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Abstract

The Newton interpolation formula and divided differences appear help-
ful and inevitable along with umbra symbolic language in describ-
ing properties of general exponential polynomials of Touchard and
their possible generalizations. See: the source epos: Isaak Newton
Philosophiae Naturalis Principia Mathematica, Liber III, Lemma V,
London (1687).
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1. In the q-extensions realm

..................

2. Beyond the q-extensions realm

The further consecutive ψ-umbral extension of Carlitz-Gould q-Stirling num-
bers

{

n
k

}

q
and

{

n
k

}∼

q
is realized two-fold way - one of which leads to a
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surprise in contrary to the other way.

2.1. The first way

The first ”easy way” consists in almost mnemonic sometimes replacement
of q subscript by ψ after having realized that in equation (5) we are dealing
with the specific case of the so called Comtet numbers [14, 15] (Comtet L. in
Nombres de Stirling generaux et fonctions symtriques C.R. Acad. Sci. Paris,
Series A, 275 (1972):747-750 formula (2) refers to Wronski). This array of
Stirling-like numbers

{

n
k

}∼

ψ
- ”alephs de Wronski” as Comtet refers to it or

these Comtet numbers in terminology of Wagner [14, 15] or as a matter of
fact these (I. Newton Philosophiae Naturalis Principia Mathematica, Liber
III, Lemma V, London (1687).)

Newton interpolation coefficients [13] for en, n ≥ 0 i.e. divided
differences [0, 1ψ, 2ψ, ..., kψ; en] are defined accordingly as such coefficients -
below.

xn =
n

∑

k=0

{n
k

}∼

ψ
ψk(x), n ≥ 0, (1)

i.e. equivalently (recall that en(x) = xn, n ≥ 0)

{n
k

}∼

ψ
= [0, 1ψ, 2ψ, ..., kψ; en] =

k
∑

l=0

en(lψ)
ψ‘

k+1(lψ)
, n ≥ 0, (Newton)

where
ψk(x) = x(x− 1ψ)(x− 2ψ)...(x− [k − 1]ψ)

and ψ‘
s denotes the first derivative. Let then f = 〈fn〉n≥0 be an arbitrary

sequence of polynomials. In the following we shall call S(f ; n, k) defined
below

[d0, d1, d2, ..., dk; fn] ≡ S(f ; 〈dl〉l≥0, n, k) (N −W − C Stirling)

the Newton-Wronski-Comptet Stirling numbers (N-W-C for short)- compare
with Appendix A.2.
The ψ∼ - Stirling numbers

{

n
k

}∼

ψ
defined by (10) are specification of N−W−
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C Stirling array for which we naturally define ψ∼-exponential polynomials
ϕn(x, ψ) as follows

ϕ∼n (x, ψ) =
n

∑

k=0

[0, 1ψ, 2ψ, ..., kψ; en]xk, n ≥ 0. (ψ∼ − exp− pol)

Note the trivial but important fact that in the N-W-C Stirling numbers
case we are dealing with not equidistant nodes‘ interpolation in general and
note that (Rescal) from the subsection 2.2. below is no more valid beyond
q-extension case - both with an impact on the way to find out the Dobinski-
like formulae - see more below.
As a consequence of (10) we have ”for granted” the following extensions of
recurrences for Stirling numbers of the second kind:

{n + 1
k

}∼

ψ
=

{ n
k − 1

}∼

ψ
+ kψ

{n
k

}∼

ψ
; n ≥ 0, k ≥ 1, (2)

where
{

n
0

}∼

ψ
= δn,0,

{

n
k

}∼

ψ
= 0, k > n; and the recurrence for

ordinary generating function reads

G∼
kψ

(x) =
x

1− kψ
G∼

kψ−1(x), k ≥ 1, (3)

where naturally
G∼

kψ
(x) =

∑

n≥0

{n
k

}∼

ψ
xn, k ≥ 1

from where one infers that

G∼
kψ

(x) =
xk

(1− 1ψx)(1− 2ψx)...(1− kψx)
, k ≥ 0. (4)

Hence we arrive in the standard extended text-book way [22] at the following
explicit new formula (compare with (2.3) in [15])

[0, 1ψ, 2ψ, ..., kψ; en] =
{n

k

}∼

ψ
=

1
kψ!

k
∑

r=1

(−1)k−r
(

kψ

rψ

)

rn
ψ; n ≥ k ≥ 0, (5)
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where
k

∑

r=1

(−1)k−r
(

kψ

rψ

)

rn
ψ; n, k ≥ 0

is readily recognized as the ψ-extension of the formula for surjections in its
- after inclusion-exclusion principle had been applied - form.

