
Energy optimisation in resilient self-stabilizing processes
(extended abstract)

Adrian Kosowski and Łukasz Kuszner
Gdańsk University of Technology, Poland

Department of Algorithms and System Modeling

E-mail:{kosowski,kuszner}@sphere.pl

Abstract

When performing an algorithm in the self-stabilizing
model, a distributed system must achieve a desirable global
state regardless of the initial state, whereas each node has
only local information about the system. Depending on
adopted assumptions concerning the model of simultaneous
execution and scheduler fairness, some algorithms may dif-
fer in stabilization time or possibly not stabilize at all. Sur-
prisingly, we show that the class of polynomially-solvable
self-stabilizing problems is invariant with respect to theas-
sumption of weak scheduler fairness. Furthermore, for sys-
tems with a single distinguished vertex we prove a much
stronger equivalence, stating that synchronisation, the exis-
tence of a central scheduler and its fairness have no influ-
ence on polynomial stabilization time.

Key words: self-stabilization, asynchronous system,
polynomial-time complexity, distributed algorithms.

1 Introduction

The concept of self-stabilization

In all considerations it is assumed that the distributed sys-
tem consists of nodes connected by communication chan-
nels. Each node maintains variables which determine its
local state. Theconfigurationof the system is the union of
all local states of its nodes. This model is regarded as a good
abstraction for real objects such as peer-to-peer networks.

The system ought to be constructed in such a way as to
guarantee that it works correctly, i.e. persists in a legitimate
configuration, even though some perturbations can bring
it to an illegitimate state. It is desirable that it returns to
a legitimate state without any external intervention. Self-
stabilization, a concept introduced by Dijkstra [3] in 1974,
can be thought of as a technique for designing such resilient
systems. Aself-stabilizing systemis one which is able to

achieve a legitimate configuration starting from any possi-
ble configuration.

The time complexity of such algorithms is expressed ei-
ther in terms of the number of actions performed by nodes
of the system, or in terms of the number of asynchronous
rounds before system stabilization. Here we assume the
former model which is more suitable for the energy cost of
executions. Many asynchronous self-stabilizing algorithms
have been proven to operate in polynomial time when the
system is controled by a central daemon (e.g. [5, 6, 7, 8]), or
when time complexity is measured in asynchronous rounds
(see the book by Dolev [4] for detailed bibliography). On
the other hand, algorithms guaranteed to stabilize in a poly-
nomial number of moves have been scarce in the more re-
strictive model of a system controled by a distributed dae-
mon with no fairness assumptions, i.e. with nodes moving
independently of each other in arbitrary order.

2 Computational models for self-stabilizing
systems

A distributed system can be modeled by a connected
graphG = (V, E), where vertex setV corresponds to sys-
tem nodes and the set of edgesE denotes communication
links between them. The algorithm for each vertexv is
given as a sequence of rulesR1, R2, . . . Rk, where each rule
Ri is of the form: if PRi

(v) thenARi
, wherePRi

(v) is a
predicate over local states ofv and its neighbors, andARi

is
an action changing a local state ofv. We say thatv is active
if at least one of its predicates is true. Amoveof v ac-
cording to algorithmA proceeds as follows: first predicate
PR1

(v) is evaluated and if it is true, actionAR1
is taken;

then subsequent rules are evaluated.
By acomputational step(or step) we mean a pair of con-

figurations(ci, cj), such thatcj can be reached fromci by
a parallel move taken by some subset of vertices. Anexe-
cutione = ((c1, c2), (c2, c3) . . .) is a sequence of computa-
tional steps.

1



Schedulers

We assume the existence of a scheduler (or daemon), which
selects from among the nodes a subset to perform the next
step of an algorithm. Generally two types of such daemons
are considered: a central daemon and distributed daemon.
The former selects at most one vertex at a time (or — equiv-
alently from the point of view of computation — an inde-
pendent set of vertices) to execute its actions, while the lat-
ter is capable of selecting an arbitrary set of active vertices.
A possible approach to conversion between these two types
of daemons has been shown in [1].

