
The Gonzalez and Sahni Algorithm for O|pmtn|Cmax

• n machines M1, . . . ,Mn

• n jobs J1, . . . , Jn, each job requiring processing on
every machine, in any order.

• pij ≥ 0 processing time of job Jj on machine Mi

• each machine can process at most one job at a time

• no job can be processed simultaneously on two or more
machines.
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Example: processing times

Let
Ri =

n∑

j=1
pij(i = 1, . . . , n)

Cj =
m∑

i=1
pij(j = 1, . . . , n)

an obvious lower bound on the optimal solution value is

α = max(max
i
{Ri}, max

j
{Cj}) (1)
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0) Define a weighted bipartite graph G = (X ∪ Y, E) in
which X has a vertex xi for each machine Mi, Y has
a vertex yj for each job Jj and E = {(xi, yj) : tij >

0, 1 ≤ i ≤ n, 1 ≤ j ≤ n}. The weight of an edge
(xi, yj) ∈ E is the processing time pij.
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1) Add n vertices xn+1, . . . , x2n to X and n vertices
yn+1, . . . , y2n to Y .
Add the following edges to E:
(i) an edge (xi, yn+i) for each i such that α−Ri > 0,
with weight α − Ri (see (1));
(ii) an edge (xn+j, yj) for each j such that α−Cj > 0,
with weight α − Cj;
(iii) a number of edges connecting xn+1, . . . , x2n to
yn+1, . . . , y2n, with weights such that the weight sum
of the edges incident to each vertex is equal to α.
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(a) Original graph

(b) Extended graph
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2) Find a complete matching M (i.e., a set of n edges
with no vertex in common), and let µ be the minimum
weight of an edge in M.
(For the example of the figure, we could find the edges
drawn in thick lines with µ = 10)
Define a processing phase scheduling, for each edge
(xi, yj) ∈ M, job Jj on machine Mi for µ time units
(but if j > n then machine Mi is idle in that interval;
if i > n then job Jj is not processed in that interval).

3) Decrease the weight of each edge in M by µ and
remove all edges with zero weight. If the edge set is
empty, terminate; otherwise, go to 2.
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