

Publikacja współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

SKRYPT Z MATEMATYKI DYSKRETNEJ

Matematyka dyskretna dla studentów kierunku Informatyka

Hanna Furmańczyk Karol Horodecki Paweł Żyliński

Publikacja współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

SKRYPT Z MATEMATYKI DYSKRETNEJ

Hanna Furmańczyk, Karol Horodecki Paweł Żyliński

Matematyka dyskretna dla studentów kierunku Informatyka

Dziękujemy wszystkim Studentom, których cenne sugestie i spostrzeżenia pozwoliły nam na ulepszenie zawartości skryptu i wyeliminowanie błędów. Dziękujemy także Autorom, z których materiałów skorzystaliśmy, a na przestrzeni tych kilku lat zdążyliśmy już o tym zapomnieć.

Wydawnictwo Uniwersytetu Gdańskiego Gdańsk 2010

Publikacja współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

© Copyright by Hanna Furmańczyk, Karol Horodecki, Paweł Żyliński Skład komputerowy (LaTeX): Paweł Żyliński

ISBN 978-83-7326-708-4

Recenzent:

Projekt okładki i strony tytułowej: Anna Białk - Bielińska

All rights reserved

Wydawnictwo Uniwersytetu Gdańskiego, ul. Armii Krajowej 119/121. 81-824 Sopot, tel./fax (058) 523-11-37

> Uniwersytet Gdański Wydział Matematyki, Fizyki i Informatyki Instytut Informatyki 80-952 Gdańsk, ul. Wita Stwosza 57

Zestaw zadań nr 9

ELEMENTY TEORII GRAFÓW

 $Graf\ nieskierowany\ G=(V,E)$ jest to para składająca się z niepustego skończonego zbioru wierzchołków V oraz zbioru krawędzi E, gdzie krawędzie to nieuporządkowane pary wierzchołków:

$$E \subseteq \{\{u, v\} \mid u, v \in V\}.$$

Graf prosty to taki graf, dla którego:

- (1) jeśli $\{u, v\} \in E$, to $u \neq v$ (brak $p \neq t l i$);
- (2) co najwyżej tylko jedna para $\{u, v\} \in E$ (brak multikrawędzi).

Dwa wierzchołki u i v są sqsiednie, jeśli krawędź $e=\{u,v\}\in E$. Mówimy wówczas, że wierzchołki u,v są incydentne z tą krawędzią. Podobnie dwie różne krawędzie są sqsiednie, jeśli mają przynajmniej jeden wspólny wierzchołek. Stopień wierzchołka v jest liczbą krawędzi z nim incydentnych (ozn. deg(v)). Wierzchołek stopnia 1 nazywany jest liściem, a wierzchołek stopnia 0 — wierzchołkiem izolowanym. Ciąg liczb $c=(d_1,d_2,...,d_n)$ nazywamy ciągiem grafowym, jeśli istnieje graf G o n wierzchołkach, których stopnie równe są odpowiednim wyrazom ciągu c. W dalszej części skrypu poprzez "graf" w domyśle rozumiemy "graf prosty", w przeciwnym wypadku wyraźnie mówimy "multigraf".

FAKT 9.1 Niech G = (V, E) będzie dowolnym multigrafem. Wówczas $\sum_{v \in V} \deg(v) = 2|E|$.

Zauważmy, że z powyższego faktu wynika, że suma stopni w dowolnym multigrafie G = (V, E) jest liczbą parzystą, a w szczególności, że liczba wierzchołków o nieparzystym stopniu jest parzysta.

ZADANIE 9.2. Narysuj grafy o następujących ciągach stopni:

- a) (4,3,2,2,1).
- b) (3, 3, 3, 3, 3, 3).

ZADANIE 9.3. Wykaż (np. przez odpowiedni rysunek), że:

- a) dla dowolnego parzystego $n \ge 4$ istnieje n-wierzchołkowy graf, których wszystkie stopnie wynoszą 3;
- b) dla dowolnego nieparzystego $n \geq 5$ istnieje graf o n+1 wierzchołkach, spośród których dokładnie n jest stopnia 3;
- c) dla dowolnego $n \ge 5$ istnieje graf o n wierzchołkach, których wszystkie stopnie wynoszą 4.

TWIERDZENIE 9.4 (Havel 1955, Hakimi 1962)

Niech $c = (s, t_1, ..., t_s, d_1, d_2, ..., d_k)$ będzie nierosnącym ciągiem liczb. Wówczas ciąg stopni c jest ciągiem grafowym wtedy i tylko wtedy gdy ciąg stopni $(t_1 - 1, ..., t_s - 1, d_1, d_2, ..., d_k)$ jest grafowym.

Przykład 9.5. Które z następujących ciągów są grafowe?

- a) (5,5,4,4,3,2,2,1,1).
- b) (6,5,4,3,2,2,2,2).

Rozwiązanie. Zauważmy, że w przypadku (a) liczba wierzchołków o nieparzystym stopniu jest nieparzysta, a zatem suma stopni jest nieparzysta i w konsekwencji otrzymujemy, że dany ciąg nie jest ciągiem grafowym.

W przypadku (b) warunek konieczny — suma stopni ma być parzysta — jest spełniony:

$$6+5+4+3+2+2+2+2=26$$
.

