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Abstract

Generalized binomial coefficients are considered. The aim of this paper is to provide a new general
combinatorial interpretation of the Lucas-nomial and (p,¢)-nomial coefficients in terms of tiling of d-
dimensional rectangular boxes. The recurrence relation of these numbers is proved in a combinatorial
way. To this end, our results are extended to the case of corresponding multi-nomial coefficients.
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1 Introduction

We assume N = {1,2,...} and Ny = N U {0}. Let F = (Fp, F1, F»,...) be a sequence of positive integers
with Fy = 0. Fix n, k € Ny such that n > k. Then by the F-nomial coefficient we mean

n 7FnFn—1"'Fn—k+l
k)w FFy---F,

(1)

where (g)F =1.

For example, if we set F}, = n we obtain ordinary binomial coefficients. With the setting F,, = Fj,_1+F,_2
for n > 2 and Fy = 0, F; = 1 we obtain the Fibonomial coefficients [4, 5]. These generalized binomial
coefficients have been intensively studied in the literature, starting from Carmichael [1], Jarden and Motzkin
[6]. The general form of the F-nomial coefficients is considered by Kwasniewski [9, 10] in terminology of
special “cobweb” posets.

In this paper we show that for the Lucas sequence [12] we have a new combinatorial interpretation of the
corresponding Lucas-nomial coefficients in terms of tiling of d-dimensional rectangular boxes. Recall, the
Lucas sequence of the first kind {U, (p, ¢) }».>0 is defined by the following recurrence relation

Un(p,q) = pUn—1(p,q) — qUn—2(p,q), forn>2, (2)

with initial values Uy(p,q) = 0, U1(p,q) = 1 and arbitrary parameters p,q. Therefore, the F-nomial coeffi-
cients reduce to the Lucas-nomial coefficients with the setting F,, = U, (p, q) for n > 0.

Let A and p be two functions Ny x Ny — Ny. Suppose that there is a sequence F = (Fy, Fi,...) such
that for any fixed n € Ny and any m, k € Ny such that m + k = n we have

Fo=Xm,k)Fy, + p(m, k)Fy. (3)

Moreover, we show that F' is uniquely designated by A and p (see Corollary 1). Denote by F family of all
sequences F' for which we can define such functions A and p with the above property.



Consider N = (0,1,2,...), it is easy to see that N € F. In this case the functions A and p are constant
and equal to one. Family F contains also Lucas sequences (see Section 4).

Simple algebraic modifications of (3) gives us the following recurrence relation for the F-nomial coeffi-

cients (Z)F e (::L__ 11 )F o) <nn—l 1 )F (4)

with (Z)F =1.

2 Tiling of m-dimensional boxes

We follow the notation of [11]. Take F' € F. Let n, k € N such that n > k. Then a rectangular m-dimensional
box of sizes
Vien : Fio X Fig1 X - X F,

is called the m-dimensional F'-box and denoted by Vj, ,,, where m = n—k+1. By the m-dimensional F'-brick,
denoted by V,,,, we mean an m-dimensional F-box of sizes

Vi : Fy X Fy x -+ X F,,.
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Figure 1: Exemplary F-boxes and its F-bricks.

Following de Bruijn [2], by the tiling of the F-box V}, , we mean the set of translated and rotated F-bricks
Vim which interiors are pairwise disjoint and the union is the entire F-box Vj ,, (compare with Fig. 2).
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Figure 2: Exemplary tilings of F-boxes.

The next observation is due to Kwasdniewski [9, 10] (see also references therein). He proposes a new general
combinatorial interpretation for a wide family of generalized binomial coefficients. Here we reformulate it in
terms of tilings of F-boxes.

Observation 1. If an m-dimensional F-box V}, , is tiled with F-bricks V,, then the number of these bricks
s equal to (:;,)F’ where m =n—k+ 1.



Proof. Observe that the “volume” of the F-box Vj . is equal to F,F,_;---F; and the “volume” of any
F-brick V,, is F1F;5 -+ - F,. Finally, the number of bricks of the tiling is equal to

volume of Vi,  FpFy_1---Ff (n)
F

m

volume of Vi, BE---Fy,

O

Theorem 1. Let F € F and m,n € N such that n > m, set k =n —m. Then any m-dimensional F'-box
Viet1,n can be tiled with F-bricks Vi, and the number of these bricks satisfies the following recurrence relation

@)F = A(m. k) <:1_11>F + p(m, k) (”m ' )F (5)

with (E)F =1.
Proof. The proof is by induction on n. For n = 1 the box V; ; has a trivial tiling. Suppose n > 1. Assume
that any F-box V; ,_1 has a tiling by F-bricks V,,_; for 1 <7 <n —1.

Consider the last size of the box Vj41,, which is equal to F;,. By the definition of the family F, we have
that F), is the sum of two numbers A(m, k) F,,, and p(m, k) F}, for certain functions A and p, where n = m+k.
Therefore, we may “cut” the box Vj41 5, into two disjoint sub-boxes A and B of sizes

A Fry1 X Fipa X - X Fy_q x (A(m, k) - Fy),
B : Fiy1 X Feqo X -+ x Fyu_g x (p(m, k) - Fy),

and we handle them separately (see Fig. 3).
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Figure 3: An illustration of the proof for the 3-dimensional case.

