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Introduction: Bridging a millenium

    In the year AD 312, on the eve of a battle against would-be rivals for the Roman Imperial throne, Constantine had a dream that instructed him to place the chi-rho, the Christian symbol formed by superimposing the first two letters of the Greek name Christos, on the shields of his soldiers.  When he won the battle and became Emperor, he issued an edict of tolerance for Christian believers.  Later, on his deathbed, Constantine himself became a Christian, placing it in a position of prominence in the Empire from which it would influence the history of the Western world to this day. 
    In 324, Constantine moved the seat of the Empire to the Greek town of Byzantium in the east of the empire, renaming it Constantinople after himself.  His was one of the last strong governments of the Roman Empire.  The tenuous union of the eastern and western halves of the empire during the fourth century continued to fray, so that by the year 400 it had split in two for good.  The Goths entered Rome in 476, bringing down the Western Empire.  This marks the start of the Middle Ages, when Greek culture was effectively cut off from the West.  Tribal governments held sway, giving way to feudal society and the slow development over centuries of what would eventually become the familiar nation-states of Europe. 
    Meanwhile in the East, the Byzantine Empire preserved Greek culture.  Alexandria was still home to the great Museum of antiquity; at the turn of the fifth century, this was where Hypatia, the noted female philosopher, had written commentaries on Archimedes' Measurement of the Circle, Apollonius' Conics, and Ptolemy's Almagest.  But the Byzantine Empire was also a Christian empire, and the pagan Hypatia was to meet an untimely death in 415 at the hands of a Christian mob, who thought her a witch for her scholarship in philosophy, mathematics and astronomy.  At about this time, the Library at Alexandria was burned and many (though not all) texts were lost.  The great mathematical tradition of the Greeks had come to an end. 
    While mathematical inquiry languished in the European Middle Ages, it flourished in other parts of the world.  In China, we find texts in which various types of problems in surveying and astronomy are solved that required the development of geometric and arithmetical methods.  In India, trigonometry was developed in order to deal with astronomical calcuations, the same motivation that drove Ptolemy to build his table of chords.  The tradition in India, however, was to tabulate half-chords of angles; it is from this that we inherited the basic idea of the sine.  Also in India, by around the year 600, we have evidence that a decimal place-value numeration system was in use.  This numeration scheme was eventually transmitted westward into Europe by Islamic scholars. 
    Muhammad the Prophet (570 - 632) founded Islam in the Arabian peninsula; by 661, the armies of the Muslim caliphs had already spread to Persia in the east and Egypt in the west, and would soon overrun all of North Africa and Spain.  Constantinople was taken and lost more than once over the next century, and Muslim armies were finally held back from further European conquests by their loss at the Battle of Tours to Frankish forces under Charles Martel in 732.  In the early 800's the caliph al-Ma'mun founded the Bayt al-Hikma (House of Wisdom), an institute of higher learning and scholarship, in Baghdad, where Arabic translations of Greek and Indian works in natural philosophy, mathematics and astronomy were made.  Here and elsewhere throughout the Muslim empire, the mathematics of the ancients was studied and improved, and the Western world is indebted to these Arabic scholars for being largely responsible for the later transmission of this body of knowledge into Europe. 
    Muhammad ibn-Musa al-Khwarizmi (780? - 850?) was one of the earliest scholars at the Bayt al-Hikma; his most famous work was entitled Al-kitab al-muhtasar fi hisab al-jabr w'al-muqabala (The Condensed Book of Calclation by Restoration and Comparison).  In it he describes rules for solving problems involving an unknown quantity, and it represents the first true work of algebra ever written.  In fact, Latin scholars who learned of this work centuries later identified the methods found in this book by the transliterated words in the title: algebra and almucabala; eventually only the first of these terms was retained.  (Other scholars used the term algorismus, from the Latinized form of the author's name.  Today, the word "algorithm" is used to describe any well-defined procedure for calculation.) 
    Europe began to rouse itself from its cultural slumber by the beginning of the second millenium.  It was at this time that the first universities were established (in Bologna in 1088, Paris in 1150, Oxford in 1167) in the Scholastic tradition.  At these schools, students learned the curriculum of the seven liberal arts: the Greek quadrivium (four-fold way) of Plato's Academy, which consisted of geometry, arithmetic, music and astronomy; and the Roman trivium (three-fold way), which included the more practical disciplines of grammar, rhetoric and logic.  The schools gave degrees in theology and philosophy, in canon or Roman law, and in medicine.  While the universities modeled themselves on the monastic schools, they took students from amongst the families of the aristocrats and the burgeoning merchant class.  (After all, these were the only ones that could provide tuition-paying students!) 
    One member of this merchant class was Leonardo of Pisa, whose father made a fortune in the shipping trades between ports throughout the Mediterranean basin.  Leonardo (most commonly known today by the nickname Fibonacci) is recognized as an important mathematician of the late Middle Ages, and he profited from having learned his mathematics from Arab scholars.  Upon returning to Pisa, he then wrote the Liber Abbaci(The Book of Calculation), a work in Latin that introduced these ideas to students in Europe, as well as a book titled Practica Geometriae (The Practice of Geometry) that relates some Euclidean geometry, some Arabic algebra, and a little trigonometry (including a brief table of chords), and another titled Liber Quadratorum (The Book of Squares), in which he solves some problems like "find a square number from which, when five is added or subtracted, always arises a square number".  Fibonacci was a man whose work provided a mathematical link between two cultures, the Muslim East and the Christian West, as well as an indirect link between European scholarship and the heritage of the Ancient Greeks that had been lost since the fall of Rome. 