Skorzystajmy zatem z twierdzenia 9.4. Otrzymujemy:

$$(\underline{6},5,4,3,2,2,2,2) \text{ jest ciągiem grafowym} \\ \Leftrightarrow \\ (5-1,4-1,3-1,2-1,2-1,2-1,2) = (4,3,2,1,1,1,2) \text{ jest ciągiem grafowym} \\ \Leftrightarrow \\ (\underline{4},3,2,2,1,1,1) \text{ jest ciągiem grafowym} \\ \Leftrightarrow \\ (3-1,2-1,2-1,1-1,1,1) = (2,1,1,0,1,1) \text{ jest ciągiem grafowym} \\ \Leftrightarrow \\ (\underline{2},1,1,1,1,0) \text{ jest ciągiem grafowym} \\ \Leftrightarrow \\ (1-1,1-1,1,1,0) = (0,0,1,1,0) \text{ jest ciągiem grafowym} \\ \Leftrightarrow \\ (\underline{1},1,0,0,0) \text{ jest ciągiem grafowym} \\ \Leftrightarrow \\ (1-1,0,0,0) = (0,0,0,0) \text{ jest ciągiem grafowym}.$$

Jako że graf o czterech wierzchołkach i bez krawędzi ma ciąg stopni równy (0,0,0,0), ciąg (0,0,0,0) jest ciągiem grafowym, a zatem na mocy twierdzenia 9.4 ciąg (6,5,4,3,2,2,2,2) jest także ciągiem grafowym.

Zauważmy, że już dla ciągu (1,1,0,0,0) widać, że ciąg ten jest ciągiem grafowym — graf o pięciu wierzchołkach, z których dowolne ustalone dwa wierzchołki połączone są krawędzią, ma ciąg stopni równy (1,1,0,0,0) — a zatem już na tym etapie możemy skorzystać z twierdzenia 9.4. \sharp

PRZYKŁAD 9.6. Narysuj graf (prosty) o ciągu stopni (6, 5, 4, 3, 2, 2, 2, 2).

Rozwiązanie. W poprzednim zadaniu, w oparciu o twierdzenie 9.4, wykazaliśmy, że rzeczywiście taki graf istnieje. Okazuje się, że dowód ten może być użyty do konstrukcji szukanego grafu.

• Krok 1. Otrzymaliśmy, że ciąg (0,0,0,0) jest ciągiem grafowym. Niech G_1 będzie grafem o ciągu (0,0,0,0), a dokładnie, niech G_1 będzie 4-wierzchołkowym grafem o wszystkich stopniach równych zero. Z poprzednich rozważań zachodzi

$$(0,0,0,0) = (1-1,0,0,0)$$
 jest ciągiem grafowym

(1,1,0,0,0) jest ciagiem grafowym.

Zatem do grafu G_1 dodajemy jeden wierzchołek, który łączymy krawędzią z wybranym wierzchołkiem stopnia 0, otrzymując tym samym graf G_2 o ciągu stopni (1,1,0,0,0).

• Z poprzednich rozważań zachodzi

$$(0,0,1,1,0) = (1-1,1-1,1,1,0)$$
 jest ciagiem grafowym

(2,1,1,1,1,0) jest ciągiem grafowym.

Zatem do grafu G_2 dodajemy jeden wierzchołek, który łączymy krawędziami z dwoma wybranymi wierzchołkami stopnia stopnia 0, otrzymując tym samym graf G_3 o ciągu stopni (2,1,1,1,1,0).

• Z poprzednich rozważań zachodzi

$$(2,1,1,0,1,1) = (3-1,2-1,2-1,1-1,1,1)$$
 jest ciągiem grafowym

 $(\underline{4},3,2,2,1,1,1)$ jest ciagiem grafowym.

Zatem do grafu G_3 dodajemy jeden wierzchołek, który łączymy krawędziami z dwoma wybranymi wierzchołkami stopnia 1, oraz z wierzchołkiem stopnia 2 i 0, otrzymując tym samym graf G_4 o ciągu stopni (4,3,2,2,1,1,1).

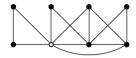
• Z poprzednich rozważań zachodzi

$$(4,3,2,1,1,1,2) = (5-1,4-1,3-1,2-1,2-1,2-1,2)$$
 jest ciągiem grafowym

 \Leftrightarrow

(6, 5, 4, 3, 2, 2, 2, 2) jest ciagiem grafowym.

Zatem do grafu G_4 dodajemy jeden wierzchołek, który łączymy krawędziami z trzema wierzchołkami stopnia 1, z wierzchołkiem stopnia 2, 3 oraz 4, otrzymując tym samym szukany graf (prosty) G_5 o ciągu stopni (6,5,4,3,2,2,2,2).



ZADANIE 9.7. Które z następujących ciągów są grafowe?

- a) (4, 4, 4, 4, 3, 3).
- b) (7,6,5,4,4,3,2,1).
- c) (6,6,5,5,2,2,2,2).
- d) (6, 6, 5, 5, 3, 3, 3, 3).

Dla ciągów, które są grafowe, narysuj odpowiednie grafy (proste).

ZADANIE 9.8. Wykaż indukcyjnie, że istnieje graf o ciągu stopni $(n, n, n-1, n-1, \dots, 2, 2, 1, 1)$.

ZADANIE 9.9. Niech G będzie grafem (prostym) o co najmniej dwóch wierzchołkach. Wykaż, że G zawiera co najmniej dwa wierzchołki tego samego stopnia. Czy jest to prawda dla multigrafów?

Wskazówka. Skorzystać z zasady szufladkowej Dirichleta.

Przykład 9.10. Przyjmując, że G jest grafem prostym o n wierzchołkach i m krawędziach wykaż indukcyjnie, że $m \leq \frac{n(n-1)}{2}$. Dla jakich grafów zachodzi równość?

Rozwiązanie. Dowód indukcyjny.

