} = \sum_{\pi \in \mathcal{P}_{k}(n)} w^{n,k}(\pi).$$
(6)

Proof. The proof is by induction on n. The case n = 0 is trivial. Assume that the formula (6) holds for n - 1 and k = 1, 2, ..., n - 1. Then consider the right-hand side of (6). Let us separate the family $\mathcal{P}_k(n)$ into two disjoint classes: A_k with these subsets that contain the last element n and B_k without n, respectively.

First, consider $A_k = \{\{\pi_1, \ldots, \pi_k\} \in \mathcal{P}_k(n) : \pi_k = n\}$. Let $\overline{\pi} = [n] \setminus \pi$, then we have

$$\sum_{\pi \in A_k} w^{n,k}(\pi) = \sum_{\pi \in A_k} \lambda(k, n-k) \prod_{i=1}^{k-1} \lambda(i, \pi_i - i) \prod_{i=1}^{n-k} \rho(\overline{\pi}_i - i, i)$$

Note, the summation over elements of A_k may be considered as the sum over all (k-1) subsets of the set [n-1]. Therefore,

$$\sum_{\pi \in A_k} w^{n,k}(\pi) = \lambda(k, n-k) \binom{n-1}{k-1}_F.$$
(7)

In the same way we deal with the class $B_k = \mathcal{P}_k(n) \setminus A_k$. Now, we have

$$\sum_{\pi \in B_k} w^{n,k}(\pi) = \rho(k, n-k) \binom{n-1}{k}_F.$$
(8)

Finally, if we add (7) to (8) and use the recurrence relation (4) we obtain (6).

3 The multi-nomial coefficients

In this section we show how our results can be extended to the multi-tiling of hyper boxes and corresponding multi-nomial coefficients.

Let $F = \{F_n\}_{n \ge 0}$ be a sequence of positive integers with $F_0 = 0$ and let $\langle b_1, b_2, \ldots, b_k \rangle$ be a composition of a fixed number $n \in \mathbb{N}$ into k non-zero parts. Then by the *multi* F-nomial coefficient we mean

$$\binom{n}{b_1, b_2, \dots, b_k}_F = \frac{F_n!}{F_{b_1}!F_{b_2}!\cdots F_{b_k}!},\tag{9}$$

where $F_s! = F_s F_{s-1} \cdots F_1$ and $F_0! = 1$.

We can easily see that if the values of the *F*-nomial coefficients are natural numbers for any $n, k \in \mathbb{N}$ such that $n \geq k$ then also the values of the multi *F*-nomial coefficients are natural numbers. Indeed,

$$\binom{n}{a,b,c}_{F} = \binom{n}{a}_{F}\binom{n-a}{b}_{F}\binom{n-a-b}{c}_{F}.$$

In general, the opposite conclusion is not true.

Here and subsequently β stands for a composition $\langle b_1, b_2, \dots, b_k \rangle$ of a fixed number $n \in \mathbb{N}$ into k non-zero parts.

Proposition 1. Let $F \in \mathcal{F}$. Then

$$F_n = \sum_{i=1}^k \alpha_i(\beta) F_{b_i},\tag{10}$$

where

$$\alpha_i(\beta) = \lambda(b_i, b_{i+1} + \dots + b_k) \prod_{j=1}^{i-1} \rho(b_j, b_{j+1} + \dots + b_k),$$
(11a)

$$\alpha_i(\beta) = \rho(b_{i+1} + \dots + b_k, b_i) \prod_{j=1}^{i-1} \lambda(b_{j+1} + \dots + b_k, b_j),$$
(11b)

Proof. It is a straightforward algebraic exercise due to the property (3) of sequences from family \mathcal{F} . We only outline the proof. The first form (11a) of the coefficients $\alpha_i(\beta)$ follows from the rule $(b_1 + (n - b_1)) \Rightarrow (b_1) + (b_2 + (n - b_1 - b_2))$, and the second one (11b) from $((n - b_k) + b_k) \Rightarrow ((n - b_k - b_{k-1}) + b_{k-1}) + (b_k)$. The rest of the proof is left to the reader and can be done by induction on k.

Taking the composition $\beta = \langle 1, 1, \dots, 1 \rangle$ of a number $n \in \mathbb{N}$ we obtain the following result.

Corollary 1. For any $F \in \mathcal{F}$ and $n \in \mathbb{N}$ we have

$$F_n = \sum_{k=1}^n \lambda(1, n-k) \prod_{i=1}^{k-1} \rho(1, n-i),$$
(12a)

$$F_n = \sum_{k=1}^n \rho(n-k,1) \prod_{i=1}^{k-1} \lambda(n-i,1).$$
(12b)

Corollary 2. For $F \in \mathcal{F}$ we have

$$\binom{n}{b_1, b_2, \dots, b_k}_F = \sum_{i=1}^k \alpha_i(\beta) \binom{n-1}{b_1, \dots, b_{i-1}, b_i - 1, b_{i+1}, \dots, b_k}_F.$$
(13)

where $\alpha_i(\beta)$ are specified in Proposition 1.

