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Abstract

In [Z.-J. Xue, S.-Y Liu, An optimal result on fault-tolerant cycle-embedding in
alternating group graphs, Inform. Process. Lett. 109 (2009) 1197–1201] the authors
claim that every alternating group graph AGn is (2n − 6) fault tolerant pancyclic.
Which means that if the number of faults |F | ≤ 2n − 6, then AGn − F contains
cycles of every length from 3 to n!/2 − |F |. Their proof is not complete. They left
a few important things unexplained. In this paper we fulfill these gaps and present
another proof that AGn is (2n− 6)-fault-tolerant pancyclic.
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1 Introduction

An alternating group graph AGn,
n ≥ 3 has vertices labeled by even
permutations of the set {1, ..., n}.
Two vertices p and q are neighbors
if one of them is obtained from the
other by rotating three symbols:
the first, second, and i-th, for some
i ≥ 3. There are n!/2 vertices in
AGn. The graph AG3 has three ver-
tices 123, 231, and 312, every two
are connected. AG4 is presented in
Fig 1. By F we shall denote the set
of faulty vertices. In [2] the authors
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Fig. 1. AG4

claim that AGn is (2n − 6) fault tol-
erant pancyclic. Which means that
if the number of faults |F | ≤ 2n− 6,
then AGn − F contains cycles of ev-
ery length from 3 to n!/2−|F |. Their
proof, by induction, is not complete.
They left a few important things un-
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explained. When proving induction
step they decompose AGn into sub-
graphs A1,...,An. By induction hy-
pothesis, shortest cycles are in these
subgraphs. To obtain longer cycles
they take a cycle C already build and
extend it into the next subgraphs
using so called 4-cycle structures. If
the cycle C is contained in one sub-
graph Ai then it is easy to see that C
can be extended into a new subgraph
Aj. But the authors do not explain
how to find such expanding struc-
ture if C goes through more than
one subgraph and there are only few
subgraphs unvisited. Moreover they
do not explain why there are cycles
of every length ` ≥ 3 going through
4-cycle structure in Aj.

In this paper we fulfill the gaps and
present another proof that AGn, n ≥
4, is (2n−6)-fault-tolerant pancyclic.
We shall prove the theorem by in-
duction. For n = 4 the theorem was
proven in [1].

Lemma 1 (see [1]) AG4 is 2-fault
tolerant pancyclic.

For n ≥ 5, we shall decompose AGn

into subgraphs and we show that
shortest cycles are constructed in
subgraphs with smallest number of
faults. In order to build longer cycles
we first find a cycle in the subgraphs
with many faults and extend it to
the rest of the graph. In [2] the au-
thors noted that the bound 2n− 6 is
optimal, because with 2n − 5 faults
we can remove all but one neighbors
of a vertex v, so no hamiltonian cycle
is possible.

2 Alternating group graph

An alternating group graph AGn,
n ≥ 3 has vertices labeled by even
permutations of the set {1, ..., n}.
The permutation p = (p1, ..., pn) is
even if it contains the even number of
inversions. The inversion is a pair of
numbers i, j, 1 ≤ i < j ≤ n such that
pi > pj. For every i, 3 ≤ i ≤ n, let
g+

i be the permutation which rotates
symbols in positions 1,2, and i from
left to right; and g−i be the permu-
tation which rotates these symbols
from right to left. Two vertices p and
q are connected by an edge if and
only if q = pg+