- (1) n=1. Wówczas graf G jest jednym wierzchołkiem i jako graf prosty ma $0=\frac{1(1-1)}{2}$ krawędzi.
- (2) Załóżmy, że dowolny graf prosty o 1 $\leq n' < n$ wierzchołkach ma co najwyżej $\frac{n'(n'-1)}{2}$ krawędzi.
- (3) Niech G będzie dowolnym grafem o $n \geq 2$ wierzchołkach. Niech v będzie dowolnym wierzchołkiem G. Usuńmy ten wierzchołek z G wraz z incydentnymi do niego krawędziami. Otrzymany graf G' ma n' = n 1 wierzchołków i, z założenia indukcyjnego, co najwyżej $\frac{(n-1)(n-2)}{2}$ krawędzi. Usunięty wierzchołek v w grafie G był sąsiedni z co najwyżej n-1 wierzchołkami z grafu G', zatem łączna liczba krawędzi w grafie G nie przekracza $\frac{(n-1)(n-2)}{2} + n 1 = \frac{n(n-1)}{2}$ krawędzi.

Równość
$$m = \frac{n(n-1)}{2}$$
 zachodzi dla grafów pełnych.

#

Ħ

ZADANIE 9.11. Niech $k \ge 0$. Ustal, dla jakich wartości n istnieje chociaż jeden n-wierzchołkowy graf prosty posiadający dokładnie:

- a) k wierzchołków izolowanych;
- b) k wierzchołków wiszących (liści).

ZADANIE 9.12. Jaka jest maksymalna i minimalna liczba krawędzi w n-wierzchołkowym grafie prostym posiadającym dokładnie:

- a) k wierzchołków izolowanych;
- b) k wierzchołków wiszących (liści).

9.1 Drogi i cykle

Niech dany będzie dowolny multigraf G=(V,E). Marszrutą w G nazywamy skończony ciąg krawędzi postaci $\{v_0,v_1\},\{v_1,v_2\},\ldots,\{v_k-1,v_k\}$; każda marszruta jednoznacznie wyznacza pewien ciąg wierzchołków v_0,v_1,\ldots,v_k . Liczbę krawędzi w marszrucie nazywamy jej dlugością. Marszrutę, w której wszystkie krawędzie są różne, nazywamy lańcuchem. Jeśli ponadto wszystkie wierzchołki są różne (za wyjątkiem ewentualnie $v_0=v_k$), to łańcuch nazywamy droga (prostą) lub ścieżką. Łańcuch bądź droga są zamknięte, gdy $v_0=v_k$. Drogę prostą, zamkniętą i zawierającą przynajmniej jedną krawędź nazywamy cyklem. Multigraf G=(V,E) jest spójny, jeżeli dla dowolnych dwóch wierzchołków $u,v\in V$ istnieje ścieżka łącząca je.

ZADANIE 9.13. Znajdź/narysuj graf o pięciu wierzchołkach, który:

- a) posiada jeden cykl;
- b) posiada trzy cykle;
- c) posiada pieć cykli.

ZADANIE 9.14. Uzasadnij, że jeżeli każdy z dwóch różnych cykli grafu G zawiera krawędź e, to w G istnieje cykl, który nie zawiera krawędzi e.

Podgrafem multigrafu G=(V,E) nazywamy dowolny multigraf H=(V',E') taki, że $V'\subseteq V$ oraz $E'\subseteq E$. Podgrafem indukowanym przez podzbiór wierzchołków $V'\subseteq V$ multigrafu G=(V,E) nazywamy taki podgraf H=(V',E') multigrafu G, że każda krawędź $e\in E$, której obydwa końce należą do V', należy do E' (i żadna inna, z definicji podgrafu).

ZADANIE 9.15.

- a) Znajdź/narysuj graf o sześciu wierzchołkach i siedmiu krawędziach, który nie posiada podgrafu będącego cyklem długości 4 (ozn. C_4).
- b) Znajdź/narysuj graf o sześciu wierzchołkach i dwunastu krawędziach, który nie posiada podgrafu będącego $grafem\ pełnym$ o czterech wierzchołkach (ozn. K_4).

9.2 Izomorfizm grafów

Dwa multigrafy $G_1 = (V_1, E_1)$ i $G_2 = (V_2, E_2)$ są *izomorficzne*, jeśli istnieje wzajemnie jednoznaczna odpowiedniość $h: V_1 \to V_2$ pomiędzy wierzchołkami G_1 i wierzchołkami G_2 taka, że

$$\{u,v\} \in E_1 \quad \Leftrightarrow \quad \{h(u),h(v)\} \in E_2.$$

TWIERDZENIE 9.16 Jeżeli dwa multigrafy $G_1 = (V_1, E_1)$ i $G_2 = (V_2, E_2)$ są izomorficzne, to:

- (1) G_1 i G_2 mają tyle samo wierzchołków: $|V_1| = |V_2|$.
- (2) G_1 i G_2 mają tyle samo krawędzi: $|E_1| = |E_2|$.
- (3) dla dowolnego k multigrafy G_1 i G_2 mają tyle samo wierzchołków stopnia k.

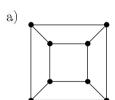
ZADANIE 9.17. Narysuj wszystkie grafy ze zbiorem wierzchołków $V = \{a, b, c\}$. Które z nich są izomorficzne? Następnie narysuj wszystkie nieizomorficzne grafy o czterech wierzchołkach.

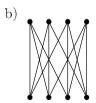
ZADANIE 9.18. Narysuj dwa najmniejsze (w sensie liczby wierzchołków i krawędzi) nieizomorficzne grafy o takiej samej liczbie wierzchołków i krawędzi.

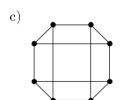
ZADANIE 9.19. Wykaż, że poniższe grafy są izomorficzne.

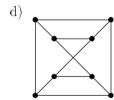
ZADANIE 9.20. Wykaż, że poniższe multigrafy nie są izomorficzne.

ZADANIE 9.21. Które z poniższych grafów (b)-(d) nie są izomorficzne z grafem (a)? Uzasadnij odpowiedź.









