The Gonzalez and Sahni Algorithm for $O|pmtn|C_{max}$

- $n machines M_1, \ldots, M_n$
- $n \text{ jobs } J_1, \ldots, J_n$, each job requiring processing on every machine, in any order.
- $p_{ij} \ge 0$ processing time of job J_j on machine M_i
- each machine can process at most one job at a time
- no job can be processed simultaneously on two or more machines.

Let

$$R_{i} = \sum_{j=1}^{n} p_{ij} (i = 1, \dots, n)$$
$$C_{j} = \sum_{i=1}^{m} p_{ij} (j = 1, \dots, n)$$

an obvious lower bound on the optimal solution value is

$$\alpha = \max(\max_{i} \{R_i\}, \max_{j} \{C_j\})$$
(1)

0) Define a weighted bipartite graph $G = (X \cup Y, E)$ in which X has a vertex x_i for each machine M_i , Y has a vertex y_j for each job J_j and $E = \{(x_i, y_j) : t_{ij} > 0, 1 \le i \le n, 1 \le j \le n\}$. The weight of an edge $(x_i, y_j) \in E$ is the processing time p_{ij} .

processing times

graph

 Add n vertices x_{n+1},..., x_{2n} to X and n vertices y_{n+1},..., y_{2n} to Y. Add the following edges to E:

 (i) an edge (x_i, y_{n+i}) for each i such that α - R_i > 0, with weight α - R_i (see (1));
 (ii) an edge (x_{n+j}, y_j) for each j such that α - C_j > 0, with weight α - C_j;
 (iii) a number of edges connecting x_{n+1},..., x_{2n} to

 y_{n+1}, \ldots, y_{2n} , with weights such that the weight sum of the edges incident to each vertex is equal to α .

2) Find a complete matching \mathcal{M} (i.e., a set of *n* edges with no vertex in common), and let μ be the minimum weight of an edge in \mathcal{M} .

(For the example of the figure, we could find the edges drawn in thick lines with $\mu = 10$)

Define a processing phase scheduling, for each edge $(x_i, y_j) \in \mathcal{M}$, job J_j on machine M_i for μ time units (but if j > n then machine M_i is idle in that interval; if i > n then job J_j is not processed in that interval).

3) Decrease the weight of each edge in \mathcal{M} by μ and remove all edges with zero weight. If the edge set is empty, terminate; otherwise, go to 2.