The beginnings of symbolic algebra

    Before the differential and integral calculus could be formalized, mathematicians developed a symbolic language in which to express it, the language of symbolic algebra.  It is important to note that before the fourtenth century this language did not exist.  The Islamic algebraists had begun to formulate algebraic rules for solving problems involving unknowns, but these rules were expressed entirely in rhetorical form.  Even early European algebraists followed this practice.  For instance, Jordanus de Nemore (1225 - 1260), a contemporary of Fibonacci's who taught at Paris in the thirteenth century, wrote an early work in algebra called De numeris datis (On Given Numbers).  In it he poses and solves a simple problem: 

If a number is divided into two parts whose difference is given, then each of the parts is determined.  Namely, the lesser part and the difference make the greater.  Thus the lesser part with itself and the difference make the whole.  Subtract therefore the difference from the whole and there will remain double the lesser given number.  When divided [by two], the lesser part will be determined; and therefore also the greater part.  For example, let 10 be divided in two parts of which the difference is 2.  When this is subtracted from 10 there remains 8, whose half is 4, which is thus the lesser part.  The other is 6.

This language is easily translated into modern symbolism: if 10 is divided into the parts x and y, then x + y = 10; if x is the greater then also xy = 2.  Jordanus observes that y + 2 = x, so 2y + 2 = x + y = 10, whence 2y = 8 and dividing yields y = 4, from which 4 + 2 = x, or x = 6.  One should realize however that these steps were conceived by Jordanus without the benefitof x or y, or the symbols +,  or =, or even Hindu-Arabic numerals (he employs Roman notation throughout).  On the other hand, in Jordanus' work some symbols do appear: in a few instances he uses letters to stand for numbers, and this practice will be repeated in algebraic work by other authors over the following 100 - 200 years. 
    In France, Nicholas Chuquet (1445 - 1488) exemplifies the movement to the inclusion of symbols in algebra.  In his Triparty en la science des nombres (1484), the words for addition and subtraction are plus and moins, and he abbreviates them by overscoring the letters p and m.  The algebraic unknown and its powers in a given problem are denoted by exponent-like values and square and cube roots are indicated with the abbreviation Rx (for radix).  Therefore he writes 
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    In Germany, Christoff Rudolff (1499 - 1555) wrote a book in 1525 called simply Coss.  The Italian algebraists had identified the unknown value in a problem as cosa (the thing), and Rudolff adopted the equivalent German word coss.  He employs a symbolic coding of the unknown quantity and its powers, but uses different symbols for each power. 
    In England, Robert Recorde (1510 - 1558) published The Whetstone of Witte (1557), in which the equal sign appears for the first time: "I will sette as I doe often in worke use, a paire of paralleles, or Gemow lines of one lengthe, thus ====, bicause noe 2 thynges can be moare equalle." 
    In Italy, the most striking developments were not notational but mathematical: Girolamo Cardano (1501 - 1576), a Milanese physician, published a very influential algebra book in 1545, Ars Magna, sive de regulis algebraicis (The Great Art, or on the rules of algebra).  In this book appears for the first time a general procedure for solving cubic and quartic equations; the solutions to linear and quadratic equations had been known since early antiquity, and partial solutions to certain kinds of cubic equations had been solved by Islamic mathematicians, but Cardano managed to study the cubic equation in great generality and extend these results to the case of the quartic.  The story of how he obtained these procedures is quite fascinating, but takes us far afield from our discussion here.  (An account of this story can be found here.) 
