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Abstract. In this paper we consider the problem of synchronous ren-
dezvous in which two anonymous mobile entities (robots) A and B are
expected to meet at the same time and point in a graph G = (V,E).
Most of the work devoted to rendezvous in graphs assumes that robots
have access to the same sets of nodes and edges, where the topology
of connections may be initially known or unknown. In our work we as-
sume the movement of robots is restricted by the topological properties
of the graph space coupled with the intrinsic characteristics of robots
preventing them from visiting certain edges in E.
We consider three rendezvous models re�ecting on restricted maneu-
verability of robots A and B. In Edge Monotonic Model each robot
X ∈ {A,B} has weight wX and each edge in E has a weight restric-
tion. Consequently, a robot X is only allowed to traverse edges with
weight restrictions greater that wX . In the remaining two models graph
G is unweighted and the restrictions refer to more arbitrary subsets of
traversable nodes and edges. In particular, in Node Inclusive Model the
set of nodes VX available to robot X, for X ∈ {A,B} satis�es the condi-
tion VA ⊆ VB or vice versa, and in Blind Rendezvous Model the relation
between VA and VB is arbitrary. In each model we design and analyze
e�cient rendezvous algorithms. We conclude with a short discussion on
the asynchronous case and related open problems.

1 Introduction

In this paper we consider rendezvous problem, a challenge in which two or more
mobile entities, called later robots have the goal to meet at the same point and
time in provided space. This space can be either a network of discrete nodes be-
tween which robots can move along existing connections, or a geometric environ-
ment in which the movement of robots is restricted by the topological properties
of the space. As indicated in [19] symmetry plays a key role in determining the
feasibility and e�ciency of solutions in the rendezvous problem. It is quite often
that anonymous (indistinguishable) players �nd themselves in a situation where
the tools and advice given to each robot are identical and rendezvous may not
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be feasible [5]. In this context, determining even small pieces of information that
would help to distinguish between participating robots often prove to be vital in
achieving rendezvous.

Rendezvous problems have been studied in a number of di�erent settings. A
vast literature includes several exhaustive surveys on the topic and other search-
ing games, see, e.g., [4,5,22]. The work on rendezvous includes both deterministic
algorithms surveyed recently in [22] as well as randomized approaches including
already classical work in [2,3,8,9]. Another group of algorithms focus on geomet-
ric setting including earlier work on the line [9,10] and the plane [6,7] as well as
more recent work on fat (with non-zero radius) robots [1, 14]. Another interest-
ing group of rendezvous algorithms is designed for in�nite (Euclidean) spaces for
both synchronized and asynchronous solutions [12, 13, 16]. An important group
of rendezvous algorithms have been considered for graph based environments,
see, e.g., [15,18,21]. However, all previous work is devoted to the case when both
robots have access to the same part of the network. An interesting version of
rendezvous in which robots face di�erent costs associated with traversed edges
was considered recently in [17] where the authors consider scenarios with and
without communication between participating robots.

Our work refers to the extreme communicationless case of [17] in which the
costs imposed on edges are either unit or in�nite. We also make reference to blind
rendezvous considered recently in the context of cognitive radio networks [11,20].

1.1 Model of Computation

We consider rendezvous of anonymous (indistinguishable also with respect to the
control mechanism) robots in networks modeled by graphs. The network G =
(V,E) where the two robots are expected to rendezvous is a simple connected
graph in which two nodes sA, sB ∈ V are selected as the starting points for robots
A and B respectively. Moreover, for each X ∈ {A,B} we de�ne its reachability
graph also referred to as the map GX = (VX , EX), a subgraph of G in which
VX and EX are respectively the sets of nodes and edges accessible from sX .
Moreover, agent X is only able to see its own map. Let kX = |VX | be the size of
map GX and assume w.l.o.g. that kA ≤ kB . While the robots are anonymous,
we use extra assumptions with respect to the network nodes (and in some cases
edges too). In particular, we assume that all nodes of the input network graph
G = (V = {v1, v2, . . . , vn}, E) are ordered, s.t., vi < vi+1 for all i = 1, 2, . . . n−1
and this order is consistent with the order of nodes in GX , for X ∈ {A,B}.
In particular, if VX = {v(X)

1 , v
(X)
2 , . . . , v

(X)
kX
}, v(X)

a = vi, and v
(X)
b = vj , where

vi, vj ∈ V and i ≤ j, we also get v(X)
a ≤ v(X)

b . Finally, let T (VX) be a rooted tree
that spans all nodes in VX in which the starting point sX is placed in the root
of T (VX) and the order on children is consistent with the order of nodes in VX .