Expanding the right hand side of (13) results in another explicit formula
for these ψ-case Newton-Wronski-Comtet array of Stirling numbers of the
second kind i.e. we have

{n
k

}∼

ψ
=

∑

1≤i1≤i2≤...≤in−k≤k

(i1)ψ(i2)ψ...(in−k)ψ; n ≥ k ≥ 0 (6)

or equivalently (compare with [13, 14])

{n
k

}∼

ψ
=

∑

d1+d2+...+dk=n−k, di≥0

1d1
ψ 2d2

ψ ...kdk
ψ ; n ≥ k ≥ 0. (7)

N-W-C case ψ∼ - Stirling numbers of the second kind being defined equiv-
alently by (10), (Newton), (14), (15) or (16) yield N-W-C case ψ∼ - Bell
numbers

B∼
n (ψ) =

n
∑

k=0

{n
k

}∼

ψ
=

n
∑

k=0

[0, 1ψ, 2ψ, ..., kψ; en], n ≥ 0 (B∼).

Naturally ∃! functional L∼ such that on the basis of persistent root poly-
nomials ψk(x) it takes the value 1:

L∼(ψk(x)) = 1, k ≥ 0.

Then from (10) we get an analog of (3)

B∼
n (ψ) = L∼(xn) (L∼).

Problem: which distribution the functional L∼ is related to is an open tech-
nical question by now. More - the recurrence for B∼

n (ψ) is already quite
involved and complicated for the q-extension case (see: the first section)-
and no acceptable readable form of recurrence for the ψ-extension case is
known to us by now.
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Nevertheless after adapting the standard text-book method [23] we have
the following formulae for two variable ordinary generating function for
{

n
k

}∼

ψ
Stirling numbers of the second kind and the ψ-exponential gener-

ating function for B∼
n (ψ) Bell numbers

C∼
ψ (x, y) =

∑

n≥0

ϕ∼n (ψ, y)xn, (8)

where the ψ- exponential polynomials ϕ∼n (ψ, y)

ϕ∼n (ψ, y) =
n

∑

k=0

{n
k

}∼

ψ
yk

do satisfy the recurrence (compare with formulas (28) in Touchard‘s [24]
from 1956)

ϕ∼n (ψ, y) = [y(1 + ∂ψ]ϕ∼n−1(ψ, y) n ≥ 1,

hence
ϕ∼n (ψ, y) = [y(1 + ∂ψ]n1, n ≥ 0.

The linear operator ∂ψ acting on the algebra of formal power series is being
called (see: [1, 2] and references therein) the ”ψ-derivative” as ∂ψyn =
nψyn−1.
The ψ∼ - exponential generating function

B∼
ψ (x) =

∑

n≥0

B∼
n (ψ)

xn

nψ!
(ψ∼ − e.g.f.)

for B∼
n (ψ) Bell numbers - after cautious adaptation of the method from

the Wilf‘s generatingfunctionology book [23] can be seen to be given by the
following new formula

B∼
ψ (x) =

∑

r≥0

ε(ψ, r)
eψ[rψx]

rψ!
(9)

where (see: [1,2] and references therein)

eψ(x) =
∑

n≥0

xn

nψ!

