PAGE
6

 Chapter 3. Polynomial Interpolation/Function Approximation

3.1. Lagrange Interpolation Formula

For a set of data points:
[image: image116.wmf]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1

N

N

1

N

3

 and
[image: image2.wmf]1

>

n

, the elementary Lagrange interpolation formula is

[image: image3.wmf]n

i

x

x

x

x

x

l

n

i

j

j

j

i

j

n

i

...,

,

3

,

2

,

1

,

)

(

,

1

=

-

-

=

Õ

¹

=

(3.1.1)

[image: image4.wmf])

(

x

l

n

i

 is a polynomial with degree no greater than
[image: image5.wmf]1

-

n

. Its value at any data point
[image: image6.wmf]k

x

 within the data set is either
[image: image7.wmf]1

 or
[image: image8.wmf]0

[image: image9.wmf]k

i

for

x

x

x

x

x

l

n

i

j

j

j

i

j

k

k

n

i

=

=

-

-

=

Õ

¹

=

,

1

)

(

,

1

(3.1.2)

[image: image10.wmf]k

i

for

x

x

x

x

x

l

n

i

j

j

j

i

j

k

k

n

i

¹

=

-

-

=

Õ

¹

=

,

0

)

(

,

1

(3.1.3)

which is equivalent to

[image: image11.wmf]þ

ý

ü

î

í

ì

¹

=

=

=

k

i

k

i

x

l

ik

k

n

i

,

0

,

1

)

(

d

(3.1.4)

The Lagrange interpolation polynomial of degree
[image: image12.wmf]1

-

n

 is

[image: image13.wmf])

(

)

(

1

1

x

l

y

x

p

n

i

n

i

i

n

å

=

-

=

(3.1.5)

and its values at the data points are

[image: image14.wmf]n

k

y

y

x

l

y

x

p

k

ik

n

i

i

k

n

i

n

i

i

k

n

,

,

2

,

1

,

)

(

)

(

1

1

1

L

=

=

=

=

å

å

=

=

-

d

(3.1.6)

which means
[image: image15.wmf])

(

1

x

p

n

-

 passes through all the data points exactly.

For the simplest case where
[image: image16.wmf]2

=

n

, there are only two data points and
[image: image17.wmf])

(

1

x

p

 is a linear function which passes through the two data points. Thus,
[image: image18.wmf])

(

1

x

p

 is just a straight line with its two end points being the two data points. From (3.1.6), we have

[image: image19.wmf])

(

)

(

1

1

2

1

2

1

1

2

1

2

2

1

2

1

1

x

x

x

x

y

y

y

x

x

x

x

y

x

x

x

x

y

x

p

-

-

-

+

=

-

-

+

-

-

=

(3.1.7)

For
[image: image20.wmf]3

=

n

,
[image: image21.wmf])

(

2

x

p

 is the quadratic polynomial that passes through three data points.

[image: image22.wmf])

)(

(

)

)(

(

)

)(

(

)

)(

(

)

)(

(

)

)(

(

)

(

2

3

1

3

2

1

3

3

2

1

2

3

1

2

3

1

2

1

3

2

1

2

x

x

x

x

x

x

x

x

y

x

x

x

x

x

x

x

x

y

x

x

x

x

x

x

x

x

y

x

p

-

-

-

-

+

-

-

-

-

+

-

-

-

-

=

 (3.1.8)

An advantageous property of the Lagrange interpolation polynomial is that the data points need not be arranged in any particular order, as long as they are mutually distinct. Thus the order of the data points is not important. For an application of the Lagrange interpolation polynomial, say we know
[image: image23.wmf]1

y

 and
[image: image24.wmf]2

y

 or
[image: image25.wmf]1

y

,
[image: image26.wmf]2

y

 and
[image: image27.wmf]3

y

, then we can estimate the function
[image: image28.wmf])

(

x

y

 anywhere in
[image: image29.wmf]]

,

[

2

1

x

x

 linearly and
[image: image30.wmf]]

,

[

3

1

x

x

 quadratically. This is what we do in finite element analysis.

