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Abstract

Generalized binomial coefficients are considered. The aim of this paper is to provide a new general
combinatorial interpretation of the Lucas-nomial and (p, q)-nomial coefficients in terms of tiling of d-
dimensional rectangular boxes. The recurrence relation of these numbers is proved in a combinatorial
way. To this end, our results are extended to the case of corresponding multi-nomial coefficients.
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1 Introduction

We assume N = {1, 2, . . .} and N0 = N ∪ {0}. Let F = (F0, F1, F2, . . .) be a sequence of positive integers
with F0 = 0. Fix n, k ∈ N0 such that n ≥ k. Then by the F -nomial coefficient we mean(

n

k

)
F

=
FnFn−1 · · ·Fn−k+1

F1F2 · · ·Fk
, (1)

where
(
n
0

)
F

= 1.

For example, if we set Fn = n we obtain ordinary binomial coefficients. With the setting Fn = Fn−1+Fn−2

for n ≥ 2 and F0 = 0, F1 = 1 we obtain the Fibonomial coefficients [4, 5]. These generalized binomial
coefficients have been intensively studied in the literature, starting from Carmichael [1], Jarden and Motzkin
[6]. The general form of the F -nomial coefficients is considered by Kwaśniewski [9, 10] in terminology of
special “cobweb” posets.

In this paper we show that for the Lucas sequence [12] we have a new combinatorial interpretation of the
corresponding Lucas-nomial coefficients in terms of tiling of d-dimensional rectangular boxes. Recall, the
Lucas sequence of the first kind {Un(p, q)}n≥0 is defined by the following recurrence relation

Un(p, q) = pUn−1(p, q) − qUn−2(p, q), for n ≥ 2, (2)

with initial values U0(p, q) = 0, U1(p, q) = 1 and arbitrary parameters p, q. Therefore, the F -nomial coeffi-
cients reduce to the Lucas-nomial coefficients with the setting Fn = Un(p, q) for n ≥ 0.

Let λ and ρ be two functions N0 × N0 → N0. Suppose that there is a sequence F = (F0, F1, . . .) such
that for any fixed n ∈ N0 and any m, k ∈ N0 such that m + k = n we have

Fn = λ(m, k)Fm + ρ(m, k)Fk. (3)

Moreover, we show that F is uniquely designated by λ and ρ (see Corollary 1). Denote by F family of all
sequences F for which we can define such functions λ and ρ with the above property.
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Consider N = (0, 1, 2, . . .), it is easy to see that N ∈ F . In this case the functions λ and ρ are constant
and equal to one. Family F contains also Lucas sequences (see Section 4).

Simple algebraic modifications of (3) gives us the following recurrence relation for the F -nomial coeffi-
cients (

n

m

)
F

= λ(m, k)

(
n− 1

m− 1

)
F

+ ρ(m, k)

(
n− 1

m

)
F

(4)

with
(
n
0

)
F

= 1.

2 Tiling of m-dimensional boxes

We follow the notation of [11]. Take F ∈ F . Let n, k ∈ N such that n ≥ k. Then a rectangular m-dimensional
box of sizes

Vk,n : Fk × Fk+1 × · · · × Fn

is called the m-dimensional F -box and denoted by Vk,n, where m = n−k+1. By the m-dimensional F -brick,
denoted by Vm, we mean an m-dimensional F -box of sizes

Vm : F1 × F2 × · · · × Fm.

Figure 1: Exemplary F -boxes and its F -bricks.

Following de Bruijn [2], by the tiling of the F -box Vk,n we mean the set of translated and rotated F -bricks
Vm which interiors are pairwise disjoint and the union is the entire F -box Vk,n (compare with Fig. 2).

Figure 2: Exemplary tilings of F -boxes.

The next observation is due to Kwaśniewski [9, 10] (see also references therein). He proposes a new general
combinatorial interpretation for a wide family of generalized binomial coefficients. Here we reformulate it in
terms of tilings of F -boxes.

Observation 1. If an m-dimensional F -box Vk,n is tiled with F -bricks Vm then the number of these bricks
is equal to

(
n
m

)
F
, where m = n− k + 1.