5



while

ε(ψ, r) =
∞

∑

k=r

(−1)k−r

(kψ − rψ)!
(10)

and the new Dobinski - like formula for the ψ-extensions here now reads

B∼
n (ψ) =

∑

r≥0

ε(ψ, r)
rn
ψ

rψ!
. (11)

The ψ∼-exponential polynomials are therefore given correspondingly by

ϕ∼n (ψ, x) =
∑

r≥0

ε(ψ, r)
rn
ψ

rψ!
xr. (ψ∼ − exp− pol − II)

In the case of Gauss q-extended choice of 〈 1
nq !〉n≥0 admissible sequence of

extended umbral operator calculus equations (19) and (20) take the form

ε(q, r) =
∞

∑

k=r

(−1)k−r

(k − r)q!
q−(r

2) (12)

and the new N-W-C case q∼-Dobinski formula is given by

B∼
n (q) =

∑

r≥0

ε(q, r)
rn
q

rq!
, (13)

which for q = 1 becomes the Dobinski formula from 1887 [4]. Note the
appearance of re-scaling factor q−(r

2) in (21). In its absence we would get
not q∼-Dobinski but q-Dobinski formula

Bn(q) =
1

expq(1)

∑

0≤k

kn
q

kq!
(q −Dobinski)

- see [15] and formula (5.28) there coinciding with N-W-C case of Dobinski
formula after re-scaling in correspondence with (Rescal) below in subsection
2.2. Correspondingly we would the have not (q∼ − exp− pol) formula but
(q − exp− pol) formula:
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ϕn(x, q) =
n

∑

k=0

q(
k
2)[0, 1q, 2q, ..., kq; en]xk =

n
∑

k=0

{n
k

}

q
xk. (q − exp− pol)

The interpretation problem. ..............................................................

In the inversion-dual way to our equation (10) above we define the ψ∼-
Stirling numbers of the first kind as coefficients in the following expansion

ψk(x) =
k

∑

r=0

[

k
r

]∼

ψ
xr (14)

where - recall ψk(x) = x(x − 1ψ)(x − 2ψ)...(x − [k − 1]ψ). (Attention: see
equations (10)-(16) in [8] and note the difference with the present definition).
Therefore from the above we infer that

k
∑

r=0

[

k
r

]∼

ψ

{r
l

}∼

ψ
= δk,l. (15)

Another natural counterpart to ψ∼-Stirling numbers of the second are ψc-
Stirling numbers of the first kind defined here down as coefficients in the
following expansion (”c” because of cycles in non-extended case)

ψk(x) =
k

∑

r=0

[

k
r

]c

ψ
xr (16)

where - now ψk(x) = x(x + 1ψ)(x + 2ψ)...(x + [k − 1]ψ). These are to be
studied elsewhere.
On interpretation. For possible unified combinatorial interpretations of
binomial coefficients of both kinds, the Stirling numbers of both kinds and
the Gaussian coefficients of the first and second kind - i.e for the specific
choices of ψ = 〈 1

nψ!
〉n≥0 - see [27, 28]. As for q-analogue of Stirling cycle

numbers see [29] and Sect. 5.3. in [30]. The problem of eventual combina-
torial interpretation of other ψ-extensions (vide Fibonomial - for example)
- remains opened.
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2.2. The second way.

.......................................................... The selective comparison of the pre-
sented umbral extensions of Stirling numbers, Bell numbers and Dobinski-
like formulas with other existing extensions (as well as relevant information
in brief) serves the purpose of seeking analogies and is to be find in the
Appendix that follows now.

Appendix - for remarks, discussion and brief comparative re-
view of ideas.

A.1. Notation.

..........................................................

A.2. Discussion, remarks, questions.

............................................................... Then due to the recursion for Stir-
ling numbers of the second kind and the identity (operators act on P )

x̂(D + 1) ≡ 1
exp (x)

(x̂D) exp (x)

one defines in GHW - algebra manner the exponential polynomials

n ≥ 0, ϕn(x) =
n

∑

k=0

{n
k

}

xk (ExPol)

introduced by Acturialist J.F. Steffensen [39, 40] (see: Bell‘s ”Exponen-
tial polynomials” in umbra-symbolic language [41] p. 265 and his symbolic
formula (4.7) for now Bell numbers). These exponential polynomials were
substantially investigated by Touchard in Blissard umbra-symbolic language
[24]. Here now comes the GHW-definition [38] of these basic polynomials

ϕn(x) =
1

exp (x)
(x̂D)n exp (x)

resulting in the formula which becomes Dobinski one for x = 1 i.e.