3.2 Newton Interpolating Polynomial
Suppose there is a known polynomial
[image: image31.wmf])

(

1

x

p

n

-

 that interpolates the data set:
[image: image32.wmf])

,

,

2

,

1

,

,

(

n

i

y

x

i

i

L

=

. When one more data point
[image: image33.wmf])

,

(

1

1

+

+

n

n

y

x

, which is distinct from all the old data points, is added to the data set, we can construct a new polynomial that interpolates the new data set. Keep also in mind that the new data point need not be at either end of the old data set. Consider the following polynomial of degree
[image: image34.wmf]n

[image: image35.wmf]Õ

=

-

-

+

=

n

i

i

n

n

n

x

x

c

x

p

x

p

1

1

)

(

)

(

)

(

(3.2.1)

where
[image: image36.wmf]n

c

 is an unknown constant. In the case of
[image: image37.wmf]1

=

n

, we specify
[image: image38.wmf])

(

0

x

p

 as
[image: image39.wmf]1

0

)

(

y

x

p

=

, where data point 1 need not be at the beginning of the data set.

At the points of the old data set, the values of
[image: image40.wmf])

(

x

p

n

 are the same as those of
[image: image41.wmf])

(

1

x

p

n

-

. This is because the second term in Equation 3.2.1 is zero there. Since we assume
[image: image42.wmf])

(

1

x

p

n

-

 interpolates the old data set,
[image: image43.wmf])

(

x

p

n

 does so too.

At the new data point, we want
[image: image44.wmf]1

1

)

(

+

+

=

n

n

n

y

x

p

. This can be accomplished by setting the coefficient
[image: image45.wmf]n

c

 to be

[image: image46.wmf]Õ

Õ

=

+

+

-

+

=

+

+

-

+

-

-

=

-

-

=

n

i

i

n

n

n

n

n

i

i

n

n

n

n

n

n

x

x

x

p

y

x

x

x

p

x

p

c

1

1

1

1

1

1

1

1

1

1

)

(

)

(

)

(

)

(

)

(

(3.2.2)

which definitely exists since
[image: image47.wmf]1

+

n

x

 is distinct from
[image: image48.wmf]n)

,

,

2

1,

i

(

x

i

L

=

. Now
[image: image49.wmf])

(

x

p

n

 is a polynomial that interpolates the new data set.

For any given data set:
[image: image50.wmf])

,

,

2

,

1

,

,

(

n

i

y

x

i

i

L

=

, we can obtain the interpolating polynomial by a recursive process that starts from
[image: image51.wmf])

(

0

x

p

 and uses the above construction to get
[image: image52.wmf])

(

1

x

p

,
[image: image53.wmf])

(

2

x

p

, (,
[image: image54.wmf])

(

1

x

p

n

-

. We will demonstrate this process through the following example.

Example 3.2.1. Construct an interpolating polynomial for the following data set using the formula in Equations 3.2.1 and 3.2.2

i
1
2
3
4
5

x
0
5
7
8
10

y
0
2
-1
-2
20

Step1: for
[image: image55.wmf]1

=

i

[image: image56.wmf]0

)

(

1

0

0

=

=

=

y

c

x

p

Step 2: adding point #2

[image: image57.wmf]x

c

x

x

c

x

p

x

p

1

1

1

0

1

)

(

)

(

)

(

=

-

+

=

Applying
[image: image58.wmf]2

2

1

)

(

y

x

p

=

, we get
[image: image59.wmf]4

.

0

1

=

c

. So

[image: image60.wmf]x

x

x

c

x

p

x

p

4

.

0

)

(

)

(

)

(

1

1

0

1

=

-

+

=

Step 3: adding point #3

[image: image61.wmf])

5

(

4

.

0

)

)(

(

)

(

)

(

2

2

1

2

1

2

-

+

=

-

-

+

=

x

x

c

x

x

x

x

x

c

x

p

x

p

Applying
[image: image62.wmf]3

3

2

)

(

y

x

p

=

, we get
[image: image63.wmf]2714

.

0

2

-

=

c

. So

[image: image64.wmf])

5

(

2714

.

0

4

.

0

)

(

2

-

-

=

x

x

x

x

p

Step 4: adding point #4

[image: image65.wmf])

7

)(

5

(

)

(

)

)(

)(

(

)

(

)

(

3

2

3

2

1

3

2

3

-

-

+

=

-

-

-

+

=

x

x

x

c

x

p

x

x

x

x

x

x

c

x

p

x

p

Applying
[image: image66.wmf]4

4

3

)

(

y

x

p

=

, we get
[image: image67.wmf]0548

.