The actions of the two robots are synchronized. I.e., the two robots A and B
have access to the global clock ticking in discrete time steps 0, 1, 2, . . . . Our al-
gorithms start with the global clock set to time 0. During a single time step
each robot assesses the node in which it resides in (including check for co-



location/rendezvous with the other robot). Then it decides whether to stay at
the same node or to move to one of its neighbors via an available (edge) connec-
tion. During the traversal between two connected nodes the "eyes" of the robot
are closed. Consequently, since the robots cannot meet on edges rendezvous has
to take place at some node. The running time of all algorithms is bounded, i.e.,
the robots stop within the time given to the respective rendezvous algorithms.

We consider threemodels of computation with restrictions on maps given
to robots A and B.

1. Edge Monotonic Model This model is motivated by the case in which
each robot X ∈ {A,B} has weight wX and each edge in E has weight
restriction. This setting imposes an order on edges in E = {e1, e2, . . . em},
in which for any 1 ≤ i < j ≤ m edge ej tolerates weights non-smaller than
ei. Let iX be the smallest integer, s.t., eiX tolerates weight wX . One can
conclude that robot X is only allowed to traverse edges with index ≥ iX .
Consequently in this model if rendezvous is possible EA ⊆ EB and VA ⊆ VB
(i.e., GA is a subgraph of GB), see section 2.1.

2. Node Inclusive Model In this model we only assume that VA ⊆ VB , i.e.,
the relationship between edges spanning nodes in EA and EB remains un-
speci�ed.

3. Blind Rendezvous Model In this model we only assume that VA∩VB 6= ∅.
Also here the relationship between EA and EB is unspeci�ed.

1.2 Our results

In this paper we study synchronized rendezvous in three di�erent restriction
models. In section 2.1 we present optimal O(kA+kB)−time rendezvous algorithm
RV1 in the Edge Monotonic Model. In section 2.2 we present rendezvous algo-
rithm RV2 that meets two robots in the Node Inclusive Model in almost linear
time O((kA+kB) log(kA+kB)). In the Blind Rendezvous Model, see section 2.3
we show that rendezvous is not feasible. We introduce explicit labels to make
rendezvous feasible and present two rendezvous algorithmsRV3 andRV4 whose
superposition allows robots to meet in time min{O((kA+kB)

3 log log n,O((kA+
kB)

2 log n)}. We conclude with the �nal comment and a short discussion on
asynchronous models in section 3.

2 Rendezvous Algorithms

In this section we design and analyze several rendezvous algorithms in the con-
sidered restriction models.

2.1 Rendezvous in Edge Monotonic Model

Recall that in this model, we adopt the order of edges in E = {e1, e2, ..., em}
where ei < ei+1. For any l ∈ {1, . . . ,m}, we de�ne a sequence of subgraphs



G(l) = (V (l), E(l)), where E(l) = {el, el+1, ..., em} and V (l) is the set of nodes
in V induced by the edges of E(l), and E(l + 1) ⊂ E(l). In this model each
robot X is associated with the threshold index iX ∈ {1, . . . ,m} determining the
set of edges E(iX) traversable by X. In other words, robot X can walk only
along edges from E(iX). We also de�ne a sequence of connected components
GX(l) = {VX(l), EX(l)}, for l ∈ {iX , . . . ,m}, where VX(l) is the set of nodes
reachable from sX via edges in E(iX), and EX(l) ⊆ E(l) is the maximal set of
edges spanning nodes in VX(l). So in this case VX = VX(iX), EX = EX(iX),
and kX = |VX(iX)|. The following Lemma holds.

Lemma 1. In Edge Monotonic Model either (VA ⊆ VB) or (VB ⊆ VA), or
VA ∩ VB = ∅.

Proof. The lemma (statement) would be false if all of the terms (VA ⊆ VB), (VB ⊆
VA), and VA ∩ VB = ∅ were false too. Assume w.l.o.g. that VA ∩ VB 6= ∅, where
VA = VA(iA) and VB = VB(iB), and iA ≥ iB . Since iB ≤ iA (edges traversable
by A are also traversable by B) and VA ∩ VB 6= ∅ (the reachability graphs GA

and GB coincide) all edges and points in GA(iA) are also available to robot B,
meaning VA ⊆ VB .