Fairness assumptions

A fair executionis an execution in which every vertex which
is active infinitely often performs an infinite number of
moves. Aweakly fair executionis an execution in which
there is no suffix such that there exists a vertex which is
persistently active and performs no moves.

Legal behaviour

In order to define legal behavior of a system, a subset of
legal configurationsmust be distinguished for a given prob-
lem, from amongst the set of all configurations. We say that
algorithmA solves a problem, identified by its set of legal
configurations, if every system executione under algorithm
A has a legal suffix, that is there exists a configurationc in
executione such that all possible consequent configurations
are legal.

Complexity measure

By thecomplexityof an execution we mean the number of
configurations in a sequence till the moment asafeconfig-
uration has been reached. A configurationc is safe if for
every execution starting inc all possible consequent config-
urations are legal.

3 Algorithm transformations

First, we will provide a convenient notation which will
allow us to present various self-stabilizing algorithm trans-
formers (consult [2] and its references).

Suppose thatA is a self-stabilizing algorithm consist-
ing of k rulesRi, for 1 ≤ i ≤ k. By a transformerwe
will mean an algorithmTA consisting of a set of rulesTi,
for 1 ≤ i ≤ l. It is assumed that state variables can ap-
pear in one set of rules only — that of algorithmA or that
of algorithmTA. Now, we can construct a new algorithm
A′ = TA ◦ A consisting ofl + k + 1 rules, in the follow-
ing order:T1, T2, . . . Tl, R

′
1, R

′
2, . . . R

′
k, Roff , where ruleR′

i

has the form:

R′
i: if Predicate(Ri) ∧ A(v)

then Action(Ri)

while ruleRoff is defined as:
Roff : if A(v)

then A(v) := false

Informally, the distinguished local variableA is used as a
switch to enable rules of algorithmA. If the value of switch
A is set for vertexv during a computational step,v is said
to beenabledwith respect to algorithmA in this step (note
that the value ofA will always be unset directly before the
end of the step).

4 Ensuring weak fairness under a central
daemon

In the first approach, we will provide a solution to en-
sure weakly fair executions. Suppose that we are given an
algorithmA which is self-stabilizing under the assumption
of weak fairness of the system. Now, we will construct a
transformerTA to ensure the correct behaviour ofTA ◦A in
a system where weak fairness is not guaranteed.

Algorithm 2: UNBOUNDED WEAK FAIRNESS UNDER

CENTRAL DAEMON

T1: if ∃u∈N(v)c(u) = c(v)
then c(v) := 1 + max{c(u) | u ∈ N(v)}

T2: if c(v) > max{0, 1 + c(u) | u ∈ N(v) ∧
c(u) < c(v)}

then c(v) := max{0, 1 + c(u) | u ∈ N(v) ∧
c(u) < c(v)}

T3: if c(v) = 0
then c(v) := 1 + max{c(u) | u ∈ N(v)};

A(v) := true

Intuitively, values stored in local variablesc can be seen
as a coloring of the system graph. Such a coloring implies
local priority queues, defined in such a way that a node with
a smaller color has higher priority. Nodes colored with color
0 are allowed to switch on the rules of the underlying al-
gorithmA. Rule T1 prevents illegal situation where two
neighboring nodes have the same color, ruleT2 ensures that
there are no gaps in code sequences, while ruleT3 enables
the switch. The latter statement can be formulated as fol-
lows.

Corollary 1 In a computational step of algorithmTA ◦ A,
vertexv is enabled with respect to algorithmA iff v per-
forms ruleT3 in this step.

Lemma 1 In any executione of algorithmTA ◦ A, any se-
quence of consecutive steps involving only rulesT1 or T2 is
shorter than2n2 steps.



Lemma 2 The number of moves using ruleT3 in any ex-
ecutione of algorithmTA ◦ A is infinite; moreover, any
sequence of at least2n2 consecutive steps involves ruleT3

at least once.

Lemma 3 The number of moves performed by any two
neigboring vertexu andv according to ruleT3 in each pre-
fix of some executione of algorithmTA ◦ A differs by at
most one.