Proof. Observe that the “volume” of the F -box Vk,n is equal to FnFn−1 · · ·Fk and the “volume” of any
F -brick Vm is F1F2 · · ·Fm. Finally, the number of bricks of the tiling is equal to

volume of Vk,n

volume of Vm
=

FnFn−1 · · ·Fk

F1F2 · · ·Fm
=

(
n

m

)
F

.

Theorem 1. Let F ∈ F and m,n ∈ N such that n ≥ m, set k = n −m. Then any m-dimensional F -box
Vk+1,n can be tiled with F -bricks Vm and the number of these bricks satisfies the following recurrence relation(

n

m

)
F

= λ(m, k)

(
n− 1

m− 1

)
F

+ ρ(m, k)

(
n− 1

m

)
F

(5)

with
(
n
0

)
F

= 1.

Proof. The proof is by induction on n. For n = 1 the box V1,1 has a trivial tiling. Suppose n > 1. Assume
that any F -box Vi,n−1 has a tiling by F -bricks Vn−i for 1 ≤ i ≤ n− 1.

Consider the last size of the box Vk+1,n which is equal to Fn. By the definition of the family F , we have
that Fn is the sum of two numbers λ(m, k)Fm and ρ(m, k)Fk for certain functions λ and ρ, where n = m+k.
Therefore, we may “cut” the box Vk+1,n into two disjoint sub-boxes A and B of sizes

A : Fk+1 × Fk+2 × · · · × Fn−1 × (λ(m, k) · Fm),

B : Fk+1 × Fk+2 × · · · × Fn−1 × (ρ(m, k) · Fk),

and we handle them separately (see Fig. 3).

Figure 3: An illustration of the proof for the 3-dimensional case.

Step 1: Tiling the box A.
Observe that the first (m− 1) sizes of A define the box Vk+1,n−1 and by the induction hypothesis, it can be
tiled with bricks Vm−1. The last size of A might be covered by the last size of the brick Vm exactly λ(m, k)
times. Therefore, the whole A might be tiled.

Step 2: Tiling the box B.
Note that the last size of B is ρ(m, k) times greater than Fk. Therefore, let us divide again the box B into
ρ(m, k) boxes along this coordinate. Since we are using rotated bricks Vm, we permute sizes of B to get
ρ(m, k) boxes of sizes Fk × Fk+1 × · · · × Fn−1. And by the induction hypothesis, it can be tiled with bricks
Vm.



We have divided the box Vk+1,n into two disjoint sub-boxes Vk+1,n−1 and Vk,n−1 and tiled them separately
in two steps. Therefore, the whole box Vk+1,n might be tiled. If we sum up the number of bricks in
corresponding tilings of sub-boxes A and B we obtain the recurrence relation (5) which completes the
proof.

Now we give another formula for F -nomial coefficients which follows from the recurrence relation (5). Fix
n, k ∈ N0 such that n ≥ k and let π ∈ Pk(n) be a k-subset of the n-set. By π we mean the set {1, 2, . . . , n}\π.
Denote by wn,k(π) the product

wn,k(π) =
k∏

i=1

λ(i, πi − i)
n−k∏
i=1

ρ(πi − i, i).

Theorem 2. Let F ∈ F and n, k ∈ N0. Then we have(
n

k

)
F

=
∑

π∈Pk(n)

wn,k(π). (6)

Proof. The proof is by induction on n. The case n = 0 is trivial. Assume that the formula (6) holds for n−1
and k = 1, 2, . . . , n− 1. Then consider the right-hand side of (6). Let us separate the family Pk(n) into two
disjoint classes: Ak with these subsets that contain the last element n and Bk without n, respectively.

First, consider Ak = {{π1, . . . , πk} ∈ Pk(n) : πk = n}. Let π = [n] \ π, then we have

∑
π∈Ak

wn,k(π) =
∑
π∈Ak

λ(k, n− k)
k−1∏
i=1

λ(i, πi − i)
n−k∏
i=1

ρ(πi − i, i).

Note, the summation over elements of Ak may be considered as the sum over all (k − 1) subsets of the set
[n− 1]. Therefore, ∑

π∈Ak

wn,k(π) = λ(k, n− k)

(
n− 1

k − 1

)
F

. (7)

In the same way we deal with the class Bk = Pk(n) \Ak. Now, we have∑
π∈Bk

wn,k(π) = ρ(k, n− k)

(
n− 1

k

)
F

. (8)

Finally, if we add (7) to (8) and use the recurrence relation (4) we obtain (6).