We de�ne the concept of a sleeve of graphs with respect to X denoted by
SL(X).

De�nition 1. The sleeve of graphs SL(X) with respect to robot X is the max-
imal sequence of connected components GX(iX), GX(iX + 1), . . . , GX(l∗), in
which |VX(l + 1)| > |VX(l)|/2, for all iX ≤ l∗ < m. A subsequence GX(iX + j),
GX(iX + j + 1), . . . , GX(l∗), for any j ∈ {0, 1, . . . , l∗ − iX}, is called a tail of
SL(X) and the smallest (in the adopted order) node v∗ ∈ VX(l∗) is called the
target in SL(X).

In what follows we present a pseudo-code of the proposed rendezvous algo-
rithm in the monotonic model. If at any time step the two robots A and B meet,
the rendezvous is achieved and the two robots halt.

Algorithm RV1(X ∈ {A,B})
Step 1 Walk from sX to the target node v∗ in SL(X)
Step 2 Wait in v∗ until conclusion of time step 2kX ;
Step 3 Walk along the Euler tour of T (VX) and Halt.

Theorem 1. If rendezvous is feasible, Algorithm RV1 admits meeting in opti-
mal time O(kA + kB).

Proof. Recall that kA ≤ kB . According to Lemma 1 if rendezvous is feasible, i.e.,
VA ∩ VB 6= ∅ we conclude that VA ⊆ VB . We consider two complementary cases:



Case 1 [2kA > kB ] Since 2kA > kB according to De�nition 1 sleeve SL(A) is
a tail of SL(B) and the two sleeves share the same target v∗. The robots A
and B are initially placed in their own sleeves at distance at most kB < 2kA
from the joint target v∗. This admits rendezvous in Step 1 in time at most
kB .

Case 2 [2kA ≤ kB ] In this case, robot A halts at the latest at time step 4kA on
the conclusion of Step 3, i.e., after 2kA time steps devoted to Step 1 and
Step 2, followed by additional 2kA− 2 time steps devoted to the Euler tour
traversal in T (VA)) in Step 3. Note, however, that robot B enters Step 3

in time step 2kB + 1 > 4kA, when robot A is already immobilized. Since
during Step 3 robot B visits all nodes in VB (that include also all nodes in
VA) rendezvous must occur. �

2.2 Rendezvous in Node Inclusion Model

Recall that in this model we assume that all nodes are ordered and kA ≤ kB ,
where VA ⊆ VB . In this model we have no order on edges and in turn the concept
of sleeve of graphs cannot be applied here. Instead, one can focus on a di�erent
mechanism that will allow to distinguish between two robots and with this in
mind we focus on the values of kA and kB . Note that if kA = kB due to the
inclusion assumption we also have VA = VB . In this case, since orders of nodes
in VA and VB are consistent the robots can meet at the smallest (in order)
node v∗ in VA and VB that must coincide. Otherwise, the values of kA and kB
di�er and each robot X, for X ∈ {A,B} can adopt kX as its unique identi�er.
Furthermore, apart from unique identities there needs to be a synchronization
mechanism (sizes of kA and kB can be dramatically di�erent) that will allow
robots to coordinate their individual moves. The rendezvous mechanism for any
robot X is based on synchronized awaiting of the �rst stage that is long enough
to accommodate actions re�ecting the size kX . In particular, we identify the
power of two jX , s.t., 2

jX−1 ≤ kX < 2jX that provide a constant estimation and
the upper bound on the size of kX . The algorithm applied to robot X operates
in stages j = 1, 2, 3, ..., jX , where during stages 1 through jX − 1 the robot
remains immobilized and in the last stage jX it actively participates (visiting all
nodes in VX) in the rendezvous process. Note that if jA < jB (and VA ⊂ VB)
in stage jB , when robot A is already immobilized, B by visiting all nodes in
VB (that is a superset of VA) must conclude rendezvous. In the complementary
case, i.e., when the estimates jA and jB are the same we use binary expansions
bA[0, . . . , jA] and bB [0, . . . , jB ] (where positions jA, jB are the most signi�cant)
of kA and kB respectively to di�erentiate between the robots.