ZADANIE 9.22. Istnieją tylko dwa nieizomorficzne grafy o ciągu stopni (3, 3, 3, 3, 3, 3, 6). Wskaż je.

Niech G będzie grafem prostym ze zbiorem wierzchołków V. $Dopełnienie \overline{G}$ grafu G jest grafem prostym z tym samym zbiorem wierzchołków V, w którym dwa wierzchołki są sąsiednie wtedy i tylko wtedy, gdy nie są sąsiednie w G. Graf prosty, który jest izomorficzny ze swoim dopełnieniem nazywamy samodopełniającym.

ZADANIE 9.23. Wykaź, że liczba wierzchołków grafu samodopełniającego wynosi 4k lub 4k+1.

9.3 Drzewa

TWIERDZENIE 9.24 Niech T będzie grafem o n wierzchołkach. Wówczas następujące warunki są równoważne:

- (1) T jest drzewem.
- (2) T nie zawiera cykli i ma n-1 krawędzi.
- (3) T jest spójny i ma n-1 krawędzi.
- (4) T jest spójny, ale usunięcie dowolnej krawędzi e rozspaja T (każda krawędź jest mostem).
- (5) Dowolne dwa wierzchołki grafu T połączone są dokładnie jedną drogą.
- (6) T nie zawiera cykli, lecz dodanie dowolnej nowej krawędzi tworzy dokładnie jeden cykl.

ZADANIE 9.25. Znajdź/narysuj dwa nieizomorficzne drzewa o tym samym ciągu grafowym.

Przykład 9.26. Wykaż, że dowolne drzewo $T=(V,E), |V| \geq 2$, posiada przynajmniej 2 liście.

Rozwiązanie. Załóżmy, że w drzewie istnieje co najwyżej jeden liść, a zatem wszystkie wierzchołki za wyjatkiem co najwyżej jednego sa stopnia przynajmniej dwa. Tym samym zachodzi

$$\sum_{v \in V} \deg(v) \ge 2(|V| - 1) + 1 = 2|V| - 1.$$

Ale z drugiej strony, korzystając z zależności $\sum_{v \in V} \deg(v) = 2|E|$ oraz faktu, że w drzewie zachodzi |E| = |V| - 1, otrzymujemy $\sum_{v \in V} \deg(v) = 2|V| - 2$ — sprzeczność.

ZADANIE 9.27. Niech T będzie drzewem, którego wierzchołki są wyłącznie stopnia 3 lub 1. Jeśli T ma dziesięć wierzchołków stopnia 3, to ile wówczas ma liści?

ZADANIE 9.28. W drzewie T średnia stopni wierzchołków jest równa 1.99. Ile krawędzi ma T?

Zadanie 9.29. Wykaż, że jeśli T jest drzewem, w którym wszystkie stopnie wierzchołków są nieparzyste, wówczas liczba krawędzi drzewa T jest również nieparzysta.

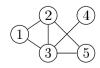
Drzewo spinające (rozpinające) multigrafu G=(V,E) to dowolne drzewo T=(V,E') takie, że $E'\subseteq E$. Zauważmy, że T ma taki sam zbiór wierzchołków co G, i każde drzewo spinające multigrafu G jest jego podgrafem. Można wykazać, że każdy spójny multigraf posiada drzewo spinające. W literaturze występują dwa szczególne drzewa spinające — są to drzewa przeszukiwań DFS i BFS, które omówione zostaną w następnej sekcji, natomiast poniżej przedstawiony jest inny prosty algorytm wyznaczania drzewa spinającego.

Algorytm konstrukcji drzewa spinającego.

Niech G = (V, E) będzie spójnym (multi)grafem.

1. Dopóki (multi)graf nie jest drzewem, usuń dowolną krawędź dowolnego cyklu.

Przykład 9.30. Zastosuj powyższy algorytm i wyznacz drzewo spinajacego poniższego grafu.



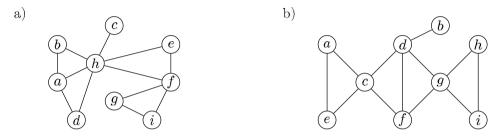
Rozwiązanie. Zgodnie z algorytmem, wykonujemy:

- » Rozważamy cykl o wierzchołkach 1, 2, 5, 3 i usuwamy np. krawędź {1,2}.
- » Rozważamy cykl o wierzchołkach 2, 3, 5 i usuwamy np. krawędź {3,5}.
- » W otrzymanym grafie nie ma już cykli.

Otrzymujemy zatem następujące drzewo spinające T = (V, E'), gdzie

$$V = \{1, 2, 3, 4, 5\}$$
 oraz $E' = \{\{1, 3\}, \{2, 3\}, \{2, 5\}, \{3, 4\}\}.$

ZADANIE 9.31. Skonstruuj drzewa spinające dla podanych niżej grafów.



Niech T=(V,E') będzie dowolnym drzewem spinającym grafu G=(V,E). Cykl bazowy/podstawowy w grafie G jest to cykl, który powstaje po dodaniu dowolnej krawędzi $e \in E$ do drzewa T. Wszystkie tak powstałe cykle tworzą zbiór cykli fundamentalnych/bazowych/podstawowych, tzw. bazę cykli dla danego drzewa spinającego.

Przykład 9.32. Dla drzewa spinającego skonstruowanego w przykładzie 9.30 zbiór fundamentalnych cykli składa się z dwóch cykli C_1 i C_2 , gdzie:

$$C_1 = (\{1, 2, 3\}, \{\{1, 3\}, \{2, 3\}, \{1, 2\}\}),$$

$$C_2 = (\{2, 3, 5\}, \{\{2, 3\}, \{2, 5\}, \{3, 5\}\}).$$

ZADANIE 9.33. Wyznacz zbiór cykli fundamentalnych dla drzew skontruowanych w zadaniu 9.31.