Recall $\beta = \langle b_1, b_2, \dots, b_k \rangle$. By the *n*-dimensional multi *F*-brick $V_n(\beta)$ we mean the *F*-brick of sizes

$$\underbrace{F_1 \times \cdots \times F_{b_1}}_{b_1} \times \underbrace{F_1 \times \cdots \times F_{b_2}}_{b_2} \times \cdots \times \underbrace{F_1 \times \cdots \times F_{b_k}}_{b_k}.$$

And finally, by the *multi-tiling* we mean a tiling of the F-box $V_{1,n}$ with multi F-bricks $V_n(\beta)$.

Observation 2. Let $F \in \mathcal{F}$. If an F-box $V_{1,n}$ is tiled with multi F-bricks $V_n(\beta)$ then the number of these bricks is equal to

$$\binom{n}{b_1, b_2, \dots, b_k}_F.$$
(14)

where $\beta = \langle b_1, b_2, \dots, b_k \rangle$.

Proof. The proof is analogous to the proof of Observation 1.

Theorem 3. Let $F \in \mathcal{F}$. Then any F-box $V_{1,n}$ can be tiled into multi F-bricks $V_n(\beta)$ and the number of these bricks satisfies (13).

Proof. The proof is by induction on n. (Compare with the proof of Theorem 1.) The case of n = 1 is trivial. Suppose then n > 1 and assume that the F-box $V_{1,n-1}$ might be tiled into any multi-bricks $V_{n-1}(\beta')$, where β' is a composition of the number (n-1) into k non-zero parts.

Take the F-box $V_{1,n}$. We need to tile the box into multi-bricks $V_n(\beta)$. Consider the last *n*-th size of the box $V_{1,n}$ which is equal to F_n . From Proposition 1 we know that the number F_n might be expressed as the sum $F_n = \alpha_1(\beta)F_{b_1} + \cdots + \alpha_k(\beta)F_{b_k}$.

Therefore, we divide the F-box $V_{1,n}$ into k sub-boxes B_1, \ldots, B_k of sizes

 $B_{1}: F_{1} \times F_{2} \times \cdots \times F_{n-1} \times (\alpha_{1}(\beta)F_{b_{1}}),$ $B_{2}: F_{1} \times F_{2} \times \cdots \times F_{n-1} \times (\alpha_{2}(\beta)F_{b_{2}}),$ \vdots $B_{k}: F_{1} \times F_{2} \times \cdots \times F_{n-1} \times (\alpha_{k}(\beta)F_{b_{k}}).$

Next, we tile these k sub-boxes independently in the following k steps. Let $i = 1, 2, \ldots, k$.

Step i: Tiling the box B_i .

Observe that the box designated by the first (n-1) sizes of B_i forms F-box $V_{1,n-1}$ and it can be tiled into (n-1)-dimensional multi-bricks by the induction hypothesis. What is left is to cover the last size $(\alpha_i(\beta)F_{b_i})$ of F-box by the $(b_1 + \cdots + b_i)$ -th size of the multi F-brick exactly $\alpha_i(\beta)$ times. In the next induction step we use (n-1)-dimensional multi F-bricks $V_{n-1}(\beta^{(i)})$ of sizes

$$\underbrace{F_1 \times \cdots \times F_{b_1}}_{b_1} \times \cdots \times \underbrace{F_1 \times \cdots \times F_{b_i-1}}_{b_i-1} \times \cdots \times \underbrace{F_1 \times \cdots \times F_{b_k}}_{b_k},$$

where $\beta^{(i)} = \langle b_1, \dots, b_{i-1}, b_i - 1, b_{i+1}, \dots, b_k \rangle$. The rest of the proof goes similar as the proof of Theorem 1.

4 Remarks and examples

This note is a partial answer to the Kwaśniewski tiling problem [10, Problem II, p.12] originally expressed in terms of cobweb posets and its tilings. The question is to find all sequences \mathcal{T} for which we have such "tiling interpretation" of the *F*-nomial coefficients. Now, we know that the family \mathcal{T} encompass, among others, Fibonacci, Lucas sequences and (p, q)-analogues. However, the problem of characterization of the whole family \mathcal{T} is still open and related to the general problem of filling rectangular hyper boxes.

Next, we present a few examples of the sequences $F \in \mathcal{F}$ that gives us a combinatorial interpretation of corresponding *F*-nomial coefficients.