0

3

=

c

. So

[image: image68.wmf])

7

)(

5

(

0548

.

0

)

(

)

(

2

3

-

-

+

=

x

x

x

x

p

x

p

Step 5: adding point #5

[image: image69.wmf])

8

)(

7

)(

5

(

)

(

)

)(

)(

)(

(

)

(

)

(

4

3

4

3

2

1

4

3

4

-

-

-

+

=

-

-

-

-

+

=

x

x

x

x

c

x

p

x

x

x

x

x

x

x

x

c

x

p

x

p

Applying
[image: image70.wmf]5

5

4

)

(

y

x

p

=

, we get
[image: image71.wmf]0712

.

0

4

=

c

. So

[image: image72.wmf])

8

)(

7

)(

5

(

0712

.

0

)

(

)

(

3

4

-

-

-

+

=

x

x

x

x

x

p

x

p

which is the final answer.

If we expand the recursive form, the r.h.s of Equation (3.2.1), we obtain the more familiar form of a polynomial

[image: image73.wmf])

(

)

)(

(

)

)(

(

)

(

)

(

2

1

2

1

2

1

1

0

1

n

n

n

x

x

x

x

x

x

c

x

x

x

x

c

x

x

c

c

x

p

-

-

-

+

+

-

-

+

-

+

=

-

L

L

(3.2.3)
which is called the Newton’s interpolation polynomial. Its constants can be determined from the data set:
[image: image74.wmf])

,

,

2

,

1

,

,

(

n

i

y

x

i

i

L

=

[image: image75.wmf]L

L

)

)(

(

)

(

)

(

)

(

)

(

)

(

2

3

1

3

2

1

3

1

0

3

3

2

1

2

1

0

2

2

1

0

1

1

0

x

x

x

x

c

x

x

c

c

y

x

p

x

x

c

c

y

x

p

c

y

x

p

-

-

+

-

+

=

=

-

+

=

=

=

=

(3.2.4)

which gives

[image: image76.wmf]L

L

)

)(

(

)

(

2

3

1

3

1

3

1

0

3

2

1

2

1

2

1

2

0

2

1

1

0

x

x

x

x

x

x

c

c

y

c

x

x

y

y

x

x

c

y

c

y

c

-

-

-

-

-

=

-

-

=

-

-

=

=

(3.2.5)

We should note that forcing the polynomial through data with no regard for rates of change in the data (i.e., derivatives) results in a
[image: image77.wmf]0

C

 continuous interpolating polynomial. Alternatively, each data condition
[image: image78.wmf]i

i

y

x

p

=

)

(

 is called a
[image: image79.wmf]0

C

 constraint.

Let’s use the following notation for these constants

[image: image80.wmf]1

1

0

]

[

y

y

x

c

=

=

[image: image81.wmf]=

=

y

x

x

c

]

,

[

2

1

1

 EMBED Equation.3 [image: image82.wmf]1

2

1

2

]

[

]

[

x

x

y

x

y

x

-

-

[image: image83.wmf]L

L

,

2

,

1

,

]

,

[

2

1

1

=

=

-

i

y

x

x

x

c

i

i

(3.2.6)

which has the following property

[image: image84.wmf]1

1

2

1

3

2

2

1

]

,

[

]

,

[

]

[

x

x

y

x

x

x

y

x

x

x

y

x

x

x

i

i

i

i

-

-

=

-

L

L

L

(3.2.7)
so that it is called the divided difference. For the proof of this formula, please refer to Gautschi (1997), but for example:
[image: image85.wmf][

]

[

]

[

]

[

]

1

3

2

1

3

2

3

2

1

1

2

1

2

2

1

,

,

,

,

,

,

x

x

y

x

x

y

x

x

y

x

x

x

x

x

y

y

y

x

x

-

-

=

-

-

=

, etc. Using this recursion property, a table of divided differences can be generated as follows

[image: image86.wmf]L

L

L

L

L

y

x

x

x

x

y

x

x

x

y

x

x

y

x

y

x

x

x

y

x

x

y

x

y

x

x

y

x

y

x

]

[

]

[

]

[

]

[

]

[

]

[

4

3

2

1

4

3

2

4

3

4

4

3

2

1

3

2

3

3

2

1

2

2

1

1

(3.2.8)

This table can be viewed as part of an
[image: image87.wmf])