3 The multi-nomial coefficients

In this section we show how our results can be extended to the multi-tiling of hyper boxes and corresponding
multi-nomial coefficients.

Let F = {Fn}n≥0 be a sequence of positive integers with F0 = 0 and let ⟨b1, b2, . . . , bk⟩ be a composition
of a fixed number n ∈ N into k non-zero parts. Then by the multi F -nomial coefficient we mean(

n

b1, b2, . . . , bk

)
F

=
Fn!

Fb1 !Fb2 ! · · ·Fbk !
, (9)

where Fs! = FsFs−1 · · ·F1 and F0! = 1.



We can easily see that if the values of the F -nomial coefficients are natural numbers for any n, k ∈ N
such that n ≥ k then also the values of the multi F -nomial coefficients are natural numbers. Indeed,(

n

a, b, c

)
F

=

(
n

a

)
F

(
n− a

b

)
F

(
n− a− b

c

)
F

.

In general, the opposite conclusion is not true.

Here and subsequently β stands for a composition ⟨b1, b2, . . . , bk⟩ of a fixed number n ∈ N into k non-zero
parts.

Proposition 1. Let F ∈ F . Then

Fn =
k∑

i=1

αi(β)Fbi , (10)

where

αi(β) = λ(bi, bi+1 + · · · + bk)
i−1∏
j=1

ρ(bj , bj+1 + · · · + bk), (11a)

αi(β) = ρ(bi+1 + · · · + bk, bi)
i−1∏
j=1

λ(bj+1 + · · · + bk, bj), (11b)

Proof. It is a straightforward algebraic exercise due to the property (3) of sequences from family F . We
only outline the proof. The first form (11a) of the coefficients αi(β) follows from the rule

(
b1 + (n− b1)

)
⇒

(b1) +
(
b2 + (n− b1 − b2)

)
, and the second one (11b) from

(
(n− bk) + bk

)
⇒

(
(n− bk − bk−1) + bk−1

)
+ (bk).

The rest of the proof is left to the reader and can be done by induction on k.

Taking the composition β = ⟨1, 1, . . . , 1⟩ of a number n ∈ N we obtain the following result.

Corollary 1. For any F ∈ F and n ∈ N we have

Fn =
n∑

k=1

λ(1, n− k)
k−1∏
i=1

ρ(1, n− i), (12a)

Fn =
n∑

k=1

ρ(n− k, 1)
k−1∏
i=1

λ(n− i, 1). (12b)

Corollary 2. For F ∈ F we have(
n

b1, b2, . . . , bk

)
F

=
k∑

i=1

αi(β)

(
n− 1

b1, . . . , bi−1, bi − 1, bi+1, . . . , bk

)
F

. (13)

where αi(β) are specified in Proposition 1.

Recall β = ⟨b1, b2, . . . , bk⟩. By the n-dimensional multi F -brick Vn(β) we mean the F -brick of sizes

n︷ ︸︸ ︷
F1 × · · · × Fb1︸ ︷︷ ︸

b1

×F1 × · · · × Fb2︸ ︷︷ ︸
b2

× · · · × F1 × · · · × Fbk︸ ︷︷ ︸
bk

.

And finally, by the multi-tiling we mean a tiling of the F -box V1,n with multi F -bricks Vn(β).



Observation 2. Let F ∈ F . If an F -box V1,n is tiled with multi F -bricks Vn(β) then the number of these
bricks is equal to (

n

b1, b2, . . . , bk

)
F

. (14)

where β = ⟨b1, b2, . . . , bk⟩.

Proof. The proof is analogous to the proof of Observation 1.

Theorem 3. Let F ∈ F . Then any F -box V1,n can be tiled into multi F -bricks Vn(β) and the number of
these bricks satisfies (13).

Proof. The proof is by induction on n. (Compare with the proof of Theorem 1.) The case of n = 1 is trivial.
Suppose then n > 1 and assume that the F -box V1,n−1 might be tiled into any multi-bricks Vn−1(β′), where
β′ is a composition of the number (n− 1) into k non-zero parts.

Take the F -box V1,n. We need to tile the box into multi-bricks Vn(β). Consider the last n-th size of the
box V1,n which is equal to Fn. From Proposition 1 we know that the number Fn might be expressed as the
sum Fn = α1(β)Fb1 + · · · + αk(β)Fbk .