Step 1: Tiling the box A.
Observe that the first (m — 1) sizes of A define the box Vi41 ,—1 and by the induction hypothesis, it can be
tiled with bricks V;,,—1. The last size of A might be covered by the last size of the brick V,,, exactly A(m, k)
times. Therefore, the whole A might be tiled.

Step 2: Tiling the box B.
Note that the last size of B is p(m, k) times greater than Fj. Therefore, let us divide again the box B into
p(m, k) boxes along this coordinate. Since we are using rotated bricks V;,, we permute sizes of B to get
p(m, k) boxes of sizes Fi, X Fy1 X --- x F,_1. And by the induction hypothesis, it can be tiled with bricks
Vin.



We have divided the box Vj, 1 5, into two disjoint sub-boxes Vj41 ,—1 and Vj, ,—1 and tiled them separately
in two steps. Therefore, the whole box V11, might be tiled. If we sum up the number of bricks in
corresponding tilings of sub-boxes A and B we obtain the recurrence relation (5) which completes the
proof. O

Now we give another formula for F-nomial coefficients which follows from the recurrence relation (5). Fix
n, k € Ny such that n > k and let 7 € Py (n) be a k-subset of the n-set. By T we mean the set {1,2,...,n}\.
Denote by w™*(r) the product

k n—k

w(m) = [[AG, i — i) [] o — iy i)

i=1 i=1
Theorem 2. Let F € F and n,k € Ng. Then we have

(1)- = v 0

TEPK(n)

Proof. The proof is by induction on n. The case n = 0 is trivial. Assume that the formula (6) holds for n—1
and k =1,2,...,n— 1. Then consider the right-hand side of (6). Let us separate the family P (n) into two
disjoint classes: Ay with these subsets that contain the last element n and By without n, respectively.

First, consider Ay = {{m1,...,m} € Px(n) : mx =n}. Let T = [n] \ 7, then we have
k—1 n—k
Z w™*(r) = Z Ak,n —k) H (i, m; — 7) H (T —i,14).
TEAL TEAg =1 =1

Note, the summation over elements of A, may be considered as the sum over all (k — 1) subsets of the set
[n — 1]. Therefore,

-1
3 w"’k(n):)\(k,n—k)<z 1) . (7)
TEAL - F
In the same way we deal with the class By = Py(n) \ Ax. Now, we have

> wrtm) = otk =) (") €

TEBy

~

Finally, if we add (7) to (8) and use the recurrence relation (4) we obtain (6). O

3 The multi-nomial coefficients

In this section we show how our results can be extended to the multi-tiling of hyper boxes and corresponding
multi-nomial coefficients.

Let F' = {F,,}»>0 be a sequence of positive integers with Fy = 0 and let (b, bs, ..., bx) be a composition
of a fixed number n € N into k non-zero parts. Then by the multi F'-nomial coefficient we mean
n F,!
( T eyt 0
bi,ba, ... b )y Fp \Fp,! - Iy, !

where F,! = F,Fy,_1---F] and Fy! = 1.



We can easily see that if the values of the F-nomial coefficients are natural numbers for any n,k € N
such that n > k then also the values of the multi F-nomial coefficients are natural numbers. Indeed,

(oe) =G,

In general, the opposite conclusion is not true.

Here and subsequently 3 stands for a composition (b1, ba, ..., bg) of a fixed number n € N into k non-zero
parts.
Proposition 1. Let F' € F. Then
k
Fo=>_ ai(B) Fy,, (10)
i=1
where
i—1
@i(B) = Mbi, bir1 + -+ bg) | | plbj, bjs1 + - + b)), (11a)
j=1
i—1
@i(B) = p(bit1 + -+ by, b;) | | AMbjs1 + -+ bi, by), (11b)

1

<.
Il

Proof. Tt is a straightforward algebraic exercise due to the property (3) of sequences from family F. We
only outline the proof. The first form (11a) of the coefficients c;(3) follows from the rule (by + (n —b1)) =

(b1) + (b2 + (n — by — b2)), and the second one (11b) from ((n—by) +by) = ((n—bx — be—1) + br—1) + (bg).
The rest of the proof is left to the reader and can be done by induction on k. O
Taking the composition 8 = (1,1,...,1) of a number n € N we obtain the following result.

Corollary 1. For any F € F and n € N we have

n k—1
Fo=>_MlLn—k) ] p(1,n—1), (12a)
k=1 =1
n k—1
Fo=> pn—k1) []Mn—i1). (12b)
k=1 i=1

Corollary 2. For F € F we have
n b n—1
= (67 . 13
<b17b27"'abk)p ; (ﬁ)(bla"'vbi17bi_1abi+1;"'abk>p ( )

where o (B) are specified in Proposition 1.