Lemma 2. If jA = jB and kA < kB there exists i ∈ {0, 1, . . . , jA = jB}, s.t.,
bA[i] = 0 and bB [i] = 1.

Proof. If for all i ∈ {0, 1, . . . , jA = jB}, (bA[i] = 0) => (bB [i] = 0) would imply
kA ≥ kB .



A pseudo-code of the rendezvous algorithm RV2 in the inclusion model fol-
lows. If at any time step the two robots A and B meet, the rendezvous is achieved
and the two robots halt.

1. Algorithm RV2(X ∈ {A,B})
2. Step 1 Compute jX and bX [0, . . . , jB ].
3. Step 2 for j = 1, 2, . . . , jX do
4. if (j = jX) {active stage}
5. use 2jX time steps towalk to andwait in v∗. {smallest node}
6. (i) for i = 0, 1, . . . , jX do
7. if (bX [i] = 1)
8. (a) use 2 ·2jX time steps to visit Euler tour in T (VX)
9. and return to v∗

10. else (b) wait 2 · 2jX time steps in v∗

11. else (ii) wait 2j · (2j + 1) time steps where you are.

We prove the following theorem.

Theorem 2. If rendezvous is feasible Algorithm RV2 admits meeting in time
O((kA + kB) log(kA + kB)).

Proof. The rendezvous algorithm runs in jX stages controlled by the loop for in
line 3. There are two cases. In the �rst case, where jA < jB , when robot B is in
the active stage robot A is already immobilized, and B meets A during traversal
of the Euler tour in T (VB), see line 8 of the code. Otherwise, when jA = jB
we have two subcases. In the �rst subcase when kA = kB the robots meet in
the shared smallest node v∗, see line 5. In the second subcase, where kA < kB ,
according to Lemma 2 there exists i, s.t., bA[i] = 0 and bB [i] = 1 when robot
B visits the Euler tour in T (VB) and robot A is immobilized. Thus this subcase
admits rendezvous too.

With respect to the time complexity we �rst observe that the execution time
of algorithm RV2 is bounded and it depends on the parameter jX . The time
complexity of each stage j = 1, ..., jX is bounded by 3 · 2j resulting in the total
complexity

∑jX
j=1(2

j · (2j + 1)) ≤
∑jX

j=0(2
j · (2jX + 1)). This is equivalent to

(2jX + 1)
∑jX

j=1(2
j) = (2jX + 1) · (2jX+1 − 1) = O(kX · log kX), since 2jX − 1 ≤

kX < 2jX . This admits the time complexity O((kA + kB) log(kA + kB)). �

2.3 Blind Rendezvous Model

In this section we consider rendezvous where the relationship between the maps
of robots is more arbitrary. We �rst show that without any additional informa-
tion, even if VA ∩ VB 6= ∅, rendezvous cannot be reached.

Theorem 3. Blind rendezvous is not feasible.



Proof. Assume that for any X ∈ {A,B} we have VX = {v(X)
1 , v

(X)
2 } and EX =

{(v(X)
1 , v

(X)
2 )}, where node v(A)

2 coincides with v
(B)
1 and where for each robot X

the starting node sX coincides with vX1 on its own map. It is enough to observe
that without any additional information the symmetry tie cannot be broken.
And indeed, since the robots are anonymous (indistinguishable) whenever robot

A visits v
(A)
2 robot B visits v

(B)
2 , i.e., the two robots never visit the shared node

simultaneously. �

One can adopt a natural assumption that the nodes in VX apart from being

ordered they also have explicit labels. In consequence, if a node v
(A)
a ∈ VA coin-

cides with v
(B)
b ∈ VB they both possess the same explicit label. We assume that

the labels are drawn from the set of integers {1, 2, . . . , n}, and we use notation

b
(X)
i (or b

(X)
i [0.. log n]) to denote the binary expansion of the explicit label of

v
(X)
i ∈ VX .
We also assume that n is known to both robots. Otherwise no rendezvous

algorithm would stop and report infeasibility of rendezvous when VA ∩ VB = ∅,
as robots are not aware of sizes of each others maps.