Example 1 (Lucas sequence). Let p, q be arbitrary numbers. Then we define Lucas sequence as $U_0 = 0$, $U_1 = 1$ and

$$U_n = pU_{n-1} - qU_{n-2}$$

It is the well-known that the Lucas sequences satisfy the following recurrence relation

$$U_{m+k} = U_{k+1}U_m - qU_{m-1}U_k$$

Therefore, we have

$$\binom{n}{k}_U = U_{k+1}\binom{n-1}{k}_U - qU_{m-1}\binom{n-1}{k-1}_U.$$

If $p \in \mathbb{N}$ and $-q \in \mathbb{N}$ then we have a combinatorial interpretation for the (p,q)-Lucas nomial coefficients expressed in terminology of tilings.

Example 2 (Fibonacci numbers). One of the most famous example of Lucas sequences is the sequence of Fibonacci numbers where p = 1 and q = -1, i.e., $F_0 = 0$, $F_1 = 1$ and $F_n = F_{n-1} + F_{n-2}$ for $n \ge 2$. Therefore, we have a new combinatorial interpretation for the Fibonomial coefficients which explains also their recurrence relation

$$\binom{n}{k}_{Fib} = F_{k+1}\binom{n-1}{k}_{Fib} + F_{m-1}\binom{n-1}{k-1}_{Fib}$$

For a deeper discussion of an interpretation of the Fibonomial coefficients, we refer the reader to Kwaśniewski [8], Sagan and Savage [13], Knuth and Wilf [7].

Example 3. Let α, β be natural numbers. Then we define so-called (α, β) -analogues as $A_0 = 0, A_1 = 1$ and

$$A_n = (\alpha + \beta)A_{n-1} - (\alpha \cdot \beta)A_{n-2}.$$

These sequences generalize, among-others, q-Gaussian integers where $\alpha = 1$ and $\beta = q$ is a power of a prime number. If $\alpha = \beta$ then we have $A_n = n\alpha^{n-1}$, otherwise $A_n = (\alpha^n - \beta^n)/(\alpha - \beta)$. We can show that these numbers satisfy

$$A_{m+k} = \alpha^k A_m + \beta^m A_k$$

Finally, we have

$$\binom{n}{k}_{A} = \alpha^{k} \binom{n-1}{k}_{A} + \beta^{m} \binom{n-1}{k-1}_{A}$$

This geometrical phenomenon of \mathcal{F} -nomial coefficients is a starting point to new questions. For example, we can ask about geometric proofs for many of binomial-like identities. Another way might follows us to the problem of tilings' counting of certain \mathcal{F} -box and to special kinds of the Stirling numbers.

Acknowledgments

The author wishes to thank Paweł Żyliński for valuable remarks, which allowed to prepare the paper in more desirable form.

References

- [1] R. D. Carmichael. On the numerical factors of the arithmetic forms $\alpha^n \pm \beta^n$. Annals of Mathematics, 15:30–70, 1913.
- [2] N. G. de Bruijn. Filling boxes with bricks. Amer. Math. Monthly, 76:37-40, 1969.
- [3] Ira M. Gessel and X. G. Viennot. Determinant paths and plane partitions. preprint http://citeseer.nj.nec.com/gessel89determinants.html, 1992.

- [4] H. W. Gould. The bracket function and fontene-ward generalized binomial coefficients with application to fibonomial coefficients. *Fibonacci Quartely*, 7(55):23–40, 1969.
- [5] V. E. Hoggatt. Fibonacci numbers and generalized binomial coefficients. *Fibonacci Quartely*, 5:383–400, 1967.
- [6] Dov Jarden and Theodor Motzkin. The product of sequences with a common linear recursion formula of order 2. *Riveon Lematematika*, 3(38):25–27, 1949.
- [7] D. E. Knuth and H. S. Wilf. The power of a prime that divides a generalized binomial coefficient. J. Reine Angev. Math., 396:212–219, 1989.
- [8] A. Krzysztof Kwaśniewski. Comments on combinatorial interpretation of fibonomial coefficients an e-mail style letter. Bulletin of the Institute of Combinatorics and its Applications, 42:10–11, 2004.
- [9] A. Krzysztof Kwaśniewski. Cobweb posets as noncommutative prefabs. Advanced Studies in Contemporary Mathematics, 14(1):37–47, 2007.
- [10] A. Krzysztof Kwaśniewski. On cobweb posets and their combinatorially admissible sequences. Advanced Studies in Contemporary Mathematics, 18(1):17–32, 2009.
- [11] A. Krzysztof Kwaśniewski and M. Dziemiańczuk. On cobweb posets most relevant codings. Submitted for publication. ArXiv:0804.1728, 27 Feb 2009.
- [12] Edouard Lucas. Théorie des fonctions numériques simplement périodiques. American Journal of Mathematics, 1:184–240, 1878. Translated from the French by Sidney Kravitz, Edited by Douglas Lind Fibonacci Association 1969.
- [13] Bruce E. Sagan and Carla D. Savage. Combinatorial interpretations of binomiaal coefficient analogues related to lucas sequences. *Integers - Electronic Journal of Combinatorial Number Theory*, 10:697–703, 2010.