i or q = pg−i for some
i ≥ 3. Observe that if q = pg+

i then
p = qg−i . There are n!/2 vertices in
AGn, and each vertex is connected
with 2n − 4 neighbors. The graph
AGn can be divided into subgraphs
A1,...,An, each Ai contains vertices
with i on the last symbol. The sub-
graph Ai is isomorphic with AGn−1.
We can also divide AGn according
to other position, say k, for some
3 ≤ k ≤ n − 1. Then Ai contains
vertices with i on the k-th position.
Note that every two vertices u and
v must differ in some symbol k ≥ 3
and we can decompose AGn in such
a way that u and v are in different
subgraphs, and we can always as-
sume that faulty vertices are not in
one subgraph. On the other hand we
can also divide AGn, n ≥ 4, in such
a way that two ends of an edge are in
one subgraph. This is because they
differ only in one position i ≥ 3. Ev-
ery vertex u ∈ Ai is connected with
exactly two vertices u′ and u′′ which
are in two different subgraphs outside
Ai. We will call the edges (u, u′) and
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(u, u′′) external edges. Other edges
we shall call internal. For each inter-
nal edge (u, v) ∈ Ai with u = (kj...i)
and v = (jk′...i) there exist adjacent
vertices s = (ik...j) and t = (k′i...j)
both in Aj which form the 4-cycle
(u, s, t, v). We shall say that the edge
(u, v) is of color j or that it is con-
nected (by a 4-cycle) with the edge
(s, t) in Aj. If a subgraph Ai is of di-
mension 4 and is isomorphic to AG4

(see Fig. 1) then there are 4 colors,
the edges of each color form a cycle
of length 6. For example, the cycle
1234, 4132, 1342, 2143, 1423, 3124
contains edges of color 1. If a sub-
graph Ai is of dimension 5 then it can
be divided into 5 subgraphs Ai

1, Ai
2,

Ai
3, Ai

4, Ai
5 (according to the 5-th po-

sition). Each of Ai
j is isomorphic to

AG4, and contains 4 colors (all colors
except i and j), and edges in each
color form a cycle of length 6. Simi-
larly for higher dimensions. AGn can
be divided into n subgraphs A1,...,An

according to the last position. Each
Ai can be divided into (n − 1) sub-
graphs Ai

1,...,A
i
n−1 according to the

last by one position and so on. But
the color of the edge depends only
on the first two symbols and is the
same in each subgraph. Moreover
if an edge (u, v) is in the subgraph
Ai

k and is connected with the edge
(u′, v′) in Aj, then the edge (u′, v′)
is in the subgraph Aj

k. There are
(n − 2)! external edges joining two
different subgraphs Ai and Aj. If x
and y are two vertices in a subgraph,
say A1, then it is easy to see that we
can choose external edges (x, x′) and
(y, y′) in such a way that x′ and y′

are in two different subgraphs. More-
over if x and y are neighbors and Aj

is some other subgraph j ≥ 2 then

we can choose x′ and y′ to be not in
Aj. This is because if x is connected
by external edges with x′ and x′′ in
two different subgraphs and y is con-
nected with y′ and y′′ also in two
different subgraphs, and x′ and y′

are in one subgraph then (x, y, y′, x′)
form a 4cycle structure and there
is only one 4-cycle structure for the
edge (x, y). By F we shall denote the
set of faulty vertices; fi = |Ai ∩ F |
denotes the number of faulty vertices
in Ai, and hi = |Ai − F | denotes the
number of healthy vertices in Ai.

Lemma 2 (see [2]) Let A1,..., Ak be
arbitrary string of subgraphs from the
decomposition of AGn, 2 ≤ k ≤ n.
Each Ai−F is hamiltonian connected
and each Ai is connected with Ai+1

by at least 3 healthy edges. Then for
every s ∈ A1 and t ∈ Ak there is
hamiltonian path connecting s and t
in A1 ∪ ... ∪ Ak.

We say that a graph is hamiltonian
connected if for every two vertices u
and v, there is hamiltonian path from
u to v.

Lemma 3 AGn, n ≥ 3, is hamilto-
nian connected if |F | ≤ n− 3.

