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Abstract: In the paper we present a new distributed algorithm for coloring the vertices of 
a graph. A practical simulation shows that this algorithm performs slightly 
better than a distributed largest-first algorithm known before. 
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1. INTRODUCTION 

We discuss the vertex coloring problem in a distributed network. Such a network 
consists of processors and bidirectional communication links between pairs of them. 
It can be modeled by a graph G = (V, E). Set V denotes processors and E models 
links between them. To color vertices of a graph G means to give different colors to 
each pair of adjacent vertices. If at most k colors are used, the result is called a k-
coloring. 
The model of distributed processing is as follows: we assume that there is no shared 
memory, each processor knows its own links and its unique identifier. We want 
these units to compute a coloring of the associated graph without any other informa-
tion about the structure of G. We will assume that the system is synchronized in 
rounds. The number of rounds will be our measure of time efficiency. 

Such a model of coloring can be used in a distributed multihop wireless network 
to eliminate packet collisions by assigning orthogonal codes to radio stations [1]. 
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2. PREVIOUS WORK 

An algorithm for (∆+l)-coloring of graphs was given in [3], where ∆ is the largest 
vertex degree in a graph. Also, an analysis of its time complexity was presented. We 
shall refer to this as the trivial algorithm (same as in [2]). The trivial algorithm is 
extremely simple and fast, however not optimal. In fact, it uses the number of colors 
close to ∆ even if the graph is bipartite. Nobody should be surprised with that fact 
because the algorithm has no mechanism to economize colors. 
Further improvement was done in [2],where the authors proposed an algorithm using 
O(∆ / log ∆) colors. It is much better but works on triangle-free graphs only.  
As we know, it is better to color vertices with largest degree first. This observation 
was applied in a distributed largest first algorithm (DLF) introduced in [4]. In this 
paper we show an innovation to DLF algorithm. 

3. ALGORITHM  

In the distributed largest first (DLF) algorithm each vertex has three parameters: 
– degree: deg(v) 
– random value: rndvalue(v) 
– palette of forbidden colors, which were used by its neighbors: usedcolor(v) (ini-

tially empty). 
 
Parameters: deg(v) and rndvalue(v) determine the order of coloring. Let v1, v2 ∈ V. 
We say that v1 has a higher priority than v2 if: deg(v1) > deg(v2) or (deg(v1) = 
deg(v2)) and (rndvalue(v1) > rndvalue(v2)). 
During each round every uncolored vertex v executes the following five steps: 
1. Choose parameter rndvalue(v) ∈ [0..1]. 
2. Send to all neighbors the following parameters: deg(v), rndvalue(v), and the first 

legal color (not on the list of forbidden colors). 
3. Compare its own parameters with these received from the neighbors and check 

which vertex has the highest priority. 
4. If vertex v has the highest priority, keep the proposed color and stop. 
5. If not, update list usedcolor(v). 
 
The philosophy behind this priority rules is to create, by each coloring of a vertex as 
few restrictions on later vertex colors as possible. Let us consider two adjacent verti-
ces during the second round of the coloring process. Suppose that one of these, say 
v, has only one of its neighbors colored and the other one say u has colored all 
neighbors except v. In this case we have a conflict, because both u and v need a color 
number 2. It is clear that v should be colored first regardless of its degree. 
Our improvement to DLF is to replace parameter deg with an actual number of un-
colored neighbors (dynamic degree - ddeg). We shall refer to the new version of 
algorithm as a dynamic distributed largest first (DDLF) algorithm. 
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Figure 1: An example graph showing that DDLF may perform better than DLF 

3.1 Example 

Let us consider the example shown in Figure 1 with ∆ = 4. In this graph vertices 
a and g are not in a conflict and have four neighbors, hence they both will be colored  
in the first round with color 1. The is same for both algorithms, however in the sec-
ond round we have a difference. In the DLF algorithm vertices b, c, d and e have the 
same degree and only random values determine which of them is colored first. Un-
fortunately, it can happen that b and e will be colored with 2 and in this case four 
colors are needed for the whole graph. Using the DDLF algorithm for this graph we 
always get an optimal solution. In the second round vertex f gets a color 2 without 
obstacles, but vertices b and e have to lose because their ddeg is smaller than that of 
their neighbors. We have a conflict between vertices c and d. Without loss of gener-
ality we can suppose that c wins and gets a color 2. In the third round we have only 
b, d and e left uncolored. There is no more conflict so we have: b colored with 3, d 
colored with 3, and e colored with 2. 

4. EFFICIENCY 

So, is it true that DDLF is better than DLF for any graph? An example 
shown in section 3.1 could suggest so, but we could show easily a counterex-
ample that it is not. 

We have done some computer experiments for random graphs. We used n-
vertex random graph Gn,p in which each edge appeared independently with 
probability p. In Table 1 we give average numbers of colors and rounds used by 
the DLF and DDLF algorithms running on the same graphs with n = 24. Each 
average number is taken over 100 iterations. We can observe that DDLF is  
better than DLF. 
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 colors C(p) rounds T(p) 

P DLF DDLF DLF DDLF 
0.05 2.52 2.52 2.67 2.67 
0.10 3.09 3.10 3.24 3.27 
0.15 3.69 3.73 3.83 3.80 
0.20 4.16 4.20 4.27 4.28 
0.25 4.82 4.73 4.85 4.80 
0.30 5.22 5.13 5.29 5.24 
0.35 5.60 5.52 5.69 5.57 
0.40 6.19 6.08 6.31 6.15 
0.45 6.54 6.50 6.57 6.56 
0.50 7.21 6.97 7.28 7.04 
0.55 7.79 7.56 7.83 7.61 
0.60 8.31 8.13 8.37 8.21 
0.65 9.16 8.84 9.21 8.88 
0.70 9.70 9.55 9.73 9.57 
0.75 10.49 10.20 10.51 10.25 
0.80 11.32 11.02 11.33 11.03 
0.85 12.37 12.09 12.38 12.11 
0.90 14.03 13.87 14.05 13.89 
0.95 16.88 16.82 16.88 16.82 

Table 1: Average number of colors used by DLF and DDLF algorithms for random graphs 
G24,p 

All tests have been done in a parallel environment, where each vertex was a separate 
process. All processes were working independently, without central control. All 
communications were sent using MPI library. We could observe that if all processes 
are working then the algorithms never fail, but if something is wrong with at least 
one process due to allocation problem, incorrect input data or anything else, then 
whole process collapses. Thus, before practical implementation we need to add some 
features to assure failure resistance property of the algorithms.  
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