    Finally, François Viète (1540 - 1603), a lawyer and member of the court of Kings Henry III and IV of France, and who later achieved fame as a cryptanalyst for the crown in its political stuggles against Philip II of Spain, composed a number of treatises which were collected in a work titled The Analytic Art.  Viète mastered most of the algebraic techniques of his predecessors, but to a degree not seen before, he lays out a recognizably modern language for operation with these techniques.  He adopted the convention of representing quantities with letters of the alphabet, which he called symbolic logistic, using vowels for the unknowns and consonants for the given quantities of the problem.  He used the German symbols + and , but continued to use words to represent many operations: in for multiplication, quad for the square, cub for the cube, etc.  (The translation of his work which follows has replaced most of this with more modern notation.)  He talks about the process of translating a geometric problem into algebraic notation (zetetics), manipulating the symbols according to algebraic rules (poristics), and obtaining a solution by these means (exegetics); these terms have not been retained.  By relying heavily on this symbolic notation, Viète was able to apply his algebraic explorations to a much wider class of problems simply by setting the variables equal to new values.  This marked a new level of mathematical analysis which would bear fruit far beyond the geometric problem solving in which he was interested.  Viète sees great promise in these approaches to analysis: he writes that "the analytic art...appropriates to itself by right the proud problem of problems, which is THERE IS NO PROBLEM THAT CANNOT BE SOLVED." 
  

François Viète

Source: The Analytic Art, trans. by T. Richard Witmer, Kent State U. Press, 1983. 
  

Introduction to the Analytic Art

Chapter I 
On the Meaning and Components of Analysis and on Matters Useful to Zetetics
    There is a certain way of searching for the truth in mathematics that Plato is said first to have discovered.  Theon 1  called it analysis, which he defined as assuming that which is sought as if it were admitted [and working] through the consequences [of that assumption] to what is admittedly true, as opposed to synthesis, which is assuming what is [already] admitted [and working] through the consequences [of that assumption] to arrive at and to understand that which is sought. 
    Although the ancients propounded only two kinds of analysis, zetetics and poristics, to which the definition of Theon best applies, I have added a third, which may be called rhetics or exegetics.  It is properly zetetics by which one sets up an equation or proportion between a term that is to be found and the given terms, poristics by which the truth of a stated theorem is tested by means of an equation or proportion, and exegetics by which the value of the unknown term in a given equation or proportion is determined.  Therefore the whole analytic art, assuming this three-fold function for itself, may be called the science of correct discovery in mathematics.2 
    Now whatever pertains to zetetics begins, in accordance with the art of logic, with syllogisms and enthymemes 3  the premises of which are those fundamental rules with which equations and proportions are established.  These are derived from axioms and from theorems created by analysis itself.  Zetetics, however, has its own method of proceeding.  It no longer limits its reasoning to numbers, a shortcoming of the old analysts, but works with a newly discovered symbolic logistic which is far more fruitful and powerful than numerical logistic for comparing magnitudes with one another.  It rests on the law of homogeneous terms 4  first and then sets up, as it were, a formal series or scale of terms ascending or descending proportionally from class to class 5  in keeping with their nature and, [by this series,] designates and distinguishes the grades and natures of terms used in comparisons. 