Before we present two rendezvous algorithms we show that the symmetry
tie problem, see Theorem 3, can be overcome if the explicit labels are available.
W.l.o.g. we also assume that the order of labels is consistent with the order
imposed on nodes on each map. If this is not the case a new (consistent) order
for nodes in VA and VB can be computed on the basis of explicit labels (we only
care about nodes in VA ∩ VB). The following result has been shown in [11]. Our
proof, however, is much simpler and based on binary representation of explicit
labels.

Lemma 3. Assume that the map of any robot X ∈ {A,B} is an ordered pair

of nodes (v
(X)
1 , v

(X)
2 ) connected by a symmetric edge, where nodes v

(A)
2 and v

(B)
1

physically coincide and nodes v
(A)
1 and v

(B)
2 don't. In such network one can break

the symmetry tie to reach rendezvous in time O(log log n).

Proof. We �rst observe that according to the imposed order b
(A)
1 < b

(A)
2 = b

(B)
1 <

b
(B)
2 . The case where sA = v

(A)
2 and sB = v

(B)
1 is trivial and another case where

sA = v
(A)
1 and sB = v

(B)
2 can be easily resolved by an algorithm that alternates

between the two nodes (e.g., in every other time step). Let 1 ≤ rA ≤ log n be

the largest integer position, s.t., b
(A)
1 [rA] 6= b

(A)
2 [rA]. Since b

(A)
1 < b

(A)
2 one can

conclude that b
(A)
1 [rA] = 0 and b

(A)
2 [rA] = 1. Similarly let 1 ≤ rB ≤ log n be the

largest integer position, s.t., b
(B)
1 [rB ] 6= b

(B)
2 [rB ]. Since b

(B)
1 < b

(B)
2 one can also

conclude that b
(B)
1 [rB ] = 0 and b

(B)
2 [rB ] = 1. We observe that since b

(A)
2 = b

(B)
1

one can conclude that rA 6= rB as the respective positions cannot contain 0
and 1 at the same time. Moreover binary expansions brA and brB of rA and rB
respectively are limited to log log n+ 1 bits.

We consider a symmetry breaking algorithm in which in time step i each
robot X ∈ {A,B} moves to the other node only if i = 2 · l (i is even) or if



i = 2 · l− 1 (i is odd) and brX [l] = 1, for l = 1, . . . , log log n+1. Note that since
rA 6= rB for some 1 ≤ l ≤ log log n+ 1 we must have brA[l] 6= brB [l] and if until
now the rendezvous is not reached (all previous moves were symmetric and in
the last odd time step, when the symmetry was broken robots occupy di�erent
nodes) in the next even step the rendezvous is accomplished.

Corollary 1. Note that the lemma above applies to pairs of nodes at distance
1. In a more general case, where the distance between nodes in the pair is d ≥ 1,
the symmetry breaking rendezvous takes time O(d log log n).

In the remaining part of this section we present two rendezvous algorithms
followed by their superposition. The �rst algorithmRV3 has the time complexity
O((kA + kB)

3 log log n) and its idea is based on the blind rendezvous algorithm
from [11] where the problem was studied in complete graphs. The second algo-
rithm RV4 has the time complexity O((kA + kB)

2 log n) making it superior to
RV3 when kA + kB > logn

log logn = τ, where τ is the threshold value. This ren-
dezvous algorithm resembles algorithm RV2 however here the symmetry tie is
broken with the help of explicit labels.

Blind rendezvous in time O((kA + kB)3 log logn) Similarly to its prede-
cessor RV2 also the �rst blind rendezvous algorithms RV3 operates in stages
accommodating geometrically increasing estimates on sizes of the input maps.
This is needed as the size of the map of one robot is not known to the other.
The robot starts using active stages only when the current estimate is large
enough to accommodate its map. The rendezvous process terminates in time
O((kA+kB)

3 log log n) if the maps of both agents are smaller than the threshold
value τ. Otherwise, algorithm RV3 is followed by execution of algorithm RV4.
If at any time step the two robots A and B meet, the rendezvous is achieved
and the two robots halt.

1. Algorithm RV3(X ∈ {A,B})
2. Step 1 Compute jX and the threshold τ = logn

log logn
.

3. Step 2 for j = 1, 2, . . . , dlog τe do
4. if (j ≥ jX) {active stage}
5. (i) for all pairs (a, b) ∈ {1, . . . , 2j} × {1, . . . , 2j}
6. ordered lexicographically do
7. if (either of v(X)

a , v
(X)
b exists)

8. (a) run blind rendezvous in pair (v(X)
a , v

(X)
b ) or

9. wait appropriate O(2j log log n) time steps
10. in the only existing node;
11. else (b) wait appropriate O(2j log logn) time steps
12. where you currently are;
13. else (ii) wait suitable O(23j · log log n) time steps where you are.



