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1 Introduction

Definition 1.1. An ordinary generating function A(x) of a(n) is the formal power series

A(x) =
∑
n≥0

a(n)xn, (1.1)

while the exponential generating function B(x) of b(n) is

B(x) =
∑
n≥0

b(n)
xn

n!
. (1.2)

Let us define Fibonomial generating function as

F (x) =
∑
n≥0

f(n)
xn

Fn!
, (1.3)

where F0 = 1, F1 = 1 and Fn = Fn−1 + Fn−2 for n ≥ 2 is the sequence of Fibonacci numbers.

Let us recall convolution for ordinary generating functions∑
n≥0

anx
n

∑
n≥0

bnx
n

 =
∑
n≥0

(
n∑
k=0

anbn−k

)
xn, (1.4)

for exponential generating functions∑
n≥0

anx
n

n!

∑
n≥0

bnx
n

n!

 =
∑
n≥0

(
n∑
k=0

(
n
k

)
anbn−k

)
xn

n!
, (1.5)

and for Fibonomial generating functions∑
n≥0

anx
n

Fn!

∑
n≥0

bnx
n

Fn!

 =
∑
n≥0

(
n∑
k=0

(
n

k

)
F

anbn−k

)
xn

Fn!
. (1.6)

Definition 1.2. If F (x) ∈ C[[x]] satisfies F (0) = 0, then we can define for any λ ∈ C the formal
power series

(1 + F (x))λ =
∑
n≥0

(
λ
n

)
F (x)n. (1.7)
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Example 1.1. From [1]. Let µ(n) be the Möbius function from the number theory; that
is, µ(1) = 1, µ(n) = 0 if n is divisible by the square of an integer greather than one, and
µ(n) = (−1)r if n is the product of r distinct primes. Find a simple expression for the power
series

F (x) =
∏
n≥1

(1− xn)−µ(n)/n. (1.8)

We apply log to F (x) to get

logF (x) = log
∏
n≥1

(1− xn)−µ(n)/n

=
∑
n≥1

log(1− xn)−µ(n)/n

=
∑
n≥1

−µ(n)

n
log(1− xn).

It is the well-known that

log(1 + x) =
∑
k≥1

(−1)k−1

k
xk,

thus

logF (x) =
∑
n≥1

−µ(n)

n

∑
k≥1

(
−x

kn

k

)
=
∑
n≥1

∑
k≥1

µ(n)

kn
xkn.

The coefficient of xm in the above is
1

m

∑
d|m

µ(d),

where the sum is over all positive integers d dividing m. It is the well-known that

1

m

∑
d|m

µ(d) =

{
1, m = 1
0, otherwise.

Hence logF (x) = x, therefore F (x) = ex.

Example 1.2. From [1]. Find an unique sequence a0 = 1, a1, a2 . . . of real numbers satisfying

n∑
k=0

akan−k = 1. (1.9)

Observe that the left-hand side of the above is a coefficient of convolution of ordinary generating
functions. Indeed, let F (x) =

∑
n≥0 anx

n, then

F (x)2 =
∑
n≥0

xn =
1

1− x
.

Hence

F (x) = (1− x)−1/2 =
∑
n≥0

(
−1/2
n

)
(−x)n.
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Therefore the coefficients an take a form

an = (−1)n
(
−1/2
n

)
= (−1)n

(−1/2)(−3/2)(−5/2) · · · (−(2n− 1)/2)

n!

=
1 · 3 · 5 · · · (2n− 1)

2nn!
.

Example 1.3. From [1]. Verify the identity

n∑
i=0

(
a
i

)(
b

n− i

)
=

(
a+ b
n

)
, (1.10)

where a, b and n are nonnegative integers.
Observe that the above might be solved with the help of convolution (1.4) of generating

function Fs(x) =
∑

i≥0

(
s
i

)
xi = (1 + x)s, i.e.,

∑
k≥0

n∑
i=0

(
a
i

)(
b

n− i

)
xk =

∑
k≥0

(
a
k

)
xk

∑
k≥0

(
b
k

)
xk


= (1 + x)a(1 + x)b = (1 + x)a+b

=
∑
k≥0

(
a+ b
k

)
xk.

2 Binomial posets

Theorem 1. Let R(P ) be Reduced Incidence Algebra over binomial poset P . Then we have
φ : R(P )→ C[[x]] given by

φ(f) =
∑
n≥0

f(n)
xn

B(n)
, (2.1)

where B(n) is the total number of maximal chains in n-inverval [x, y] of poset P .

Observation 1. Let f(n) be the cardinality of an n-interval [x, y] of P . Then

∑
n≥0

f(n)
xn

B(n)
=

∑
n≥0

xn

B(n)

2

. (2.2)

Proof. Notice that φ(ζ) =
∑

n≥0
xn

B(n) and ζ2 = card[x, y].

Observation 2. If µ(n) denotes the Möbius function µ(x, y) for an n-interval [x, y] of P , then
we have ∑

n≥0
µ(n)

xn

B(n)
=

∑
n≥0

xn

B(n)

−1 . (2.3)

Examples:

1. An ordinary generating function F (x) =
∑

n≥0 f(n)xn∑
n≥0

(
t

n

)
xn = (1 + x)t. (2.4)
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2. An exponential generating function F (x) =
∑

n≥0 f(n)xn/n!

∑
B(n)

xn

n!
= exp{ex − 1},

∑
D(n)

xn

n!
=

e−x

1− x
. (2.5)

Where B(n) stay here for the Bell numbers and D(n) for the number of permutations of
n with no fixed points.

3. Eulerian generating functions
∑

n≥0 x
n/nq!, where nq! = (1 + q) · · · (1 + q + · · ·+ qn−1).

∑
n≥0

f(n)
xn

nq!
=

∑
n≥0

xn

nq!

2

, (2.6)

where f(n) - the total number of subspaces of Vn(q), i.e., f(n) =
∑

k

(
n
k

)
q
.

4. Chromatic generating functions F (x) =
∑

n≥0 f(n) xn

q(
n
2)n!

for q ∈ P

∑
n≥0

f(n)
xn

2(n2)n!
=

∑
n≥0

(−1)n
xn

2(n2)n!

−1 , (2.7)

where f(n) is the number of acyclic digraphs on n vertices.
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