Chapter V 
On the Rules of Zetetics
    The manner of working in zetetics is, in general, contained in these rules: 
  

1. If it is a length that is to be found and there is an equation or proportion latent in the terms proposed, let x be that length. 

2. If it is a plane that is to be found and there is an equation or proportion latent in the terms proposed, let x2  be that plane. 

3. If it is a solid that is to be found and there is an equation or proportion latent in the terms proposed, let x3  be that solid. 

What is to be found will, in short, rise or fall, in keeping with its nature, through the various grades of the magnitudes of comparison. 

4. Magnitudes, both given and sought, are to be combined and compared, in accordance with the given statement of a problem, by adding, subtracting, multiplying and dividing, always observing the law of homogeneous terms. 

Hence it is evident that in the end something will be found that is equal to the unknown or one of its powers.  This may be made up entirely of given terms or it may be the product of given terms and the unknown or of those terms and a lower-order grade. 

5. In order to assist this work by another device, given terms are distinguished by unknown by constant, general and easily recognized symbols, as (say) by desginating unknown magnitudes by the letter A and the other vowels E, I, O, U and Y and given terms by the letters B, G, D and the other consonants. 

6. Terms made up exclusively of given magnitudes are added to or subtracted from one another in accordance with the sign of their affection and consolidated into one. 6   Let this be the homogeneous term of comparison or the constant and put it on one side of the equation. 

7. Likewise, terms made up of different quantities and the same lower-order grade are added to or subtracted from one another in accordance with the sign of their affection and consolidated into one.  Let this be the homogeneous term of affection or the lower-order homogeneous term. 

8. Keep these lower-order homogeneous terms with the power they affect or by which they are affected and place them and the power on the other side of the equation.  Hence the constant term will be designated in keeping with the nature and the order of the power.  It will be called pure if [the power] is free from affection.  But if [the power] is accompanied by homogeneous terms of affection, show this by the [proper] symbols of affection and of degree along with any supplementary terms that are their coefficients. 

9. If the constant happens to be associated with a subordinate homogeneous term, carry out a transposition.  Transposition is a removal of affecting or affected terms from one side of an equation to the other with the contrary sign of affection.  That an equation is not altered by this operation is now to be demonstrated: 
  

  
  





Proposition I 
An equation is not changed by transposition.
Let  A2Dp = G2 BA.7   I say that A2 + BA = G2 + Dp  and that the equation is not changed by this transposition with contrary signs of affection.  For since  A2Dp = G2 BA, add  Dp + BA  to both sides.  Then by common agreement  A2Dp + Dp + BA= G2BA + Dp + BA.  The negative affection on each side of this equation cancels a positive: on one side the affection Dp vanishes, on the other the affection BA.  This leaves A2 + BA = G2 + Dp. 
  

10. If it happens that all the magnitudes given are multiplied by a grade and that, therefore, no pure constant term is immediately apparent, carry out a depression.  Depression is an equal lowering of the power and the lower-order terms in the observed order of the scale until the lowest variable term becomes a pure constant to which the others can be compared.  That an equation is not changed by this operation is now to be demonstrated: 

Proposition II 
An equation is not changed by depression.
Let A3 + BA2 = ZpA.  I say that by depression A2 + BA = Zp, for all of these solids have been divided by a common divisor, [a process] that, it has been settled, does not change an equation. 

