8
7

	ACS'02 - SCM conference, Poland, October 23-25, 2002
	

	Preemptive multiprocessor task scheduling to minimize the sum of completion times

	

	Michał Małafiejski, Łukasz Kuszner, Konrad Piwakowski

	Gdańsk University of Technology
Foundation of Informatics Department
Narutowicza 11/12, 80-952 Gdańsk, Poland
mima, kuszner, coni@eti.pg.gda.pl

Abstract:
In this paper we consider a problem of preemptive scheduling of multiprocessor tasks on dedicated processors in order to minimize the sum of completion times. Using the standard notation this problem is denoted as P|fixj, pmtn|Cj. We give a wide class of polynomial cases in terms of conflicting graphs.

Key words:
Operational research, task scheduling.

1. Introduction

This paper is devoted to the complexity of preemptive scheduling of multiprocessor tasks in order to minimize their sum of completion times. Using the standard three field notation this problem is denoted as P|fixj, pmtn|Cj. The NP-hardness of this problem has been shown in [7]. Some restricted subproblems have been considered in [5, 6, 8]. The authors of [5] proved strong NP-hardness of subproblem P2|fixj|Cj and constructed a polynomial time exact algorithm for the preemptive version P2|fixj, pmtn|Cj. Drozdowski and Dell’Olmo [6] generalized that result and constructed a polynomial time exact algorithm for solving the problem P||fixj|{1,m}, pmtn|Cj, where m is the number of machines. Małafiejski et. al. [8] proposed an exact algorithm solving the problem P4|fixj=2,pmtn|Cj in O(n log n) time.

Our result is a generalization of the previous work. We introduce a definition of simplified conflicting graph to point out some new subproblems. This idea provides us to classify polynomial cases precisely considering only the essentials of the problem.

2. Model

1. A collection J1, ...Jn J of n tasks has to be executed on m machines (processors) M1, ...Mm M. Each task Ji requires simultaneous use of a dedicated set of processors fixi during a given time pi. Every processor performs at most one task at a time. Such tasks are referred to as multiprocessor tasks. By a feasible preemptive schedule we mean a function S : J I*, where I*={x: x is a finite sum of disjunctive intervals} and S satisfies the following conditions:

2.
[image: image1.wmf](

)

j

ji

ji

k

i

ji

ji

k

i

j

p

a

b

b

a

J

S

=

-

S

=

S

=

=

=

1

1

]

,

[

)

(

3.
[image: image2.wmf]0

)

(

)

(

=

Ç

Þ

Æ

=

Ç

j

i

j

i

J

S

J

S

fix

fix

By the completion time of any task Ji we mean Ci=max S(Ji), and by starting time we mean min S(Ji). For a given schedule S we will write S(Ji) < S(Jj) if task Ji is completed before task Jj starts, i.e. max S(Ji) < min S(Jj). Our goal is to minimize the sum of completion times Cj.

We can model conflicting requirements between tasks by the so-called conflicting graph G=(J, E), where two jobs Ji and Jj are adjacent ({Ji, Jj} E) if and only if fixi fixj ((. Obviously, if G is disconnected then we can reduce the problem of scheduling to easier subproblems corresponding to components of G. So, in the following we suppose that G is connected. We say that H=(V’,E’) is an induced subgraph of G=(V, E) if and only if V’ V and E’ E and for all v1, v2 V’ there is {v1, v2} E’ {v1, v2} E. An induced subgraph H of G is called a clique if it is a complete graph [3]. Two tasks Ji and Jj are said to be related (Ji~Jj) if and only if N(Ji)=N(Jj), where N(Ji)={Ji} {Jk J: {Ji, Jk} E}. It is clear that ~ is an equivalence relation, so we can speak about classes v1, v2, ...V=J/~ of related tasks. We can observe that each class of tasks forms a clique in G. Let us define a simplified conflicting graph Ĝ=(V, E), where two vertices vi and vj are adjacent if and only if for some Ji1 vi, Jj1 vj we have {Ji1, Jj1}E. It is easy to verify that the definition is correct. Observe, that for any v, w G we have N(v) (N(w).

Once, we have a simplified conflicting graph with vertices corresponding to classes of tasks, we will continue with the language of conflicting graphs in order to classify scheduling problems, because it is well known, precise and allow us to see the problem in a more general way. Further we will consider some special classes of conflicting graphs, and we give an exact polynomial time algorithm to solve the problem for them.