1

(

+

´

n

n

 matrix for a data set that has
[image: image88.wmf]n

 points. The first column is the
[image: image89.wmf]x

 values of the data set and the second column is the y or function values of the data set. For the rest of the
[image: image90.wmf])

1

(

)

1

(

-

´

-

n

n

 lower triangle, the rule for the construction of its elements, say, element(i, j), is as follows

(1) It takes the form of a division (
[image: image91.wmf]1

,

3

-

³

³

j

i

j

)

[image: image92.wmf])

1

,

2

(

)

1

,

(

)

1

,

1

(

)

1

,

(

)

,

(

+

-

-

-

-

-

-

=

j

i

element

i

element

j

i

element

j

i

element

j

i

element

(3.2.9)

where

Element(i, j-1) is the element in the matrix immediately left of element(i, j);

Element(i-1, j-1) is the element above and immediately left;

Element(i, 1) is the x on the same row;

Element(i-j+2, 1). To find it, going from element(i, j) diagonally upward and leftward, when reaching the second column, it is the element to the left.

(2) The denominator is easier to see in this form:

[image: image93.wmf]k

q

q

l

k

x

x

left

above

element

left

on

element

y

x

x

x

-

-

=

]

[

L

Example 3.2.2. Using the table of divided differences, construct the Newton interpolating polynomial for the data set in Example 3.2.1.

[image: image94.wmf]071

.

0

0

10

055

.

0

767

.

0

767

.

0

5

10

167

.

0

4

4

7

10

1

11

11

8

10

2

20

20

10

055

.

0

0

8

271

.

0

167

.

0

167

.

0

5

8

5

.

1

1

1

7

8

1

2

2

8

271

.

0

0

7

4

.

0

5

.

1

5

.

1

5

7

2

1

1

7

4

.

0

0

5

0

2

2

5

0

0

=

-

-

=

-

-

=

-

+

=

-

+

=

-

+

=

-

+

-

-

=

-

+

-

-

-

=

-

-

-

-

=

-

-

-

-

=

-

-

where the number of decimal digits is reduced so that the table fits the page here. The bracketed terms <…> are the coefficients of the Newton polynomial. Then

[image: image95.wmf])))

0712

.

0

)

8

(

0548

.

0

)(

7

(

2714

.

0

)(

5

(

4

.

0

(

0

)

8

)(

7

)(

5

(

0712

.

0

)

7

)(

5

(

0548

.

0

)

5

(

2714

.

0

4

.

0

0

)

(

4

-

+

-

+

-

-

+

+

=

-

-

-

+

-

-

+

-

-

+

=

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

p

The second line above is called a nested form that can save computation operations and produces a more accurate solution numerically. Note in passing how similar this table is to Romberg quadrature (or Richardson’s extrapolation), only in here the formula for calculating the rightmost terms is a simple ratio of differences.

A MATLAB code “newton_example.m” is written to incorporate the divided difference scheme and calculate the Newton interpolation polynomial using the nested form. The algorithm is as follows

(1) Input and plot data set points;

(2) Declare c(n, n + 1) as the matrix for the table; Note: c = element in Equation (3.2.9);

(3) c(i, 1) (x; c(i, 2) (y;

(4) Calculate the rest of the table due to Equation (3.2.9);

(5) Calculate the polynomial using c(i, i +1) as the coefficients of the polynomial.

Figure 3.2.1 shows the resulting polynomial for the above example.

[image: image96.emf]-2 0 2 4 6 8 10 12

-10

-5

0

5

10

15

20

x

y

Newton Interpolating Polynomial

data points

Newton Polynomial

Figure 3.2.1 Newton interpolation polynomial.

Through the above example, we can see the advantages of the divided difference table over the algebraic approach we have in Example 3.2.1. First, it has less computational operations. We do not need to write the polynomial and then use the C0 condition to calculate the constants. Second, it is much easier to incorporate it in a computer code.

It is important to realize that both the Lagrange and Newton polynomials are C0 continuous and each would generate the same result. One effect of C0 continuity can be seen in the large dip that occurs between the first two data points in the figure. Should it really be there?

3.3 Hermite Interpolation Polynomial

The Hermite interpolation accounts for the derivatives of a given function. For example, in the case of a beam finite element, suppose we need to obtain cubic polynomials that satisfy the following cases:

(1) Consider: y = ax3 + bx2 + cx + d in [0, 1].