Proof. By induction on n. It is easy
to check that the lemma is valid for
n = 3 or n = 4. For n ≥ 5 let us
divide AGn into subgraphs A1,...,An.
We can assume that faulty nodes are
not in one subgraph and fi ≤ n−4 =
(n − 1) − 3 for all i. Suppose first
that u and v are in the same sub-
graph, say in A1. By induction hy-
pothesis, there is hamiltonian path
P1 in A1 connecting u and v. The
length of P1 is |P1| = (n − 1)!/2 −
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f1−1, so we can choose b((n−1)!/2−
f1 − 1)/2c separate edges in P1 and
there are only n − 3 − f1 faulty ver-
tices outside A1. Hence we can find an
edge (x, y) in P1 with healthy exter-
nal edges (x, x′), (y, y′) going to two
different subgraphs. By induction hy-
pothesis, every Ai is hamiltonian con-
nected and every two Ai and Aj are
connected by at least (n− 2)!− (n−
3) ≥ 3 edges. Hence, by Lemma 2, x′

and y′ can be connected by a path P2

going through all vertices outside A1.
The case when u and v are in two dif-
ferent subgraphs follows immediately
from Lemma 2. 2

3 Extending cycles

Lemma 4 Consider decomposition
of AGn+1, into subgraphs A1,...,An+1

of dimension n and let Ai and Ak be
two of them. and let u, v be arbitrary
two vertices in Ai (u and v may form
an edge).

(1) If n = 4 and fi = 1 then there is
a hamiltonian path in Ai going from
u to v through an edge of color k.

(2) If n ≥ 5 and fi, fk ≤ 1. Then
there is a hamiltonian path P in Ai

from u to v which goes through an edge
e which is connected with an edge e′ ∈
Ak standing in an faultless subgraph
Ak

m of Ak. There is also a path P ′ of
length |P ′| = |P | − 1 with the same
property.

(3) If n ≥ 4 and fi = 2 then there is a
hamiltonian cycle in Ai going through
an edge of color k.

Proof: (1) can be easily proven by
examining all cases. To prove (2) con-
sider decomposition of Ai into sub-
graphs Ai

1,...,A
i
n. We can assume that

u and v are in different subgraphs.
Similarly as in Lemma 3 we can show
that u and v can be connected by a
path going through all subgraphs by
a hamiltonian path. At least 4 sub-
graphs contain color k. Thus we can
choose a subgraph Ai

m with color k,
such that the subgraph Ai

m and Ak
m

are free of faults. By (1) or induction
hypothesis, we can assume that the
path goes by color k in Ai

m. In or-
der to obtain the path P ′, we omit
one vertex in some faultless subgraph
other than Ai

m. This is possible be-
cause AGn without faults is pancon-
nected [1].

(3) Proof by induction on n. It is easy
to check that the lemma is valid for
n = 4. For n ≥ 5 let us divide Ai

into subgraphs Ai
1,...,A

i
n. We may as-

sume that Ai
1 contains at least one

fault. By induction hypothesis, there
is hamiltonian cycle C in Ai

1. There
is at most one fault outside Ai

1, so
we can find an edge (x, y) in C with
healthy external edges going to two
different subgraphs. Similarly as in
the proof of (2) we can extend C by a
path P going through the rest of Ai

and visiting color k. 2

Lemma 5 For any two edges e, f ∈
AGn, n ≥ 3, there exists a hamilto-
nian cycle going through e and f .

Proof. By induction on n. It is easy
to see that the lemma is true for n = 3
or n = 4. Let n ≥ 5. Decompose AGn

into subgraphs A1,...,An. We may as-
sume that both ends of e (and f) are
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in one subgraph (e and f may be in
different subgraphs). This is because
there is a position j ≥ 3 such that
neither e nor f differ in position j.

Case 1. Edges e and f are in one sub-
graph, say in A1. By induction hy-
pothesis, there is a hamiltonian cy-
cle C going through e and f . There
is a third edge in C which connects
C with another subgraph and further
with the rest of AGn.

Case 2. Edges e and f are in differ-
ent subgraphs, say in e in A1 and f
in An. For every i, 1 ≤ i ≤ n; we
choose two edges ei and fi ∈ Ai such
that fi and ei+1 form a 4-cycle; and
e = e1, fn = f . By induction hypoth-
esis, there is a hamiltonian cycle in
Ai going through ei and fi. All these
cycles can be connected in one hamil-
tonian cycle. 2

We say that a graph G is k-edge-
pancyclic if for every edge e there is a
cycle going through e of every length
from k to |G|.

Lemma 6 (1) AGn with |F | = 0 and
n ≥ 3 is 3-edge-pancyclic.