By a coloring of graph Ĝ =(V, E) we mean a function c: V N such that c(v1) (c(v2) whenever v1, v2 are adjacent. A coloring gives us a partition of the vertex set into several independent sets of vertices colored with the same number. The graph Ĝ=(V, E) is called k-partite if there exists a coloring c: V {1, ..., k}. If, in addition, every two varicolored (colored differently) vertices are adjacent then Ĝ is called complete k-partite.

[image: image3.png]a)

b)

Fig. 1. a) path P4 and b) dart

 [LABEL: fig:p4dart]
Lemma 1[LABEL: lem:p4dart] Any simplified conflicting graph Ĝ is either complete k-partite or contains at least one of the following: P4 or the dart as an induced subgraph (see Figure [REF: fig:p4dart]1).
 Proof: It is clear that P4 and the dart are not induced subgraphs of any complete k-partite graphs, for any kN. Suppose otherwise, that Ĝ is a simplified conflicting graph that is not complete k-partite and contains neither P4 nor the dart. Suppose that c colors Ĝ with minimal number of colors, say k, in such a way that the sum of colors is as small as possible.

If any two varicolored vertices v, w Ĝ are connected then Ĝ is complete k-partite. So, choose nonadjacent varicolored vertices v, w V and suppose that c(w) < c(v). For any two x,y Ĝ by d(x, y) we mean the length of the shortest path from x to y. If d(v, w)(3 then there is an induced subgraph P4 of Ĝ, so because {v, w}(E we have d(v, w)=2. Thus there exists a vertex u such that {v, u} E and {u, w}E. If in set N(v) there is no vertex colored with c(w) then v could be recolored with c(w), thus we get a coloring with smaller sum of colors. So, there is another vertex w1N(v) colored with c(w1)=c(w), hence {w1, w}(E. Moreover, if {w1, u}(E then we have a path (w, u, v, w1) as an induced subgraph, so {w1, u}E. Because Ĝ is a simplified conflicting graph so there exists a vertex x and v(xN(v)\N(w1) or w1(xN(w1)\ N(v).

First suppose that {x, v}E and {x, w1}(E. We can see that {w, x}(E since otherwise we have a path (w, x, v, w1). Now, observe that if {u, x}(E, then vertices x, v, u, w induce a path in G, otherwise if {u, x} E then vertices w, u, x, v, w1 induce the dart as a subgraph of Ĝ. The other case {x, v}(E and {x, w1} E is analogous. (

Theorem 2 A conflicting graph G is {P4, dart}-free if and only if Ĝ is complete k-partite for some k N.

Proof: ”  ” First, we show that Ĝ is {P4,dart}-free. Suppose to the contrary that the path (v1, v2, v3, v4) is an induced subgraph of Ĝ. We can choose J1v1, J2 v2, J3v3, J4v4, hence there is a path (J1, J2, J3, J4) as an induced subgraph of G, a contradiction. In the similar way we can show that the dart is not an induced subgraph of Ĝ. We have that Ĝ is {P4, dart}-free. By Lemma [REF: lem:p4dart]1 we have that Ĝ is a complete k-partite graph.

”  ”. Suppose otherwise that the dart is an induced subgraph of G. For every two vertices v, w in the dart we have N(v)(N(w) hence the dart is a subgraph of Ĝ, a contradiction. By analogous argument we can show that P4 is not an induced subgraph of G. (
3. Complete k-partite graphs

In this section we assume that G is such a graph that Ĝ is complete k-partite. If an independent set U V(Ĝ) satisfies the following vU : N(v)\{v} =V(Ĝ)\U then we say that the elements in U (classes of vertices from G) are conjugated.

We have the following easy observations:

Claim 1 If Ĝ is a complete k-partite graph then only vertices from each maximal independent set are conjugated.

Claim 2 Only tasks from different conjugated classes can be executed simultaneously.

Claim 3 For any two related tasks Ji ~ Jj with processing times pi < pj we have S(Ji) < S(Jj) in each optimal schedule S.

Claim 4 [LABEL: prop:SPT]In every class all tasks have to be scheduled according to the SPT rule in each optimal schedule S.

We call an interval [a, b] a block of task Ji in a schedule S if and only if [a, b]S(Ji) and for any >0 we have [a–,b](S(Ji) and [a,b+](S(Ji)

Claim 5 In every optimal schedule beginning of any block is a beginning of a schedule or a completion time of another task.

Proof: On the contrary, assume that there is an optimal schedule without this property. Among all such schedules we can choose the one with the smallest number of bad blocks starting neither at the beginning of the schedule nor at a completion time of another task. Let tp be a moment which is the starting time of the first bad block B1 of some task J1. Just before the moment tp at least one task conflicted with J1 has to be executed, say J2. Let tp–a be the beginning of a schedule or the latest completion time of any task performed before tp and tp+b be the earliest completion time of any task completed after tp or the moment of restarting the task J2. We can decrease by a all times of all tasks scheduled between tp and tp+b and increase by b all times of all tasks scheduled between tp–a and tp. If tp+b is a completion time, we get a schedule with smaller sum of completion times and if tp+b is the next block of J2 we get a schedule with smaller number of bad blocks, a contradiction.