(2) Apply conditions

@ x = 0
@ x = 1
 Case 1:
y = 1, y(= 0
y = y(= 0
 Case 2:
y = 0, y(= 1
y = y(= 0

 Case 3:

y = 0, y(= 0
y = 1, y(= 0
 Case 4:

y = 0, y(= 0
y = 0, y(= 1
(3) Solve each case for a, b, c, d.

We recall the standard Newton form for a cubic polynomial

[image: image97.wmf])

)(

)(

(

)

)(

(

)

(

)

(

3

2

1

3

2

1

2

1

1

0

x

x

x

x

x

x

c

x

x

x

x

c

x

x

c

c

x

y

-

-

-

+

-

-

+

-

+

=

(3.3.1)

This clearly is not what the Newton interpolation is meant for, but we can employ it as follows: approximate y(by using the divided difference between two points, then letting one approach the other in the limit. For example, if y((xi) is used, consider adding another point xm. Letting these two points converge to one point, we obtain

[image: image98.wmf]i

m

i

i

m

i

m

m

i

x

x

as

x

y

x

x

y

y

y

x

x

®

¢

®

-

-

=

),

(

]

[

From this we discover that the divided difference is an approximation of a derivative. Then in the divided difference table, we will put two entries for xi in the data set and do not calculate
[image: image99.wmf][

]

y

x

x

i

i

,

 in its original form (which will overflow numerically), but rather simply put the y((xi) value there.

For the case mentioned above, the table would be

[image: image100.wmf]y

x

x

x

x

y

x

x

x

y

y

x

y

x

x

x

y

x

x

y

x

y

y

x

y

x

]

[

]

[

]

[

]

[

2

2

1

1

2

2

1

2

2

2

2

1

1

2

1

2

2

1

1

1

1

1

¢

¢

The tables for the four cases are best determined by hand. Then substitution of the diagonal values for the
[image: image101.wmf]i

c

’s and for the
[image: image102.wmf]i

x

’s into Equation 3.3.1 yield the polynomials. The results are:

[image: image103.wmf]1

3

2

)

1

(

2

1

0

1

)

(

2

1

0

0

1

1

1

0

1

0

1

0

1

0

:

1

2

3

2

2

+

-

=

-

+

-

+

=

-

-

x

x

x

x

x

x

x

y

Case

[image: image104.wmf]x

x

x

x

x

x

x

x

y

Case

+

-

=

-

+

-

+

=

-

2

3

2

2

2

)

1

(

1

1

1

0

)

(

1

0

0

0

1

1

0

0

1

1

0

0

0

0

:

2

[image: image105.wmf]2

3

2

2

3

2

)

1

(

2

1

0

0

)

(

2

1

0

1

1

1

1

1

1

0

0

0

0

0

:

3

x

x

x

x

x

x

x

y

Case

+

-

=

-

-

+

+

=

-

-

[image: image106.wmf]2

3

2

2

)

1

(

1

0

0

0

)

(

1

1

1

0

1

0

0

0

1

0

0

0

0

0

:

4

x

x

x

x

x

x

x

y

Case

-

=

-

+

+

+

=

It is not hard to modify the code “newton_example.m” and incorporate these changes. The resulting code is called “hermite_example.m”. It can compute the above tables. The polynomials are plotted in Figure 3.3.1.

For cases involved with higher order derivatives, the principle is the same (see Gautschi, 1997). One thing worth noting here is that when y(n)(xi) is used, all lower derivatives and y(xi) itself must be included in the constraints. For example, you can not have y((xi) as a constraint but not y(xi), nor y(2)(xi) but not y((xi) and y(xi).
[image: image107.emf]0 0.5 1

0

0.2

0.4

0.6

0.8

1

x

y

case 1

0 0.5 1

-0.4

-0.2

0

0.2

0.4

0.6

0.8

x

y

case 2

data points

Hermite Polynomial

0 0.5 1

0

0.2

0.4

0.6

0.8

1

x

y

case 3

0 0.5 1

-0.4

-0.2

0

0.2

0.4

0.6

0.8

x

y

case 4

Figure 3.3.1 Hermite interpolation.