11. If it happens that the highest grade of the unknown does not stand by itself but is multiplied by some given magnitude, carry out a reduction.  Reduction is a common division of the homogeneous magnitudes making up an equation by the given magnitude by which the highest grade of the unknown is multiplied so that this grade may lay claim to the title of power by itself and that from this an equation [in proper form] may finally remain.  That an equation is not impaired by this operation is now to be demonstrated: 

Proposition III 
An equation is not changed by reduction.
Let BA2 + DpA = Zs. 8   I say that by reduction 
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for all the solids have been divided by a common divisor, [a process] which, it has been settled, does not change an equation. 

12. Following all this, an equation may be said to be clearly expressed and in proper order.  [It may be] restated, if you wish, as a proportion, but with this particular warning: the product of the extreme terms [of the proportion] corresponds to the power plus the homogeneous terms of affection and the product of the mean terms corresponds to the constant. 

13. Hence a properly constructed proportion may be defined as a series of three or four magnitudes so expressed in terms, either pure or affected, that all of them are givens except the one that is being sought or its power and its lower-order grades. 

14. Finally, when an equation or proportion has been set up, zetetics may be said to have fulfilled its task. 

Diophantus used zetetics most subtly of all in those books that have been collected in the Arithmetic.  There he assuredly exhibits this method in numbers but not in symbols, for which it is nevertheless used. 9   Because of this his ingenuity and quickness of mind are the more to be admired, for things that appear to be very subtle and abstruse in numerical logistic are quite familiar and even easy in symbolic logistic. 
  
  



Preliminary Notes in Symbolic Logistic


[...] 

Proposition VI 
To add the difference between two magnitudes to their sum.
Let A + B be added to A B.  The sum is 2A.  Wherefore, 

Theorem 
The sum of two magnitudes plus their difference is equal to twice the greater magnitude. 

Proposition VII 
To subtract the difference between two magnitudes from their sum.
Let A B be subtracted from A + B.  The remainder is 2B.  Wherefore, 

Theorem 
The sum of two magnitudes minus their difference is equal to twice the smaller magnitude. 

Propostion VIII 
If the same magnitude is diminished by unequal subtrahends, to subtract one [quantity] from the other.
Let A E be subtracted from A B.  The remainder will be E B.  Note that this is also the difference between the subtrahends.  Wherefore, 

Theorem
If a magnitude be diminished by unequal subtrahends, the difference between the remainders is the same as the difference between the subtrahends. 

Proposition IX 
If the same magnitude is increased by unequal addends, to subtract one [quantity] from the other.
Let A + Bbe subtracted from A + G.  The remainder will be G B.  Wherefore, 

Theorem
If the same magnitude is increased by unequal addends, the difference between the sums is the same as the difference between the addends. 

Proposition X
If the same magnitude is increased by an addend and decreased by a subtrahend, which are unequal, to subtract one [quantity] from the other. 

Let A Bbe subtracted from A + G.  The remainder will be G + B.  Whence 

Theorem
If the same magnitude is increased by an addend and decreased by a subtrahend which are unequal, the difference between the sum and the remainder is equal to the sum of the addend and the subtrahend. 