(2) AG4 with |F | = 1 is 5-edge-
pancyclic.

(3) AGn with |F | = 1 and n ≥ 5, is
4-edge-pancyclic. Moreover if an edge
e is in faultless subgraph, then there is
also a cycle of length 3 going through
e.

Proof (1) follows from the symmetry
of AGn. (2) can be easily proven look-
ing through all cases. To prove (3)
let us decompose AGn into subgraphs
A1,...,An. We can assume that both

ends of e are in one subgraph, say A1.

Case 1. The faulty vertex is also in
A1. The edge e is connected by 4-
cycle with an edge outside A1. By
induction hypothesis, or by (2), there
is a cycle going through e of every
length from 5 to (n − 1)!/2 − 1.
Hence there is a cycle C of length
(n−1)!/2−1 and a cycle C ′ of length
(n − 1)!/2 − 2 going through e. We
choose an edge f in C (and f ′ in
C ′). The edge f is connected with an
edge e2 in another subgraph, say A2

(f ′ is connected with an edge e′2 in
A2). From C and e2 one can build a
cycle of length |C| + 2. Similarly us-
ing C ′ one can build a cycle of length
|C| + 1. There is a cycle in A2 going
through e2 of every length from 3 to
(n − 1)!/2. Joining this cycle with
C we obtain cycles of length from
|C| + 3 to |C| + (n − 1)!/2. We pro-
ceede in a similar maner in order to
extend these cycles into the next sub-
graphs. First we get in A2 an edge f2

which has a connection with A3. By
Lemma 5, there is a hamiltonian cy-
cle C1 in A2 going through e2 and an
edge f2 (and C ′

2 going through e′2 and
f2). Joining C and C1 we obtain the
cycle of length |C|+ (n− 1)!/2 going
by f2. Joining C ′ with C1 we obtain
the cycle of length |C|+(n−1)!/2−1
going by an f2. Similarly as before we
can extend this cycles to the cycles of
every length from |C|+(n−1)!/2+1
to |C| + (n − 1)! and further to the
next subgraphs.

Case 2. The faulty vertex is in an-
other subgraph, say in An. By (1),
there is a cycle going through e of ev-
ery length from 3 to (n−1)!/2. Simi-
larly as in Case 1, we can extend these
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cycles into subgraphs A2,...,An−1. To
obtain the longest cycles, we first get
a hamiltonian cycle C in A1 which
goes by e end has connection with An,
this is possible by Lemma 5. In An we
add the hamiltonian cycle. Next we
choose the edge in C with connection
with another subgraph and through
this connection we extend cycles into
the rest of subgraphs. 2

Lemma 7 (1) Let A1,...,Ak be a se-
quence of subgraphs of dimension n,
n ≥ 4 without faults; e be an edge in
A1. Then there is a cycle in A1 ∪ ...∪
Ak going through e of every length `,
3 ≤ ` ≤ k · n!/2.

(2) Additionally let g be an arbitrary
edge in Ak. Then there is hamiltonian
cycle in A1 ∪ ... ∪Ak going through e
and g.

(3) Let A1,...,Ak be a sequence of sub-
graphs of dimension n, n ≥ 5 with
at most one fault each; e be an edge
in A1. Then there is a cycle in A1 ∪
...∪Ak going through e of every length
` ≥ 3.

Proof: (1) Since AGn is pancyclic
there is cycle in A1 of length ` for
3 ≤ ` ≤ n!/2. By symmetry, we can
assume that every of this paths goes
through e. By Lemma 4, there is a
hamiltonian cycle C1 in A1 going
through e and an edge f connected
with A2 and there is a cycle C ′

1 of
length |C1| − 1 going through e and
an edge f ′ connected with A2. Simi-
larly as in the proof of Lemma 6 we
can show that these cycles can be
extended into every length greater
than |C|.

(2) When we construct the hamil-
tonian cycle going through all sub-
graphs, then by Lemma 5, we can
choose the cycle in the last subgraph
Ak in such a way that it goes through
the edge g.