9.4 Przeszukiwanie grafów w głąb i wszerz — drzewa DFS i BFS

Algorytm przeszukiwania grafu w głab

Niech G = (V, E) będzie danym grafem spójnym, a $v \in V$ wierzchołkiem początkowym.

- 1. Odwiedzamy wierzchołek v (zaznaczamy go jako odwiedzony) i wkładamy go na STOS.
- 2. Dopóki STOS nie jest pusty, powtarzamy:

Jeżeli v jest wierzchołkiem na wierzchu STOSU, to sprawdzamy, czy istnieje wierzchołek sąsiedni z v, który nie był jeszcze odwiedzony.

- 2.1 Jeżeli u jest takim wierzchołkiem, to odwiedzamy u (zaznaczamy jako odwiedzony) i wkładamy go na STOS.
- 2.2 Jeżeli takiego u nie ma, to zdejmujemy v ze STOSU.

Uwaga 1. Jeśli jest kilka wierzchołków do wyboru, to wybieramy zgodnie z ustalonym porządkiem.

Uwaga 2. Wierzchołki na STOSIE w dowolnym kroku tworzą ścieżkę od korzenia do wierzchołka aktualnie odwiedzanego.

Uwaga 3. Jeśli w powyższej procedurze w kroku 2.1, w którym odwiedzamy wierzchołek u, do początkowo pustego zbioru E' krawędzi dodawać będziemy krawędź $\{v,u\}$, to otrzymamy drzewo spinające DFS (ang. depth-first search).

Przykład 9.34. Przeszukaj poniższy graf G = (V, E) w głąb poczynając od wierzchołka o etykiecie 3 i skonstruuj odpowiednie drzewo spinające DFS.

Rozwiązanie. Przebieg algorytmu jest następujący.

aktualny wierzchołek	STOS	zbiór krawędzi drzewa DFS
<u>3</u>	3	Ø
<u>1</u>	3,1	{{1,3}}
<u>2</u>	3,1,2	{{1,3},{1,2}}
<u>5</u>	3,1,2,5	{{1,3},{1,2},{2,5}}
2	3,1,2	{{1,3},{1,2},{2,5}}
1	3,1	{{1,3},{1,2},{2,5}}
3	3	{{1,3},{1,2},{2,5}}
4	1,4	{{1,3},{1,2},{2,5},{1,4}}
3	3	{{1,3},{1,2},{2,5},{1,4}}
_	Ø	{{1,3},{1,2},{2,5},{1,4}}

Zatem wierzchołki były odwiedzane w kolejności 3, 1, 2, 5, 4 i otrzymaliśmy drzewo spinające DFS T = (V, E'), gdzie $V = \{1, 2, 3, 4, 5\}$ oraz $E' = \{\{1, 3\}, \{1, 2\}, \{2, 5\}, \{1, 4\}\}$.

Algorytm przeszukiwania grafu wszerz

Niech G = (V, E) będzie danym grafem spójnym, a $v \in V$ wierzchołkiem początkowym.

- 1. Odwiedzamy wierzchołek v (zaznaczamy go jako odwiedzony) i wstawiamy go do KOLEJKI.
- 2. Dopóki KOLEJKA nie jest pusta, powtarzamy:
 - $2.1\,$ Bierzemy wierzchołek vz początku KOLEJKI.
 - 2.2 Odwiedzamy wszystkie do tej pory jeszcze nie odwiedzone wierzchołki sąsiednie z v (zaznaczamy je jako odwiedzone) i wstawiamy je na koniec KOLEJKI.
- Uwaga 1. Wierzchołki wstawiamy do KOLEJKI np. w kolejności uporządkowania etykiet.
- Uwaga 2. Wierzchołki przeszukiwane są w kolejności leżących najbliżej korzenia.
- Uwaga 3. Jeśli w powyższej procedurze w kroku 2.2, w którym odwiedzamy wszystkie nieodwiedzone jeszcze wierzchołki sąsiednie do v, do początkowo pustego zbioru E' krawędzi dodawać

będziemy odpowiednie krawędzie $\{v,u\}$, to otrzymamy drzewo spinające BFS (ang. breath-first search).

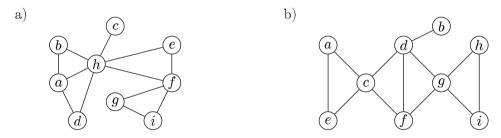
Przykład 9.35. Przeszukaj poniższy graf G = (V, E) wszerz poczynając od wierzchołka o etykiecie 5 i skonstruuj odpowiednie drzewo spinające BFS.

Rozwiązanie. Przebieg algorytmu jest następujący.

aktualny wierzchołek	odwiedzane wierzchołki	KOLEJKA	zbiór krawędzi drzewa DFS
5	5	5	\emptyset
5	2,3	2,3	$\{\{2,5\},\{3,5\}\}$
2	1	3,1	$\{\{2,5\},\{3,5\},\{1,2\}\}$
3	4	1,4	$\{\{2,5\},\{3,5\},\{1,2\},\{3,4\}\}$
1	_	4	$\{\{2,5\},\{3,5\},\{1,2\},\{3,4\}\}$
4	_	Ø	$\{\{2,5\},\{3,5\},\{1,2\},\{3,4\}\}$

Zatem wierzchołki były odwiedzane w kolejności 5, 2, 3, 1, 4 i otrzymaliśmy drzewo spinające BFS T = (V, E'), gdzie $V = \{1, 2, 3, 4, 5\}$ oraz $E' = \{\{2, 5\}, \{3, 5\}, \{1, 2\}, \{3, 4\}\}$.