Proposition XI 
To construct a pure power from a binomial root.
Let there be a binomial root, A + B.  A pure power is to be constructed from it. 
    First, let the square be constructed.  Since a root multiplied by itself makes a square, mulitply A + B by A + Band collect the individual planes that result.  These will be A2 + 2AB + B2 which are, accordingly, equal to the square of A + B. 
    Secondly, let the cube be constructed.  Since a root multiplied by its square makes a cube, let A + B be multiplied by the square of A + B just set out and collect the individual solids that result.  These will be A3 + 3AB2 + 3A2B+ B3 which will, therefore, be equal to the cube of A + B. 
    Third, let the fourth power be constructed.  Since a root multiplied by its cube makes the fourth power, multiply A + B by the cube of A + B just shown and collect the individual plano-planes that result.  These will be A4 + 4AB3 + 2A2B2 + 4A3B + B4 which will, accordingly, be equal to the fourth power of A + B. 
    Fourth, let the fifth power be formed.  Since a root multiplied by its fourth power makes a fifth power, multiply A + B by the fourth power of A + B just shown and collect the individual plano-solids that result.  These will be A5 + 5AB4 + 10A2B3 + 10A3B2 + 5A4B + B5 which will clearly be equal to the fifth power of A + B. 
    Fifth, let the sixth power be constructed.  Since a root multiplied by its fifth power makes a sixth power, multiply A + B by the the fifth power of A + B just shown and collect the individual solido-solids that result.  These will be A6 + 6AB5 + 15A2B4 + 20A3B3 + 15A4B2 + 6A5B + B6 which will be equal, therefore, to the sixth power of A + B. 
    The construction of any higher power will be no different.  From these [examples], therefore, theorems that are worth while for the whole of logistic and useful in zetetics can be derived and comprehended by a uniform method.10 
  
  




  
  


Theorem I
The product of the difference between two roots and the individual homogeneous terms, taken once each, of which a power of the sum of the roots consists is equal to the difference between the next higher powers [of those roots]. 11   Hence 

Corollary
The difference between these powers divided by the difference between the roots is one each of the individual homogeneous terms of which the next lower power of the sum of these roots consists.  And, contrariwise, the difference between these powers divided by the individual homogeneous terms, taken once each, of which the next lower power of the sum of these roots consists is the difference between the roots. 12 

Theorem II
The product of the sum of two roots and the individual homogeneous terms, taken once each, of which a power of the difference between the roots consists is equal to the sum or the difference between the next higher powers [of those roots]--the sum if the number of individual homogeneous terms is uneven, the difference if the number of individual homogeneous terms is even. 13   Hence 

Corollary
The sum or difference between [two] powers divided by the sum of their roots is one each of the individual homogeneous terms of which the next lower power of the difference of those roots consists. 14 

Another Corollary
If the the number of individual homogeneous terms is uneven, of which a power of the sum of or difference between the roots consists is even, as the difference between the roots is to their sum, so the individual homogeneous terms, taken once each, of which the power of the difference between these roots consists will be to the individual homogeneous terms. taken once each, of which the same power of the sum of these roots consists. 15 
  

François Viète
  

Commentary on the text

1.  This is Theon of Alexandria (AD 335? - 405?), father of Hypatia.  He authored an edition of Euclid's Elements which included these definitions of the terms analysis and synthesis; they were not written by Euclid, but may have been included in the Elements by later editors copying in a portion of some other ancient text dating from about the time of Euclid. 

2.  "The science of correct discovery" alludes to the procedure for solving for the unknown quantity in a problem.  This process involves, first, the translation of the given information into some algebraic formulation as an equation or inequality (zetetics), the manipulation of this equation by the rules of algebra (poristics), and finally, the interpretation of this manipulation as a solution of the problem (exegetics). 
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These three terms have not been retained in standard mathematical terminology. 
  

3.  A syllogism is a logical argument that derives a conclusion from a pair of premises (like the famous "All men are animals. Socrates is a man. Therefore, Socrates is an animal.").  An enthymeme is a syllogism in which one of the premises is suppressed. 