Therefore, we divide the F -box V1,n into k sub-boxes B1, . . . , Bk of sizes

B1 : F1 × F2 × · · · × Fn−1 × (α1(β)Fb1),

B2 : F1 × F2 × · · · × Fn−1 × (α2(β)Fb2),

...

Bk : F1 × F2 × · · · × Fn−1 × (αk(β)Fbk).

Next, we tile these k sub-boxes independently in the following k steps. Let i = 1, 2, . . . , k.

Step i: Tiling the box Bi.
Observe that the box designated by the first (n− 1) sizes of Bi forms F -box V1,n−1 and it can be tiled into
(n−1)-dimensional multi-bricks by the induction hypothesis. What is left is to cover the last size (αi(β)Fbi)
of F -box by the (b1 + · · · + bi)-th size of the multi F -brick exactly αi(β) times. In the next induction step
we use (n− 1)-dimensional multi F -bricks Vn−1(β(i)) of sizes

n︷ ︸︸ ︷
F1 × · · · × Fb1︸ ︷︷ ︸

b1

× · · · × F1 × · · · × Fbi−1︸ ︷︷ ︸
bi−1

× · · · × F1 × · · · × Fbk︸ ︷︷ ︸
bk

,

where β(i) = ⟨b1, . . . , bi−1, bi − 1, bi+1, . . . , bk⟩. The rest of the proof goes similar as the proof of Theorem 1.

4 Remarks and examples

This note is a partial answer to the Kwaśniewski tiling problem [10, Problem II, p.12] originally expressed
in terms of cobweb posets and its tilings. The question is to find all sequences T for which we have such
“tiling interpretation” of the F -nomial coefficients. Now, we know that the family T encompass, among
others, Fibonacci, Lucas sequences and (p, q)-analogues. However, the problem of characterization of the
whole family T is still open and related to the general problem of filling rectangular hyper boxes.

Next, we present a few examples of the sequences F ∈ F that gives us a combinatorial interpretation of
corresponding F -nomial coefficients.



Example 1 (Lucas sequence). Let p, q be arbitrary numbers. Then we define Lucas sequence as U0 = 0,
U1 = 1 and

Un = pUn−1 − qUn−2.

It is the well-known that the Lucas sequences satisfy the following recurrence relation

Um+k = Uk+1Um − qUm−1Uk.

Therefore, we have (
n

k

)
U

= Uk+1

(
n− 1

k

)
U

− qUm−1

(
n− 1

k − 1

)
U

.

If p ∈ N and −q ∈ N then we have a combinatorial interpretation for the (p, q)-Lucas nomial coefficients
expressed in terminology of tilings.

Example 2 (Fibonacci numbers). One of the most famous example of Lucas sequences is the sequence
of Fibonacci numbers where p = 1 and q = −1, i.e., F0 = 0, F1 = 1 and Fn = Fn−1 + Fn−2 for n ≥ 2.
Therefore, we have a new combinatorial interpretation for the Fibonomial coefficients which explains also
their recurrence relation (

n

k

)
Fib

= Fk+1

(
n− 1

k

)
Fib

+ Fm−1

(
n− 1

k − 1

)
Fib

.

For a deeper discussion of an interpretation of the Fibonomial coefficients, we refer the reader to Kwaśniewski
[8], Sagan and Savage [13], Knuth and Wilf [7].

Example 3. Let α, β be natural numbers. Then we define so-called (α, β)-analogues as A0 = 0, A1 = 1 and

An = (α + β)An−1 − (α · β)An−2.

These sequences generalize, among-others, q-Gaussian integers where α = 1 and β = q is a power of a prime
number. If α = β then we have An = nαn−1, otherwise An = (αn − βn)/(α − β). We can show that these
numbers satisfy

Am+k = αkAm + βmAk.

Finally, we have (
n

k

)
A

= αk

(
n− 1

k

)
A

+ βm

(
n− 1

k − 1

)
A

.

This geometrical phenomenon of F-nomial coefficients is a starting point to new questions. For example,
we can ask about geometric proofs for many of binomial-like identities. Another way might follows us to the
problem of tilings’ counting of certain F-box and to special kinds of the Stirling numbers.
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