Now we are ready to formulate the most important property of optimal schedules. Since only beginning of a block can be a reason to interrupt the execution of another task, so

Lemma 3 [LABEL: lem:end]In every optimal schedule a moment of interruption of a task Ji1vi can be only the moment of completion time for another task Jj1 from conjugated class vj. (

Now, we are ready to the next major step. We will transform our problem to 1|out-tree|Cj, which is polynomially solvable [4]. Having an instance I of P|fixj, pmtn|Cj with Ĝ=Kn1,n2, ..., nk and a set
[image: image4.wmf]{

}

,

,...,

,

2

1

i

n

i

i

i

i

v

v

v

A

=

 of ni conjugated classes with
[image: image5.wmf]{

}

,....

,

2

,

1

1

,

1

i

i

i

l

J

J

v

=

, we assume that tasks in each class are ordered according to the SPT rule (see Claim 3) in each optimal schedule S, so
[image: image6.wmf]i

b

i

a

p

p

,

1

,

1

£

 if and only if a<b. Let us consider a set of all tasks from classes in Ai :
[image: image7.wmf]{

}

,...

,

,...,

,

,...,

,

2

,

1

,

2

,

2

1

,

2

2

,

1

1

,

1

i

n

i

n

i

i

i

i

i

i

i

J

J

J

J

J

J

B

=

. Let us permute Bi with  in such a way that r1 = (l1,k1) < (l2,k2) = r2 if and only if
[image: image8.wmf]å

å

=

=

=

<

=

2

2

2

1

1

1

,

1

,

1

k

q

i

q

l

r

k

q

i

q

l

r

p

f

p

f

. If fr1=fr2 then precedence is irrelevant. From all the tasks in Bi we construct a chain of nonpreemptive 1-processor tasks with precedence constraints Jr1 Jr2 ...Jrq and processing times p1=fr1, p2=fr2-fr1, ..., pq=frq–frq-1, ... Similarly we can create chains of new tasks for other sets of conjugated classes. (See the appropriate construction for Example 1 in Figure [REF: fig:transformation]3). Additionally, we add one “dummy” task J0 with processing time p0=0 and force it to be executed before all other jobs. We have constructed an instance I’ of 1|out-tree|Cj.

Now we can find an optimal schedule S’ for I’ [1] in O(n log n) time. Then we can construct a schedule S for I in the following way. If in schedule S’ a task Jrk is processed at time t then in S we have that tasks from the corresponding sets of conjugated classes Ai are executed in parallel (cf. Fig. [REF: fig:schedule]4). Observe that completion times of the corresponding tasks Jr1 and Jr1 are equal, so we have

Lemma 4 [LABEL: lem:apropriate]For every legal schedule S’ for instance I’ there exists a schedule S for instance I with the same sum of completion times.

Lemma 5 The sum of completion times of each optimal schedule S’ for instance I’ is equal to the sum of completion times of the optimal schedule for instance I.

Proof: Let S be any optimal schedule for an instance I. Considering Claim 4 and Lemma [REF: lem:end]3we conclude that there exists a corresponding schedule S’ for an instance I’ with the same sum of completion times. Suppose that S’ is not optimal. Having an optimal schedule S’ for I’, by Lemma [REF: lem:apropriate]4 we can construct a schedule S for I with the same sum of completion times, hence better then optimal S, a contradiction. (
Concluding, for an instance I of problem P|fixj, pmtn|Cj we can construct a simplified conflicting graph in time O(n2). Then we have to check if that graph is complete k-partite and if so we can find a solution as follows:

Step 1 Split tasks into classes in O(n2) time.

Step 2 Sort all tasks in each class according to the SPT rule in O (n log n) time.

Step 3 Construct an instance I’ of 1|out-tree|Cj in O(n) time.

Step 4 Find an optimal solution for I’ in O(n log n) time [1].

Step 5 Construct a solution for I in O(n) time.

So we have

Theorem 6 There exists an exact algorithm to solve P|fixj, pmtn, G={P4,dart}-free|Cj problem in O(n2) time.

Corollary 7 [5] The problem P2|fixj, pmtn|Cj can be solved in O(n log n) time.