Example 3.3.1. Constructing displacements in a beam element from Hermite polynomials

Consider the beam of length L shown in Figure 3.3.2. The Hermite polynomials are:

[image: image108.wmf]1

)

(

3

)

(

2

)

(

2

3

1

+

-

=

L

x

L

x

x

N

(3.3.2)

[image: image109.wmf]x

L

x

L

x

x

N

+

-

=

2

2

3

2

2

)

(

(3.3.3)

[image: image110.wmf]2

3

3

)

(

3

)

(

2

)

(

L

x

L

x

x

N

+

-

=

(3.3.4)

[image: image111.wmf]L

x

L

x

x

N

2

2

3

3

)

(

-

=

(3.3.5)

These polynomials interpolation functions may be thought of as the fundamental modes of deflection, two of which are shown in Figure 3.3.2. The deflection
[image: image112.wmf])

(

x

w

of any statically loaded beam can be written in terms of these modes as

[image: image113.wmf]2

4

2

3

1

2

1

1

)

(

q

q

N

W

N

N

W

N

x

w

+

+

+

=

(3.3.6)

where the subscripts associate quantities with positions (or nodes) 1 and 2 on the beam and
[image: image114.wmf],

2

,

1

,

,

=

i

W

i

i

q

are the deflection and slope, respectively, at each node.

[image: image1.wmf]n

i

y

x

i

i

,

,

2

,

1

,

,

L

=

Figure 3.3.2 Static bending modes N1 and N3 in a beam.
Can you physically explain why N1 + N3 = 1 for all x in Figure 3.3.2? …And why N2 + N4 (1?

References

Gautschi, Walter, “Numerical Analysis,” Birkhauser, Boston, 1997.

x/L

� EMBED Word.Picture.8 ���

[image: image115.wmf]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1

N

N

1

N

3

_1041688275.unknown

_1187207144.unknown

_1187207574.unknown

_1187207609.unknown

_1187207632.unknown

_1187207642.unknown

_1187207668.unknown

_1187207683.unknown

_1187207725.unknown

_1187207679.unknown

_1187207655.unknown

_1187207637.unknown

_1187207616.unknown

_1187207623.unknown

_1187207612.unknown

_1187207591.unknown

_1187207600.unknown

_1187207582.unknown

_1187207544.unknown

_1187207557.unknown

_1187207565.unknown

_1187207551.unknown

_1187207537.unknown

_1187207541.unknown

_1187207443.unknown

_1187207479.unknown

_1187207510.unknown

_1187207459.unknown

_1187207270.unknown

_1041688597.unknown

_1041939611.unknown

_1041940244.unknown

_1041940346.unknown

_1075027299.unknown

_1075027331.unknown

_1075027334.unknown

_1075107070.doc

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1

N

N3

N1

_1075027314.unknown

_1075013708.unknown

_1075013783.unknown

_1075015287.unknown

_1041940352.unknown

_1041940313.unknown

_1041940337.unknown

_1041940253.unknown

_1041939972.unknown

_1041940002.unknown

_1041939865.unknown

_1041939013.unknown

_1041939041.unknown

_1041939052.unknown

_1041939022.unknown

_1041850508.unknown

_1041939005.unknown

_1041688741.unknown

_1041689206.unknown

_1041689150.unknown

_1041688679.unknown

_1041688464.unknown

_1041688492.unknown

_1041688537.unknown

_1041688548.unknown

_1041688574.unknown

_1041688542.unknown

_1041688530.unknown

_1041688479.unknown

_1041688483.unknown

_1041688472.unknown

_1041688411.unknown

_1041688449.unknown

_1041688346.unknown

_1026400151.unknown

_1026400415.unknown

_1026400871.unknown

_1026401095.unknown

_1028722887.unknown

_1041688265.unknown

_1029448615.unknown

_1026401351.unknown

_1026401376.unknown

_1026401294.unknown

_1026401321.unknown

_1026401015.unknown

_1026401066.unknown

_1026400968.unknown

_1026400673.unknown

_1026400721.unknown

_1026400439.unknown

_1026400200.unknown

_1026400270.unknown

_1026400279.unknown

_1026400238.unknown

_1026400180.unknown

_1026400193.unknown

_1026400158.unknown

_1026399867.unknown

_1026400043.unknown

_1026400116.unknown

_1026399872.unknown

_1025953669.unknown

_1026399790.unknown

_1026399846.unknown

_1026399746.unknown

_1025954742.unknown

_1024428210.unknown

_1025185376.unknown

_1025186938.unknown

_1024430823.unknown

_1024428179.unknown