(3) The proof is similar to that of
(1). By Lemma 4(2), in A1 there is
a hamiltonian cycle C and a cycle
C ′ shorter by one which goes by e
and can be extended into A2. We use
Lemma 4(2) in order to extend cycles
into next subgraphs. 2

4 Main result

Lemma 8 AG5, is 4-fault-tolerant
pancyclic. That is, if the number of
faults |F | ≤ 4, then it contains a cycle
of every length ` from 3 to 60− |F |.

We decompose AG5 into subgraphs
A1,...,A5. We can assume that the
sequence f1,...,f5 is nondecreasing.
Since |F | = 4 we have f1 = 0 and
f3 ≤ 1. Shortest cycles of lengths
from 3 to h1 +h2 +h3 ≥ 34. we build
in A1 ∪ A2 ∪ A3. First in A1, then in
A1 ∪ A2 and at the end we build a
hamiltonian cycle in A1 and extend
it into A2 and A3. Next we build the
longest cycles.

Case 1. f5 = 3, f4 = 1, f3 = f2 =
f1 = 0. By Lemma 3, there is a
hamiltonian cycle C in A4. In C we
can choose an edge with connection
with a faultless subgraph Ai, i ≤ 3.
Through this connection we can ex-
tend C into A1 ∪A2 ∪A3 and obtain
cycles of length from 13 to 47. Sup-
pose for a moment that one faulty
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vertex w ∈ A5 is healthy. Then by
Lemma 3, there is a hamiltonian cy-
cle C1 going through w. By removing
w from C1 we obtain the path P1 go-
ing from u to v (two neighbors of w).
There is at most one faulty vertex
outside A5. Similarly as in Lemma 3
we can show that u and v can be con-
nected by a path P2 going through
all subgraphs A1,...,A4 except one
without faults, say A1. The path P2

goes through A2 by hamiltonian path
and, by Lemma 4, we can assume it
goes by an edge e connected with an
edge f ∈ A1. Combining paths P1,
P2 and the edge f we can build a
cycle of length 48− 4 + 2 = 46. Now
adding cycles in A1 going through f
we can make cycles up to the maxi-
mal length 56.

Case 2. f5 = 2, f4 = 2, f3 = f2 =
f1 = 0. First, by Lemma 4(3), in A5

there is a hamiltonian cycle which has
connection with an edge f in A1. It
is easy to observe that in A1 we can
find a hamiltonian cycle C which goes
through f , 3 separate edges of color
4, and 2 separate edges of each of the
colors 2 and 3. Hence, C can be con-
nected with healthy edges in all A2,
A3, A4, and A5. Next we add an edge
in A2, and A3, the hamiltonian cycle
in A4 and A5, and we obtain a cycle
of length 36. We can extend this cy-
cle by enlarging cycles in subgraphs
A2 and A3.

Case 3.f5 ≤ 2 and f4 ≤ 1. Can be
proven similarly as Case 2. In A1 we
can find a hamiltonian cycle C which
can be connected with healthy edges
in all other subgraphs. 2

Theorem 9 Alternating group graphs

AGn, n ≥ 4, are (2n − 6)-fault-
tolerant pancyclic. That is, if the
number of faults |F | ≤ 2n − 6, then
it contains a cycle of every length `
from 3 to n!/2− |F |.

Proof. We shall use induction on n.
The cases for n = 4 and n = 5 fol-
low from Lemma 1 and Lemma 8.
For n ≥ 6 let us divide AGn into
subgraphs A1,...,An. We may assume
that the sequence f1,...,fn is nonde-
creasing. Note that three smallest f1,
f2, f3 ≤ 1 and f4 ≤ 2. Moreover, if
f4 = 2 then f1 = f2 = f3 = 0.