Theorem 4. If kA + kB < τ = logn
log logn and rendezvous is feasible, algorithm

RV3 admits rendezvous in time O((kA + kB)
3 log log n).

Proof. The rendezvous algorithm runs in dlog τe stages controlled by the loop
for in line 3. Robot X starts executing active stages as soon as the stages can
accommodate the size of X's map. If the size of the map is too big, robot X
awaits execution of the second rendezvous algorithms RV4, see line 9. During an
active round all pairs (a, b) from the Cartesian product {1, . . . , 2j}× {1, . . . , 2j}
are drawn in the lexicographic order. Only certain pairs are valid, i.e., when

either of v
(X)
a and v

(X)
b exists. In each valid pair if only one node exists robot

X remains in this node for the duration of the symmetry breaking procedure.
Otherwise, if both nodes exist the breaking symmetry procedure is executed with
the distance between the two nodes bounded by 2j .

If rendezvous is feasible we must have nodes v
(A)
a ∈ VA and v

(B)
b ∈ VB that

coincide by sharing the same label. If the pair (v
(X)
a , v

(X)
b ) exists in both maps

thanks to the symmetry breaking procedure eventually robot A will visit v
(A)
a at

the same time when entity B visits v
(B)
b and the rendezvous is reached. If only

one element of the pair (v
(X)
a , v

(X)
b ) exists, i.e., either v

(A)
a for A or v

(B)
b for B

the respective robot is asked to wait in the existing node of the pair resulting
in rendezvous too. Otherwise the robots await the next pair from the Cartesian
Product without movement for the period corresponding to execution of the
symmetry breaking procedure. Thus the actions performed by robots A and B
remain fully synchronized.

With respect to the time complexity we �rst observe that the execution time
of algorithm RV2 is bounded and it depends on the parameter jX . The time
complexity of each stage j = 1, ..., jX is bounded by 3 · 2j resulting in the total
complexity

∑jX
j=1(2

j · (2j + 1)) ≤
∑jX

j=0(2
j · (2jX + 1)). This is equivalent to

(2jX + 1)
∑jX

j=1(2
j) = (2jX + 1) · (2jX+1 − 1) = O(kX · log kX), since 2jX−1 ≤

kX < 2jX . This admits the time complexity O((kA + kB) log(kA + kB)). �

Blind rendezvous in time O((kA + kB)2 logn) We start with the proof of
the following fact.

Lemma 4. One can impose a periodic order π(X) on nodes of a spanning tree
T (VX), s.t., the walking distance (the number of edges to be visited) between two
consecutive nodes in order π(X) is at most 3.

Proof. We say that the nodes located at an even distance from the root sX are
on an even level and all the remaining nodes are on an odd level. The ordering
of nodes π is created according to the following principle. Starting from the root
sX we visit all nodes in T (VX) using depth-�rst search algorithm. The root gets
label 0. When we arrive (from the parent) to an even level the currently visited
node gets the next available label. In other words at even levels we use pre-order

numbering principle. And when we arrive (from the last child) to an odd level



the currently visited node gets the next available label. I.e., at odd levels we
follow post-order numbering principle

We need to show that the labeling (ordering) procedure proposed above gen-
erates at least one new label in three consecutive steps. And indeed, if we follow
the route determined by the depth-�rst search algorithm and we visit for the
�rst time a node v at an even level (when the new label is generated): (case 1) if
the �rst child of v has a child w then w (which is at distance 2 from v) gets the
new label; (case 2) if the �rst child of v is a leaf this child (which is at distance 1
from v) gets the new label; (case 3) if the node v is a leaf but not the last child
of its parent the next label goes to the (next) sibling of v (which is at distance
2); and (case 4) if v is the last child the next label goes to its parent (which is
at distance 1).