Proof: For this problem Ĝ= P3 = K1,2. The first step is already done, we have only three classes of tasks, so the complexity is O(n log n). (
Corollary 8 [6] The problem P| |fixj| {1,m}, pmtn|Cj can be solved in O(n log n) time.
Proof: In this case G is a star K1,m. (
Corollary 9 [8] The problem P4| |fixj|=2, pmtn|Cj can be solved in time O(n log n).

Proof: In this case G is a 3-partite graph K2,2,2.

[image: image9.png]/|
74
N
O

b)

Fig. 2. a) conflicting graph and b) simplified conflicting graph

 [LABEL: fig:graphs]
[image: image10.png]

Fig. 3. Transformation of a set of conjugated classes of tasks into a chain of new tasks

 [LABEL: fig:transformation]
 [LABEL: ex:ex1] Let M be a set of machines M1,..., M5 and J=J1,..., J10 a set of tasks with fix1={M1}, p1=3, fix2={M1}, p2=3, fix3={M1}, p3=4, fix4={M2}, p4=4, fix5={M2, M3}, p5=2, fix6={M2, M3}, p6=5, fix7={M4, M5}, p7=6, fix8={M1, M2, M3, M4}, p8=1, fix9={M1, M2, M5}, p9=2, fix10={M1, M2, M5}, p10=8.

In this case we have four classes of tasks v1={J1, J2, J3}, v2={J4, J5, J6}, v3={J7}, v4={J8, J9, J10}. The simplified conflicting graph for this case is K1,3. Classes v1, v2, v3 are conjugated. Appropriate conflicting graph and simplified conflicting graph are shown in Figure [REF: fig:graphs]2 Next step is to transform the instance of the problem to an instance of P|out-tree|Cj. Transformation shown in Figure [REF: fig:transformation]3 will lead to chains Jr1 Jr2 ...Jr7 with processing times 2, 1, 3, 0, 0, 4, 1 and Js1Js2Jr3 with processing times 1, 2, 8 preceded by additional task Z0. The optimal schedule for this instance is Z0Js1Jr1Jr2Jr3Jr4Jr5Js2Jr6 Jr7Js3. Now we can give the final solution which is shown in Figure [REF: fig:schedule]4.

4. Conclusions
An idea of simplified conflicting graph introduced in the paper seems to be useful to compare different subcases of the multiprocessor task scheduling. We have shown that P|fixj, G={P4,dart}-free, pmtn|Cj problem is solvable in a polynomial time. Our solution to that problem is a generalization of some previously known results.

The complexity of the problem remains open even when the simplified conflicting graph is P4 or dart. These should be interesting topic for further research. Another interesting unsolved case is P|fixj, G=path, pmtn|Cj.
[image: image11.png][T
01 23 4 5 6/f7 8 9 1011 121314 15 16 17 18 192021252

13

“

: §-_

=

O 1 2 3 4 5 6 7 88 O 10 11 12 13 14 15 16 17 18 19 20 21 22 t

Fig. 4. Ultimate schedule obtained by the algorithm.

5. REFERENCES

[1] Adolphson D., Hu T. C. 1973. ‘Optimal linear ordering’. SIAM J. Appl. Math. 25,
pp. 403–423.

[2] Błażewicz J., Ecker K., Pesch E., Schmidt G., Węglarz J. 2001. Scheduling in Computer and Manufacturing Processes, Springer-Verlag,.

 [3] Brandstädt A., Van Bang L. Spinrad J.P. 1999. ’Graph Classes: a Survey’. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.

[4] Brucker P. 1995. Scheduling Algorithms, Springer-Verlag, Berlin.

[5] Cai X., Lee C.-Y., Li C.-L. 1998. ’Minimizing total completion time in two-processor task systems with prespecified processor allocations’. Naval Res. Logist. 45, pp. 231–242.

[6] Drozdowski M., Dell'Olmo P. ‘Scheduling multiprocessor tasks for mean flow time criterion’. Comput. Oper. Res. 27, pp. 571–585.

[7] Hoogeveen J.A., van de Velde S.L., Veltman B. 1994 ‘Complexity of schedulingmultiprocessor tasks with prespecified processor allocations’ Disc. Appl. Math. 55, pp. 259–272.

[8] Małafiejski M., Kuszner Ł., Kubale M. 2002. ‘Preemptive scheduling of biprocessor tasks on dedicated machines to minimize sum of completion times’ (in Polish), Zeszyt Nauk. Politechniki Śląskiej nr 1554, Ser. Automatyka, z. 134, pp. 313–325.

8
7

_1086266880.unknown

_1094563450.unknown

_1086262140.unknown

_1086262222.unknown

_1086261682.unknown

_1086261867.unknown

_1086261623.unknown