ZADANIE 9.36. Zastosuj algorytm przeszukiwania w głąb (wszerz) do poniższych grafów i skonstruuj odpowiednie drzewa DFS i BFS; jako wierzchołek początkowy przyjmij wierzchołek o etykiecie a.



ZADANIE 9.37.* Niech $v \in V$ będzie wierzchołkiem, z którego startuje algorytm przeszukiwania w głąb grafu G = (V, E). Udowodnij, że dla każdej pary wierzchołków x i y takich, że $\{x, y\} \in E$ mamy, że albo x jest potomkiem y albo y jest potomkiem x w drzewie DFS (inaczej mówiąc, albo y leży na ścieżce z x do y w drzewie BFS albo na odwrót — x leży na ścieżce z y do y).

ZADANIE 9.38.* Niech $v \in V$ będzie wierzchołkiem, z którego startuje algorytm przeszukiwania wszerz grafu G = (V, E). Udowodnij, że dla dowolnego wierzchołka $x \in V$ najkrótsza droga z x do v w otrzymanym drzewie BFS jest także najkrótszą drogą z x do v w grafie G.

9.5 Grafy eulerowskie i hamiltonowskie

Niech dany będzie spójny multigraf G=(V,E). Mówimy, że G jest eulerowski, jeśli istnieje łańcuch zamknięty zawierający każdą krawędź multigrafu; taki łańcuch nazywamy $cyklem\ Eulera$. Analogicznie, mówimy, że G jest półeulerowski, jeśli istnieje łańcuch zawierający każdą krawędź grafu; taki łańcuch nazywamy łańcuchem Eulera.

TWIERDZENIE 9.39

- a) Spójny multigraf G = (V, E) jest eulerowski wtedy i tylko wtedy, gdy każdy jego wierzchołek jest parzystego stopnia.
- b) Spójny multigraf G jest półeulerowski wtedy i tylko wtedy, gdy posiada co najwyżej dwa wierzchołki nieparzystego stopnia, z czego jeden z nich jest początkiem łańcucha Eulera, a drugi jego końcem.

Niech dany będzie spójny (multi)
graf G=(V,E). Mówimy, że G jest hamiltonowski, jeśli istnieje cykl
, który przechodzi przez każdy wierzchołek dokładnie raz; taki cykl nazywamy cyklem Hamiltona. Analogicznie, mówimy, że G jest półhamiltonowski, jeśli zawiera ścieżkę przechodzącą przez każdy wierzchołek dokładnie raz; taką ścieżkę nazywamy ścieżką Hamiltona.

ZADANIE 9.40. Ustal, dla jakich wartości n graf pełny K_n posiada:

- a) cykl Eulera;
- b) cykl Hamiltona.

Zadanie 9.41. Ustal, dla jakich wartości n graf pełny K_n z usuniętą jedną krawędzią posiada:

- a) cykl Eulera;
- b) łańcuch Eulera;
- c) cykl Hamiltona;
- d) ścieżkę Hamiltona.

Przypomnijmy, że graf G=(V,E) jest grafem dwudzielnym, jeżeli jego zbiór wierzchołków można rozbić na dwa rozłączne podzbiory V_1 i V_2 takie, że $V_1 \cup V_2 = V$ oraz każda krawędź $e \in E$ ma końce w obu zbiorach, tj. $|e \cap V_1| = |e \cap V_2| = 1$. Pełny graf $dwudzielny K_{m,n} = (V_1 \cup V_2, E)$ jest to graf, w którym $|V_1| = m$ i $|V_2| = n$ oraz krawędzie łączą każdy wierzchołek z V_1 z każdym wierzchołkiem z V_2 , tj. $E = \{\{x,y\} : x \in V_1 \text{ oraz } y \in V_2\}$.

ZADANIE 9.42. Ustal, dla jakich wartości n i m dwudzielny graf pełny $K_{m,n}$ posiada:

- a) cykl Eulera;
- b) cykl Hamiltona.

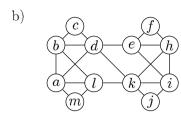
Czy dwudzielny graf G o nieparzystej liczbie wierzchołków może być grafem hamiltonowskim?

Algorytm znajdowania cyklu Eulera (o ile taki cykl istnieje)

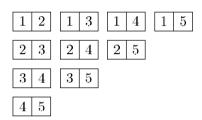
Niech G = (V, E) będzie spójnym multigrafem o wszystkich wierzchołkach parzystego stopnia.

- 1. Zaczynamy od dowolnego wierzchołka $v \in V$.
- 2. Powtarzamy, aż przejdziemy wszystkie krawędzie:
 - $2.1\,$ Jeżeli z bieżącego wierzchołka x odchodzi tylko jedna krawędź, to przechodzimy wzdłuż tej krawędzi do następnego wierzchołka i usuwamy tą krawędź wraz z wierzchołkiem x.
 - $2.2~{
 m W}$ przeciwnym wypadku, jeżeli zx odchodzi więcej krawędzi, to wybieramy tą krawędź, której usunięcie nie rozspójnia nam grafu, i przechodzimy wzdłuż tej krawędzi do następnego wierzchołka, a następnie usuwamy tą krawędź z grafu.

ZADANIE 9.43. Czy w danych niżej grafach istnieje cykl/łańcuch Eulera? Jeśli tak, wyznacz go.



ZADANIE 9.44. Czy poniższe kamyki do gry w domino można ułożyć w ciąg tak, aby się "zamknał"? Jeśli tak, wskaż możliwe ułożenie.

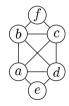


Algorytm z nawrotami znajdowania drogi Hamiltona (o ile taka droga istnieje)

Niech G = (V, E) będzie spójnym grafem i pewnym wyróżnionym wierzchołkiem $v \in V$.