Similarly, if v is visited for the last time on an odd level it gets a new label.
Now (case 5) if v is the last child and its parent w is not the last child the next
sibling of the parent (which is at distance 3 from v) gets the new label; (case
6) if v is the last child and its parent w is also the list child then the parent of
w (at distance 2 from v) gets the new label; (case 7) and if v is the last child
and its parent is the root, the periodic order is established (and the next label
is at distance 1). In the remaining cases when v is not the last child (case 8) if
its next sibling (at distance 2) is a leaf it gets the new label; and (case 9) if the
next sibling of v has children the next label go to the �rst child (at distance 3
from v) of this sibling. �

1. Algorithm RV4(X ∈ {A,B})
2. Step 1 Determine jX , the threshold τ = logn

log logn
, and the label b(X)

i of sX ;
3. Step 2 for j = dlog τe, 2, . . . , logn do
4. if (j ≥ jX) {active stage}
5. (walk to and wait in sX) in 2j time steps;
6. for l = 0, 1, . . . , logn do {test all bits}
7. if (b(X)

i [l] = 1) {walk all the time}
8. for 22j × 3 time steps do
9. walk to the next node in order π(X);
10. else repeat 2j times {walk and wait for another}
11. (walk to the next node in order π(X)
12. and wait there) in 2j × 3 time steps;
13. else wait appropriate O(22j · logn) time steps where you are.

The last rendezvous algorithm RV4 operates on the following principle. At
the start of each active stage robot X returns (if moved before) to the starting
point sX . If the two starting points in VA and in VB coincide rendezvous is
accomplished. Otherwise the algorithm controls further movement of robots,
s.t., during long enough (≥ 2j × 3 time steps) interval of an active stage j one
of the robots, say w.l.o.g. A, visits all nodes in VA in the periodic order π(A)
with frequency of one visit per three time steps. While the other robot B visits



consecutive nodes with frequency of 2j × 3 time steps. So when eventually robot
B resides in the node that belongs to VA ∩ VB there is enough time for robot A
to arrive in this node before B moves away. If at any time step the two robots
A and B meet, the rendezvous is achieved and the two robots halt.

Theorem 5. If kA + kB ≥ τ = logn
log logn and rendezvous is feasible, algorithm

RV4 admits rendezvous in time O((kA + kB)
2 log n).

Proof. Lets consider the �rst stage that is active for both robots A and B, i.e.,
when j = jB . Note that line 13 of the pseudo-code accommodates for the waiting
time needed for two robots to stay synchronized prior to this stage. In this active

stage loop for in line 6 compares consecutive bits of labels b
(A)
i adopted by A

and b
(B)
i′ adopted by B. There must be at least one position l on which the two

labels di�er. In consequence, there is a spell of 22j × 3 time steps during which

one of the robots, say w.l.o.g. A with the bit b
(A)
i [l] = 1, visits periodically all

nodes in VA with frequency of 3 time steps per node. During the same times

spell the other robot B with the bit b
(B)
i′ [l] = 0 waits long (≥ 2j × 3 time steps)

periods of time in every node of VB . So when eventually robot B visits the node
that belongs to VA∩VB the other robot A has enough time to arrive in this node
before B moves on.

The time complexity of this �rst active stage is O(22jB · log n) = O(k2B log n).
Since the duration of stages grows exponentially we conclude that the total time
complexity is also O(k2B log n) = O((kA + kB)

2 log n). �

Corollary 2. In the Blind Rendezvous Model two robots can rendezvous in time
min{O((kA + kB)

3 log log n,O((kA + kB)
2 log n)}.

Proof. The result follows directly from the superposition of RV3 and RV4.

3 Conclusion

In this paper we studied deterministic synchronized rendezvous of two robots
in the network environment with restrictions imposed on network edges. The
restrictions prevent robots from visiting certain parts of the network. We consid-
ered three restriction models and we provided four e�cient solutions in section 2.
One of the open problems is to establish the exact complexity of rendezvous in
considered models and to answer whether the use of randomisation helps. One
can also consider models in which maps are not known to the robots. Another
interesting question refers to better understanding (including time complexity)
of gathering more than two robots. In this setting while robots could meet in
pairs, one mutually accessible location for gathering may not be available. It
would be also good to understand the case when robots are asked to meet asyn-
chronously. Initial studies indicate that in Edge Monotonic Model there exist
rendezvous algorithms that allows robots to meet after adopting trajectories of
length polynomial in kA+kB . In Node Inclusive Model the lengths of respective
trajectories become exponential. Finally in Blind Rendezvous Model rendezvous
is not feasible even if explicit labels are provided.
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