4.  The law of homogeneous terms was imposed by those like Viète who used algebraic techniques to analyze geometric problems.  For them, the unknown value in an algebraic problem is some length, area or volume.  So for instance, an equation like x3 + ax = b would make no sense unless x represented some length, a represented an area and b a volume, because, since the first term of the equation was a cube, it had to stand for some 3-dimensional volume.  Consequently, the second term ax had to also stand for some volume, since only homogeneous quantities could be added.  Thus, since x was a length, a had to be a 2-dimensional area.  Similarly, the sum b had to also be a volume.  It would take some time before the majority of mathematicians would be able to divorce algebra from having to refer to geometry and allow it to simply describe the relations between numbers.  Still, it was possible, even for Viète, to speak of higher-dimensional quantities (4-, 5-, and 6-dimensional objects, which are called plano-planes, plano-cubes, and cubo-cubes, respectively, belying their geometric nature) even though these concepts could not be visualized in reality except in the abstract.  Until then, the law of homogeneity held sway. 

5.  Here, class refers to geometric dimension, moving from point to line, to plane, etc. 

6.  The terms of an equation, like x3 + 4ax2 = 3b3, say, are said to be affected by their coefficients; the term 4ax2, for instance, represents 4 copies of the volume found by multiplying length a with area x2.  The term on the right is affected in a different way: here we have 3 copies of volume b3. 

7.  The subscript p denotes that D represents a plane figure. 

8.  The subscript s denotes that Z represents a solid figure. 

9.  If Al-Khwarizmi is the father of algebra, then Diophantus of Alexandria (AD 200? - 284?) is its grandfather.  Dipohantus' monumental work Arithmetica, a work in eight books, gives a collection of dozens of problems, of which the following is typical, taken from the English translation of Jacques Sesiano of the ninth century Arabic text of Qusta ibn-Luqa (Springer-Verlag, 1982): 

Problem iv.10:  We wish to find a cubic number such that, when we increase it by an arbitrary multiple of the square having the same side, the sum is a square number. 

We put x as the side of the cube, so the cube is x3; we put for the multiplicative factor 10, and we add ten times the square of the cube's side, or x2, to x3, thus obtaining x3 + 10x2, and this is equal to a square.  We assume its side to be x's [in] such [quantity] that their square is larger than 10x2, thus making the reduction possible.  Putting 4x as the side of that [square], the square is 16x2, hence x3 + 10x2 equals 16x2.  Let us remove the common quantity 10x2 so that 6x2 is equal to x3.  Dividing that by x2, we obtain x equal to 6.  [Thus] x3 is 216.  The square of the side is 36; ten times that is 360, and adding this to x3 gives 576, which is a square with 24 as its side.

It is important to note that this translation obscures the fact that Dipohantus surely did not originally use notation like x3 in his third century manuscript.  He identified the unknown x with a symbol that looks like  and stood for the first two letters of the Greek word  (number), the square x2 by the symbol , the first two letters of  (power), and the cube x3 by , the first two letters of  (cube).  Nonetheless, this work is known to Viète and strongly influences his geometric predisposition to algebra.  Viète talks of how Diophantus "exhibits his method in numbers and not in symbols", by which he means that, as we see in the example above, the algebraic problem is solved not in general (for a number of simplifying assumptions are made during the course of the solution) but in specific, with the ultimate goal being to find some solution, not all solutions. 

10.  Viète has described in this proposition the first six instances of what today we call the Binomial Theorem, that is, the expansion of the powers (A + B)n of the binomial A + B.  He provides a "uniform method" for finding these successive expansions. 

11.  In other words, (A B)(An + AnB2 + An2B3 + ... + Bn) = An+1 Bn+1. 

12.  He is deriving the two formulas 
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13.  Now he states that (A +B)(AnAnB2 + An2B3 ... + Bn) = An+1 +Bn+1 if n + 1 is odd, and if n + 1 is even, 
(A +B)(AnAnB2 + An2B3 ... Bn) = An+1 Bn+1.  In both cases the signs are meant to alternate in the big factor on the left of each equation. 

14.  This is the alternate formulation of the previous set of formulas (note 13): 
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where we use + if n + 1 is odd and if n + 1 is even. 

15.  That is, if (A ± B)n has an even number of terms (or, if n + 1 is even), then 
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