- 1. Wkładamy v na STOS.
- 2. Powtarzamy:
 - 2.1 Jeżeli u jest wierzchołkiem na wierzchu stosu, to szukamy wierzchołka w o najniższym możliwym numerze (najwcześniejszego przy ustalonym porządku wierzchołków grafu) sąsiedniego z u i nie występującego na STOSIE, jednakże przy założeniu, że wierzchołek w jest "większy" od wierzchołka zdjętego krok wcześniej ze STOSU (o ile był taki).
 - $2.2\,$ Jeśli takie wznajdziemy, to wkładany je na stos jeżeli dotychczasowy STOS tworzy drogę Hamiltona, to KONIEC.
 - 2.3 Jeżeli takiego w nie znaleźliśmy, to zdejmujemy u ze stosu.

Przykład 9.45. Wypisz 25 kolejnych kroków działania algorytmu z nawrotami znajdowania drogi Hamiltona dla poniższego grafu przy założeniu, że wierzchołkiem początkowym jest wierzchołek o etykiecie a.



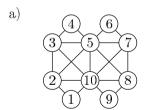
Rozwiązanie. Działanie algorytmu z nawrotami ilustruje poniższa tabela.

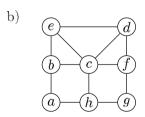
	aktualny wierzchołek	STOS
1	a	a
2	b	a, b
3	c	a, b, c
4	d	a, b, c, d
5	e	a,b,c,d,e
6	d	a, b, c, d
7	c	a, b, c
8	f	a, b, c, f
9	c	a, b, c
10	b	a, b
11	d	a, b, d
12	c	a, b, d, c
13	f	a, b, d, c, f
14	c	a, b, d, c
15	d	a, b, d
16	e	a, b, d, e
17	d	a, b, d
18	b	a, b
19	f	a, b, f
20	c	a,b,f,c
21	d	a, b, f, c, d
22	e	a, b, f, c, d, e
		KONIEC

A zatem algorytm z nawrotami zwróci drogę Hamiltona postaci a, b, f, c, d, e.

ZADANIE 9.46. Wypisz 15 kolejnych kroków działania algorytmu z nawrotami znajdowania drogi Hamiltona dla poniższych grafów przy założeniu, że wierzchołkiem początkowym jest:

- a) wierzchołek o etykiecie 5;
- b) wierzchołek o etykiecie a.





Problem stwierdzenia, czy w danym grafie G=(V,E) istnieje droga Hamiltona, jest problemem NP-zupełnym, tzn. nie istnieje deterministyczny algorytm rozstrzygający ten problem w czasie wielomianowym, o ile P \neq NP. Zauważmy, że nie wyklucza to istnienia niewielomianowego algorytmu i właśnie przykładem takiego algorytmu jest omawiany wyżej algorytm z nawrotami.

ZADANIE 9.47. Wskaż graf o n wierzchołkach, dla którego czas działania powyższego algorytmu z nawrotami jest niewielomianowy.

Wskazówka. Aby oszacować z dołu czas działania dla danego grafu, można oszacować tylko np. ile w sumie razy wkładaliśmy jakikolwiek z wierzchołków na stos.

9.6 Zadania różne

ZADANIE 9.48. Udowodnij, że izomorfizm grafów jest relacją równoważności.

Graf regularny to graf, w którym każdy wierzchołek jest tego samego stopnia; w szczególności, graf r-regularny, $r \ge 0$, to graf, w którym każdy wierzchołek jest stopnia r.

ZADANIE 9.49. Niech n będzie liczbą naturalną, a m nieujemną liczbą całkowitą. Wyznacz stopień n-wierzchołkowego grafu regularnego o m krawędziach.

Przykład 9.50. Mamy dowolny graf G = (V, E). Na ile sposobów można pokolorować dwoma kolorami jego wierzchołki? Na ile sposobów można pokolorować dwoma kolorami jego wierzchołki tak, aby z góry wybrana krawędź $e = \{u, v\}$ miała końce w różnych kolorach?

Rozwiązanie. Mamy |V| wierzchołków. Skoro każdemu wierzchołkowi można przypisać dwa różne kolory, np. 0 i 1, to liczba pokolorowań wynosi $2^{|V|}$.

Analogicznie, jeśli końce ustalonej krawędzi $e = \{u, v\}$ mają mieć różne kolory, wówczas albo kolor u wynosi 0, a kolor v wynosi 1, albo na odwrót, czyli kolor u wynosi 1, a kolor v wynosi 0 — natomiast pozostałe wierzchołki mogą otrzymać dowolny kolor. Tym samym w tym przypadku liczba możliwych pokolorowań wynosi $2 \cdot 2^{|V|-2} = 2^{|V|-1}$. \sharp

ZADANIE 9.51. Mamy dowolny graf G = (V, E). Na ile sposobów można pokolorować p kolorami jego wierzchołki? Na ile sposobów można pokolorować p kolorami jego wierzchołki tak, aby z góry wybrana krawędź $e = \{u, v\}$ miała końce w różnych kolorach?

ZADANIE 9.52. Rozważmy dowolne losowe pokolorowanie $k+1 \ge 1$ kolorami wierzchołków grafu G = (V, E) i niech π będzie dowolną ścieżką prostą długości k w grafie G (o ile ścieżka taka istnieje). Jakie jest prawdopodobieństwo, że wszystkie wierzchołki ścieżki π są różnych kolorów?

ZADANIE 9.53. Wykaż, że jeśli w spójnym grafie G średnia stopni wierzchołków jest większa niż dwa, wówczas G posiada przynajmniej dwa cykle. Co można powiedzieć o liczbie cykli, gdy (a) średnia stopni wierzchołków jest mniejsza niż 2; (b) średnia stopni wierzchołków jest równa 2?