Theorem 4 If algorithmA stabilizes under a central dae-
mon inf(n) moves, then algorithmTA ◦ A reaches a safe
configuration inO(n3 diam(G))f(n) steps.

4.1 Halting property

In the previous section we have proved that Algorithm 2
is able to transform a self-stabilizing algorithm working un-
der central daemon assuming weak fairness of executions
into one without this assumption. Unfortunately, the trans-
formed algorithm always runs infinitely and never stops,
i.e. it performs moves even if the algorithmA which un-
derwent transformation has completed its goal and all the
vertices are inactive according to its rules (and in a safe con-
figuration). We now give an algorithm which is capable of
halting.

To achieve this, we add a variables, which can be in-
terpreted as the ’scent’ of a node with at least one rule of
algorithmA enabled. This ’scent’ is displayed by means of
rule Ts and then spread according to ruleTs2, and propa-
gated along decreasing values of state parameterc.

Algorithm 3: UNBOUNDED WEAK FAIRNESS UNDER

CENTRAL DAEMON

T1: if ∃u∈N(v)c(u) = c(v)
then c(v) := 1 + max{c(u) | u ∈ N(v)}

T2: if c(v) > min{0, c(u) + 1 | u ∈ N(v) ∧
c(u) < c(v)}

then c(v) := min{0, c(u) + 1 | u ∈ N(v) ∧
c(u) < c(v)}

Ts: if ∃1≤i≤kPRi
(v) = true

then s(v) := true

Ts2: if ∃u∈N(v)

(

c(u) > c(v) ∧ s(u) = true
)

then s(v) := true

T3: if c(v) = 0 ∧ s(v) = false

then c(v) := 1 + max{0, c(u) | u ∈ N(v)};
A := true;
s(v) = false

Theorem 5 If algorithm A stabilizes under central dae-
mon in f(n) moves then algorithmTA ◦ A stabilizes in
O(n4 diam(G))f(n) steps.

5 Ensuring weak fairness under distributed
daemon

In the previous section, a method for ensuring weak fair-
ness while operating under central daemon was shown. The
same task under a distributed daemon seems to be more
challenging. Surprisingly, we show that the presented trans-
formations are capable of performing the same task in an
environment with accordingly weaker assumptions.

Theorem 6 If algorithm A stabilizes under a distributed
daemon inf(n) moves then algorithmTA ◦ A, trans-
formed by Algorithm 2, reaches a safe configuration in
O(n3 diam(G))f(n) steps.

Theorem 7 If algorithm A stabilizes under a distributed
daemon inf(n) moves then algorithmTA ◦A, transformed
by Algorithm 3, stabilizes inO(n4 diam(G))f(n) steps.

References

[1] J. Beauquier, A. Kumar Datta, M. Gradinariu, F. Mag-
niette, Self-Stabilizing Local Mutual Exclusion and
Daemon Refinement, Chicago Journal of Theoretical
Computer Science, 2002.

[2] J. Beauquier, M. Gradinariu, C. Johnen:Cross-over
composition - enforcement of fairness under unfair ad-
versary, LNCS 2194, 19–34, 2001.

[3] E.W. Dijkstra,Self-stabilizing systems in spite of dis-
tributed control, Communications of the ACM17,
643–644, 1974.

[4] S. Dolev,Self-stabilization, MIT Press, 2000.

[5] W. Goddard, S.T. Hedetniemi, D.P. Jacobs, P.K. Sri-
mani, Fault Tolerant Algorithms for Orderings and
Colorings, Proc. IPDPS’04, 2004.

[6] S.T. Hedetniemi, D.P. Jacobs and P.K. Srimani,Linear
time self-stabilizing colorings, Inform. Process. Lett.
97, 251-255, 2003.

[7] S.C. Hsu, S.T. Huang,A self-stabilizing algorithm for
maximal matching, Inform. Process. Lett.43, 77–81,
1992.

[8] A. Kosowski, Ł. Kuszner,A self-stabilizing algorithm
for finding a spanning tree in a polynomial number of
moves, LNCS 3911 (to appear).


