Before PhD thesis:
  1. Algorytmy sprawiedliwego kolorowania grafów, Damrath H., Kubale M., Zesz. Naukowe Politechniki Śląskiej, Seria Automatyka, 1998, zesz. 123, s. 111-120 (1998).
  2. Color-feasible sequences and 0-1 time open shop problem: A survey, Furmańczyk H., Kubale M., Discrete Optimization Methods in Scheduling and Computer-Aided Design. International Workshop , 36–40 (2000).
  3. Ograniczone (p1, p2, ..., pk)-kolorowanie wierzchołków grafów, Furmańczyk H., Giaro K., EXIT (2002).
  4. Wsadowe szeregowanie zadań jednostkowych na pojedynczym procesorze, Furmańczyk H., Żyliński P., Zeszyty Naukowe Automatyka/Politechnika Śląska, (134):127–137 (2002).
  5. Sprawiedliwe kolorowanie grafów, H. Furmańczyk, w: Optymalizacja dyskretna -- modele i metody kolorowania grafów, M. Kubale ed., WNT, Warszawa (2002).
  6. Szeregowanie zadań sprzezonych metoda kolorowania grafów, H. Furmańczyk, M. Kubale, Zeszyty Naukowe AGH, Ser. Automatyka 7, 97-104 (2003).
  7. Equitable coloring, H. Furmańczyk, in: Graph Colorings, Contemporary Mathematics 352, AMS, Ann Arbor (2004).
  8. Equitable vertex coloring of graphs, H. Furmańczyk, M. Kubale, w: System Modelling Control - 2005, EXIT (2005).
  9. The Complexity of Equitable Vertex Coloring of Graphs, Furmańczyk, M. Kubale, JACS, 2, 95-106 (2005).

After PhD thesis:

  1. Equitable coloring of cacti and edge-cacti in polynomial time, H. Furmańczyk, K. Giaro, M. Kubale, IJPAM 27, 3, 379-392 (2006).
  2. Equitable coloring of graph products, H. Furmańczyk, Opuscula Mathematica, Vol. 26, No. 1, 31-44 (2006).
  3. Scheduling with precendence constraints. Mixed graph coloring in series-paralle graphs, H. Furmańczyk, A. Kosowski, P. Zyliński, LNCS 4967, 1001-1008 (2007).
  4. A note on mixed tree coloring, H. Furmańczyk, A. Kosowski, P. Żylinski, IPL 106, 133-135 (2008).
  5. Equitable coloring of Kneser graphs, R. Fidytek, H. Furmańczyk, P. Żyliński, DMGT 29(1) (2009), 119-142.
  6. Mixed Graph Edge Coloring, H. Furmańczyk, A. Kosowski, B. Ries, P. Żyliński, Discrete Mathematics 309(12) (2009), 4027-4036.
  7. Altitude of wheels and wheel-like graphs, T.Dzido, H.Furmańczyk, Cent. Eur. J. Math. 8(2) 2010, 318-326.
  8. Equitable coloring of corona products of graphs, H. Furmańczyk, Kaliraj K., M. Kubale, Vernold Vivin.J, Advances and Applications of Discrete Mathematics, 11(2) (2013), 103-120.
  9. Equitable and semi-equitable coloring of cubic graphs and its application in batch scheduling, H. Furmańczyk, M. Kubale, Archives of Control Sciences Vol. 25 (2015) No. 1, 109--116.
  10. Equitable coloring of corona products of cubic graphs is harder than ordinary coloring, H. Furmańczyk, M. Kubale, Ars Mathematica Contemporanea 10(2) (2016), 333-347.
  11. On bipartization of cubic graphs by removal of an independent set, H. Furmańczyk, M. Kubale, S. Radziszowski, Disc. Applied Math. , 209 (2016), 115-121.
  12. Equitable coloring of graphs. Recent theoretical results and new practical algorithms, H. Furmańczyk, A. Jastrzębski, M. Kubale, Archives of Control Sciences Vol. 26 (2016) No. 3, 281--295.
  13. Scheduling of unit-length jobs with bipartite incompatibility graphs on four uniform machines, H. Furmańczyk, M. Kubale, Bulletin of the Polish Academy of Sciences: Technical Sciences, 65(1) (2017), 29-34.
  14. Equitable coloring of corona multiproducts of graphs, H. Furmańczyk, M. Kubale, Vahan V. Mkrtchyan, DMGT 37(4) 2017, 1079--1094.
  15. Scheduling of unit-length jobs with cubic incompatibility graphs on three uniform machines, H. Furmańczyk, M. Kubale, Disc. Applied Math., 234 (2018), 210-217.
  16. Tight Bounds on the Complexity of Semi-Equitable Coloring of Cubic and Subcubic Graphs, H. Furmańczyk, M. Kubale, Disc. Applied Math., 237 (2018), 116-122.
  17. r-dynamic chromatic number of some line graphs, H. Furmańczyk, J.Vernold Vivin, N. Mohanapriya, Indian Journal of Pure and Applied Mathematics 49(4) (2018), 591–600.
  18. Equitable list vertex colourability and arboricity of grids, E. Drgas-Burchardt, J. Dybizbański, H. Furmańczyk, E. Sidorowicz, Filomat 32(18) (2018), 6353-6374.
  19. Wydajny algorytm dla r-sprawiedliwego kolorowania grafów, H. Furmańczyk, A. Koliński, Automatyzacja procesów dyskretnych. Teoria i zastosowania. Wydawnictwo Politechniki Śląskiej, Tom I 2018, 61-68.
  20. Equitable coloring of hypergraphs, H. Furmańczyk, P. Obszarski, Discrete Applied Mathematics 261 (2019), 186-192.
  21. On star coloring of splitting graphs, H. Furmańczyk, Kowsalya.V, Vernold Vivin.J, Ars Combinatoria 153 2020, 33-39.
  22. Equitable d-degenerate choosability of graphs, E. Drgas-Burchardt, H. Furmańczyk, E. Sidorowicz, LNCS "Combinatorial Algorithms", 31st IWOCA; 12126 (2020), 251-263.
  23. Hypergraph aspect in equitable coloring of some block graphs, J. Dybizbański, H. Furmańczyk, V. Mkrtchyan, 18th Cologne-Twente Workshop on Graphs and Combinatorial Optimization 2020, http://ctw2020.iasi.cnr.it/wp-content/uploads/2020/08/CTW2020_paper_59_805555.pdf
  24. Equitable improper choosability of graphs, E. Drgas-Burchardt, H. Furmańczyk, E. Sidorowicz, Theoretical Computer Science 844 (2020), 34-45 https://doi.org/10.1016/j.tcs.2020.08.001.
  25. Equitable total coloring of corona of cubic graphs, H. Furmańczyk, R. Zuazua, DMGT 41(4) 2021, 1147-1163.
  26. Scheduling on Uniform and Unrelated Machines with Bipartite Incompatibility Graphs, T. Pikies, H. Furmańczyk, in 2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS), Lyon, France, 2022 pp. 661-671; doi: 10.1109/IPDPS53621.2022.00070
  27. Graph theoretic and algorithmic aspect of the equitable coloring problem in block graphs, H. Furmańczyk, V. Mkrtchyan, Discrete Mathematics & Theoretical Computer Science, 23(2) (2022) https://doi.org/10.46298/dmtcs.6860
  28. Adjacent Vertex Distinguishing Coloring of Graphs (brief announcement), H. Furmańczyk, R. Zuazua, LAGOS 2023 vol. 223, s.382-384. https://doi.org/10.1016/j.procs.2023.08.254
  29. Vizing-Goldberg type bounds for the equitable chromatic number of block graphs, J. Dybizbański, H. Furmańczyk, V. Mkrtchyan, Discrete Applied Mathematics 354 (2024), pp. 15-28; https://doi.org/10.1016/j.dam.2023.09.032.
  30. Approximation Algorithms for Job Scheduling with Block-Type Conflict Graphs, H. Furmanczyk, T. Pikies, I. Sokołowska, K. Turowski, Computers & Operations Research 166, 106606 (2024)
  31. Equitable Colorings of l-Corona Products of Cubic Graphs, H. Furmańczyk, M. Kubale, Archives of Control Sciences 34(1) (2024), 211--223.
  32. Adjacent Vertex Distinguishing Coloring of Graphs, H. Furmańczyk, R. Zuazua, Ars Math. Contemp. (2024) doi:10.26493/1855-3974.3231.f5e
  33. A new approach to b-coloring of regular graphs, M. Dettlaff, H. Furmańczyk, I. Peterin, A. Roux, R. Ziemann, Applied Mathematics and Computation 481(2024)

  34. Block graphs - some general results and their equitable colorings, H. Furmańczyk, V. Mkrtchyan, https://arxiv.org/abs/2402.05289
  35. Scheduling on uniform and unrelated machines with bipartite incompatibility graphs, T. Pikies, H. Furmańczyk, https://arxiv.org/abs/2106.14354v1