ϕn(x) =
1

exp (x)

∑

0≤k

knxk

k!
.

Note: The q-case as well as ψ-case formal mnemonic counterpart formulae
are automatically arrived at with the mnemonic attaching of q or ψ indices
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to nonnegative numbers [1, 2] - vide:

ϕn(x, ψ) =
1

expψ (x)

∑

0≤k

kn
ψxk

kψ!
(17)

which for ψ = 〈 1
nq !〉n≥0 and x = 1 becomes the well known q-Dobinski

formula as of course ϕn(x = 1, q) = Bn(q) - see in [15] the formula (5.28)
and note that this is not q∼-Dobinski formula (22) as noticed right after
(22). As for eventual second way‘s ψ-extensions beyond the q-extension case
where the rescaling does not take place - we are left with an opened problem
how to eventually find the way to get round this inspiring obstacle. Perhaps
instead of the second beyond the q-extension way we might follow Alexander
the great in his Gordian Knot problem solution and define S(ψ, n, k) as
follows (whenever one may prove that the object being defined is really a
polynomial):

ϕn(x, ψ) =
n

∑

k=0

S(ψ, n, k)xk =
1

expψ(x)

∑

0≤k

kn
ψxk

kψ!
. (S(ψ)− exp− pol)

An alternative good idea perhaps would be an attempt to ψ-extend the cele-
brated Newton interpolation formula ( use ∂ψ instead D, then expψ instead
of exp and then you will be faced with ψ-Leibniz rule application problem
though... see [1, 2, 33] for Leibnitz rules). Let us then make - also for the
sake of comparison with existing knowledge - let us then make us wonder
on the intrinsic presence and assistance of Newton interpolation which cor-
responds to the first ”easy” way as described in Subsection 2.1.
The intrinsic presence and assistance of Newton interpolation for-
mula in derivation of Dobinski formula for exponential polynomials and their
binomial analogues was underlined and used in [42] for specific presentation
of the q = 1 case from the umbral point of view of the classical finite opera-
tor calculus. In [42] a Dobinski-like formula was derived being as a matter of
fact the particular (”binomial”) case of formula (30) from Touchard‘s 1956
year paper [24]. In more detail. Choosing any binomial polynomial sequence
〈bn〉n≥0 consider its Newton interpolation formula

bn(x) =
n

∑

k=0

[0, 1, 2, ..., k; bn]xk.

Then apply an umbral operator sending the binomial basis 〈xn〉n≥0 of delta
operator ∆ to the binomial basis 〈xn〉n≥0 of delta operator D. Then use
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[0, 1, 2, ..., k; bn] =
∆kbn|x=0

k!
=

k
∑

l=0

(−1)k−lbn(l)
(k − l)!l!

(Newton− Stirling)

so as to arrive (thanks to binomial convolution) at Dobinski like formula
from [42] i.e.

bn(ϕ(x)) =
1

exp(x)

∞
∑

k=0

bn(k)xk

k!
,

where ϕ is the umbral symbol satisfying [24]

ϕn+1 = x(ϕ + 1)n, ϕk = xk. (Touchard)

In order to see that this is just the particular (”binomial”) case of umbra-
symbolic formula (30) from Touchard‘s 1956 year paper [24] just choose in
Touchard formula (30) the arbitrary polynomial f to be any binomial one
bn = f . Then f(ϕ) = bn(ϕ) = bn(ϕ(x)) is binomial also and we have

f(ϕ) =
1

exp(x)

∞
∑

k=0

bn(k)xk

k!
. (Dobinski− Touchard)

Equidistant nodes Newton‘s interpolation array of coefficients [0, 1, 2, ..., k; bn]
- here the connection constants of the general exponential polynomial pn(x) =
bn(ϕ(x)) are to be called in the following the Newton-Stirling numbers of
the second kind and are consequently given by

pn(x) =
1

exp(x)

∞
∑

k=0

bn(k)xk

k!
=

n
∑

k=0

[0, 1, 2, ..., k; bn]xk, (N−S−Dob)

where 〈bn〉n≥0 is any sequence of polynomials. These are - in their turn -
the special case of N-W-C Stirling numbers.
Coherent States‘ Example I. Take the bm(x) = f(x) in the (Dobinski-
Touchard) formula to be of the form resulting from normal ordering problem
(see A.3.II. - below) i.e. let (see: [10])

f(x) = bns(x; r, s) =
n

∏

j=1

[x + (j − 1)(r − s)]s

Then we get (2.8) from [10] i.e.