Recall 8 = (b1, ba,...,bx). By the n-dimensional multi F-brick V,,(8) we mean the F-brick of sizes

n

Fyx oo X Fpy X Fy X oo X Fpy Xoo o X By X oo XCFy,
N—_——

b1 ba br

And finally, by the multi-tiling we mean a tiling of the F-box Vi ,, with multi F-bricks V,,(8).



Observation 2. Let F € F. If an F-box V1, is tiled with multi F-bricks V,(8) then the number of these

bricks is equal to
n
. 14
<b13b27"'7bk>F ( )

Proof. The proof is analogous to the proof of Observation 1. O

where = (by1,ba,...,bg).

Theorem 3. Let F € F. Then any F-box Vi, can be tiled into multi F-bricks V,,(8) and the number of
these bricks satisfies (13).

Proof. The proof is by induction on n. (Compare with the proof of Theorem 1.) The case of n = 1 is trivial.
Suppose then n > 1 and assume that the F-box V; ,—1 might be tiled into any multi-bricks V,,_1(8’), where
B’ is a composition of the number (n — 1) into k non-zero parts.

Take the F-box V;,. We need to tile the box into multi-bricks V,,(3). Consider the last n-th size of the
box Vi ,, which is equal to F;,. From Proposition 1 we know that the number F,, might be expressed as the
sum F,, = Oq(,@)Fbl + -+ ak(/B)Fbk-

Therefore, we divide the F-box V), into k sub-boxes By, ..., By of sizes
Bl : F1 X F2 X X Fn,1 X (al(B)Fbl);
B2 : Fl X FQ X e X Fn—l X (OQ(ﬂ)FbQ),

B : Fy X Fy X -+ X Fpy_1 X (ag(B)Fp,,)-
Next, we tile these k sub-boxes independently in the following k steps. Let ¢ =1,2,... k.

Step i: Tiling the box B;.
Observe that the box designated by the first (n — 1) sizes of B; forms F-box V3 ,_1 and it can be tiled into
(n —1)-dimensional multi-bricks by the induction hypothesis. What is left is to cover the last size (o;(8)Fp,)
of F-box by the (by + - -+ + b;)-th size of the multi F-brick exactly «;(8) times. In the next induction step
we use (n — 1)-dimensional multi F-bricks V,,_1(3") of sizes

n

Fyxoo o X Fyy X o X By X oo o X Fp X X P X X Ry,
—_——— —_—— —_———

by b;i—1 by
where () = (b1y...,bi—1,b; — 1,b;11,...,bg). The rest of the proof goes similar as the proof of Theorem 1.
O

4 Remarks and examples

This note is a partial answer to the Kwasniewski tiling problem [10, Problem II, p.12] originally expressed
in terms of cobweb posets and its tilings. The question is to find all sequences T for which we have such
“tiling interpretation” of the F-nomial coefficients. Now, we know that the family 7 encompass, among
others, Fibonacci, Lucas sequences and (p, ¢)-analogues. However, the problem of characterization of the
whole family 7 is still open and related to the general problem of filling rectangular hyper boxes.

Next, we present a few examples of the sequences F' € F that gives us a combinatorial interpretation of
corresponding F-nomial coefficients.



Example 1 (Lucas sequence). Let p,q be arbitrary numbers. Then we define Lucas sequence as Uy = 0,
U; =1 and
Un = pUn—l - qUn—2~

It is the well-known that the Lucas sequences satisfy the following recurrence relation

Um+k - Uk+1Um, - qu—lUk-

n n—1 n—1
(+), o (" ), - (30,

If p e N and —¢ € N then we have a combinatorial interpretation for the (p,q)-Lucas nomial coefficients
expressed in terminology of tilings.

Therefore, we have

Example 2 (Fibonacci numbers). One of the most famous example of Lucas sequences is the sequence
of Fibonacci numbers where p = 1 and ¢ = —1, i.e., Fy =0, F} =1 and F,, = F,,_1 + F,,_o for n > 2.
Therefore, we have a new combinatorial interpretation for the Fibonomial coefficients which explains also

their recurrence relation )
n n — n—1
:Fk+1< ) +Fm—1< ) .
(k )Fib k Fib k-1 Fib

For a deeper discussion of an interpretation of the Fibonomial coefficients, we refer the reader to Kwasniewski
[8], Sagan and Savage [13], Knuth and Wilf [7].

Example 3. Let «, 8 be natural numbers. Then we define so-called («, §)-analogues as Ag = 0, A; = 1 and
An = (Oé + ﬂ)An—l - (Ol . 6)An—2~

These sequences generalize, among-others, g-Gaussian integers where @ = 1 and § = ¢ is a power of a prime
number. If @ = 8 then we have A,, = na"!, otherwise A,, = (a™ — ")/(a — ). We can show that these

numbers satisfy
A = oA, + B A

n\  gfn-—1 mf(n—1
()= () (G0,

This geometrical phenomenon of F-nomial coefficients is a starting point to new questions. For example,
we can ask about geometric proofs for many of binomial-like identities. Another way might follows us to the
problem of tilings’ counting of certain F-box and to special kinds of the Stirling numbers.

Finally, we have
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