Case 1. fn = 2n − 7. In this
case fn−1 = 1 and fi = 0 for
1 ≤ i ≤ n − 2. By Lemma 7, in
subgraphs A1,...,An−1 one can build
cycles of every length from 3 to
(n − 1)(n − 1)!/2 − 1. Suppose for
a moment that one faulty vertex
w ∈ An ∩ F is healthy. Then by in-
duction hypothesis, there is a hamil-
tonian cycle C1 going through w. By
removing w from C1 we obtain the
hamiltonian path P1 going from u to
v (two neighbors of w). There is at
most one faulty vertex outside An, so
similarly as in Lemma 3 we can show
that u and v may be connected by a
path P2 going through all subgraphs
A1,...,An−1 except one, say A1. The
path P2 goes through A2 by hamil-
tonian path and, by Lemma 4(2),
we can assume it goes by an e edge
connected with an edge f ∈ A1.
Combining paths P1, P2 and the
edge f we can build a cycle of length
(n−1)(n−1)!/2− (2n−6)+2. Now
adding cycles in A1 going through f
we can make cycles up to the maxi-
mal length n!/2− (2n− 6).
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Case 2. fn ≤ 2n − 8 and fi ≤ n − 4
for i ≤ n − 1. Short cycles from 3
to h1 + h2 + h3 + h4 we build in
A1 ∪ A2 ∪ A3 ∪ A4. If h4 = 2 (then
h1 = h2 = h3 = 0), we first build
cycles in A1 ∪ A2 ∪ A3, next we find
hamiltonian cycle in A4 which can
be extended into A1 ∪ A2 ∪ A3. By
induction hypothesis, there is hamil-
tonian cycle C1 in An. The length of
C1 is |C1| = (n− 1)!/2 − fn. We can
choose b((n − 1)!/2 − fn)/2c sepa-
rate edges in C1 and there are only
2n − 6 − fn faulty vertices outside
An. Hence, we can find an edge e in
C1 with healthy external edges going
to two different subgraphs different
from A1, say Aa and Ab, a 6= 1 6= b.
Similarly as in Lemma 3 we can show
that C1 can be extended by a path
P2 going through three subgraphs
Aa, Ab and A2 (if a = 2 or b = 2 then
P2 goes only by 2 subgraphs). The
path P2 goes through A2 by hamil-
tonian path and, by Lemma 4, we
can assume that it goes by an edge
e connected with an edge f ∈ A1.
Moreover f is in a healthy subgraph
of A1. Extending C1 by P2 we can
build a cycle C2 of length at most
hn +ha +hb +h2 ≤ h1 +h2 +h3 +h4.
By Lemma 4(2), the part of P2 go-
ing through A2 can be changed by a
path which omits one vertex. Hence
we have also a cycle C ′

2 of length
|C ′

2| = |C2|−1 going through an edge
connected with A1. C2 or C ′

2 can be
extended into A1 and we get cycles
of lengths from hn + ha + hb + h2 + 1
to hn + ha + hb + h2 + h1. To add
next subgraph Ai we require that the
path P2 (and P ′

2) goes through one
more subgraph. In this way we add
one by one the rest of the subgraphs.

Case 3. fn = fn−1 = n−3. In this case
fi = 0 for every 1 ≤ i ≤ n− 2. Short
cycles from 3 to (n− 2)(n− 1)!/2 we
build in A1∪ ...∪An−2. By induction
hypothesis, there are hamiltonian cy-
cles Cn and Cn−1 in An and An−1 re-
spectively. Each of this cycles can be
connected with 3 subgraphs. Indeed,
they are of length (n− 1)!/2− n + 3
and there are at most (n − 2)! edges
in one color. Thus we can connect Cn

and Cn−1 with edges en and en−1 in
two different subgraphs, say A1 and
An−2. Taking Cn and cycles in A1 ∪
... ∪ An−2 (by Lemma 7, we may as-
sume that these cycles go by en) we
can build cycles of the length up to
(n− 1)(n− 1)!/2− (n− 3).

In order to build the longest cycles.
We take in A2 two neighboring edges
x and y one with connection with an
edge x′ ∈ A1 and the other with con-
nection with y′ ∈ A3. In A1 there
is a hamiltonian cycle going through
en and x′. In A3 ∪ ... ∪ An−2 there
is hamiltonian cycle going through y′

and en−1. In A2 there are cycles on
any length from 3 to (n−1)!/2 going
through x and y. 2
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