[0, 1, 2, ..., k; bns(...; r, s)] =
1
k!

k
∑

l=s

(−1)k−lbns(l; r, s)
(k

l

)

≡ Sr,s(n, k)

10



becomes the definition of the generalized Stirling numbers (see A.3.II. -
below), which appear to be special case of general Newton-Stirling num-
bers of the second kind. (Here bns(...; r, s)(x) = bns(x; r, s).) Naturally
the Dobinski-like formula (2.1) from [10] for exponential polynomials de-
termined by [0, 1, 2, ..., k; bns(.; r, s] = Sr,s(n, k) is special case of (N-S-Dob)
Dobinski-like formula with counting adapted to the choice f = bns. Along
with Bell numbers‘ sequence or Bessel numbers‘s sequence this special case
of Newton-Bell numbers‘ sequence

Br,s(n) =
ns
∑

l=s

Sr,s(n, k)

is a moment sequence [43].
Example II The next example of Newton-Stirling numbers dn,k comes from
the paper [44] on interpolation series related to the Abel-Goncharov problem.
There the divided difference functional ∆k is applied to en yielding dn,k
accordingly:

∆ken = [0,
1
k
,
2
k
, ...,

k − 1
k

, 1; en] = dn,k.

The general rules for Newton-Stirling arrays allow us to notice that

dn,k = [0,
1
k
,
2
k
, ...,

k − 1
k

, 1; en] =
kk

k!

k
∑

r=0

(−1)k−r
(

k
r

)

rn

kn ; n ≥ k ≥ 0,

hence for corresponding exponential polynomials we have

ϕn(x) =
n

∑

k=0

kk

k!

k
∑

r=0

(−1)k−r
(

k
r

)

rn

kn xk,

in accordance with the fact [44] that kn−kdn,k =
{

n
k

}

. Derivation of the
Dobinski-like formula we leave as an exercise.
On ψ-extension. A ψ-extension of the above Touchard‘s symbolic defini-
tion of exponential polynomials would start with the defining formula

ϕn+1 = x(ϕ +ψ 1)n, ϕk = xk. (ψ − Exp− Pol)

resulting in analogous umbra-symbolic identities and with corresponding
Dobinski-like formula as (35) below, where bn = en. Compare these with
(10) from where we have for this case of bn(x) = en(x) = xn, n ≥ 0 the
Newton interpolation formula

xn =
n

∑

k=0

[0, 1ψ, 2ψ, ..., kψ; en]ψk(x), n ≥ 0.
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For the meaning of the ψ-shift ”+ψ” see [1, 2, 26, 31, 33]. This we shall de-
velop elsewhere. ................................................................. ............................................
....................................................
A.5.3.Remark The relevance of Schlömilch‘s work [94] from 1852 to N-W-
C Stirling numbers is taken down here with pleasure. Another interesting
paper refereeing directly to the original Dobinski‘s work [4] and Dobinski‘s
point of view is the Fekete‘s paper [95] from 1999.

Acknowledgements Discussions with participants of Gian-Carlo Rota
Polish Seminar
http : //ii.uwb.edu.pl/akk/index.html - are appreciated.
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[31] A. K. Kwaśniewski Towards ψ-extension of Finite Operator Calculus of
Rota Rep. Math. Phys. 48 No3 (2001), 305-342.

[32] Graves C. On the principles which regulate the interchange of symbols
in certain symbolic equations Proc. Royal Irish Academy 6 (1853-1857),
144-152.
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[36] A. K. Kwaśniewski Cauchy q̂ψ-identity and q̂ψ)-Fermat matrix via q̂ψ-
muting variables of q̂ψ-Extended Finite Operator Calculus
arXiv:math.CO/0403107 v1 5 March 2004
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