ZADANIE 9.54. Wykaż, że jeśli *n*-wierzchołkowy graf (prosty) G o m krawędziach spełnia warunek $m > \binom{n-1}{2}$, to G jest spójny.

Wskazówka. Dowód przez sprzeczność — próbujemy oszacować maksymalną liczbę krawędzi w grafie zakładając, że graf ma przynajmniej dwie składowe spójności, z których jedna ma k > 1 wierzchołków.

9.7 Grafy ważone — minimalne drzewo spinające

Niech G = (V, E, w) będzie grafem ważonym, tzn. każdej krawędzi $e \in E$ przyporządkowana jest pewna waga w(e). Problem Minimalnego Drzewa Spinającego [MDS] definiujemy jako znalezienie drzewa spinającego T = (V, E') w grafie G o minimalnej sumie ważonej

$$\sum_{e \in E'} w(e).$$

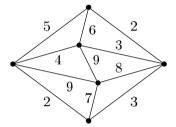
Minimalne drzewo spinające znajduje zastosowanie np. przy wyznaczeniu "najtańszej" sieci dróg, torów kolejowych, itp., która łączy danych n miast.

Algorytm konstrukcji minimalnego drzewa spinającego (algorytm Kruskala, 1956)

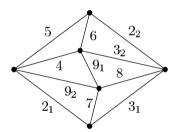
Niech G = (V, E, w) będzie spójnym grafem ważonym z funkcją wagi $w: E \to R$.

- 1. T := (V, E'), gdzie $E' := \emptyset$.
- 2. Posortuj krawędzie grafu G w kolejności niemalejących wag.
- 3. Dla każdej krawędzi $e \in E$: jeśli dodanie rozważanej krawędzi e nie utworzy cyklu w T, wówczas $E' := E' \cup \{e\}$.

Przykład 9.55. Znajdź minimalne drzewo spinające dla podanego niżej grafu.



Rozwiązanie. Posortowany ciąg krawędzi wygląda następująco: 2, 2, 3, 3, 4, 5, 6, 7, 8, 9, 9. Jako że niektóre wagi krawędzi powtarzają się, należy je rozróżnić np. dodając odpowiedni indeks dolny — otrzymujemy ciąg $2_1, 2_2, 3_1, 3_2, 4, 5, 6, 7, 8, 9_1, 9_2$ — patrz poniższy rysunek.

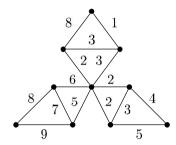


Dla ułatwienia ilustracji działania algorytmu utożsamiamy wagi krawędzi z samymi krawędziami. Przebieg algorytmu jest następujący.

rozpatrywana krawędź	cykl?	krawędzie drzewa
2_1	-	2_1
2_2	_	$2_1, 2_2$
3_1	-	$2_1, 2_2, 3_1$
3_2	_	$2_1, 2_2, 3_1, 3_2$
4	+	$2_1, 2_2, 3_1, 3_2$
5	+	$2_1, 2_2, 3_1, 3_2$
6	+	$2_1, 2_2, 3_1, 3_2$
7	_	$2_1, 2_2, 3_1, 3_2, 7$
8	+	$2_1, 2_2, 3_1, 3_2, 7$
9_{1}	+	$2_1, 2_2, 3_1, 3_2, 7$
9_2	+	$2_1, 2_2, 3_1, 3_2, 7$

Zauważmy, że skoro graf ma 6 wierzchołków, a z definicji drzewo spinające ma 5 krawędzi, wykonywanie algorytmu można było już przerwać, gdy dodaliśmy 5-tą krawędź o wadze 7.

ZADANIE 9.56. Znajdź minimalne drzewo spinające dla podanego niżej grafu.



Zadanie 9.57. Poniższa tabela przedstawia odległości pomiędzy 5 miastami A,B,C,D i E. Chcemy tak połączyć miasta, aby z każdego miasta można było dostać się do innego, niekoniecznie drogą bezpośrednią, jednakże chcemy wydać jak najmniej pieniędzy. Jaki jest minimalny koszt budowy takiej sieci dróg, jeżeli 1 km drogi kosztuje 1000000 PLN?

		A	В	\mathbf{C}	D	Ε
P	1	1	2	6	3	7
I	3	2	_	6	4	8
(6	6	_	5	8
I)	3	4	5	_	9
E	1	7	8	8	9	_

ZADANIE 9.58.* Niech G = (V, E, w) będzie eulerowskim grafem ważonym takim, że

$$w(G) = \sum_{e \in E(G)} w(e) > 0.$$

Wykaż, że w G istnieje cykl C taki, że $w(C) = \sum_{e \in C} w(e) > 0$.

9.8 Grafy ważone — najkrótsze drogi w grafie

Rozważmy graf ważony G = (V, E, w) z dodatnią funkcją kosztu, tj. $w: E \to \mathbb{R}^+$. Dla prostoty zakładamy, że jeśli $e \notin E$, to $w(e) = \infty$. Dla każdej drogi $v_0v_1 \dots v_k$ w grafie zdefiniujmy jej dtuqość jako sume długości krawedzi, czyli

$$\sum_{i=1}^{k} (w(\{v_{i-1}, v_i\})).$$

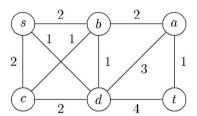
Jeżeli k=0, wówczas droga składa się z pojedynczego wierzchołka i przyjmujemy wtedy, że jej długość wynosi 0.

Algorytm wyznaczania długości najkrótszych dróg (algorytm Dijkstry)

Niech $s \in V$ będzie ustalonym wierzchołkiem ważonego grafu G = (V, E, w) o dodatniej funkcji kosztu. Algorytm na wyjściu zwraca macierz D, gdzie dla wierzchołka $v \in V$ wartość D[v] jest długością najkrótszej ścieżki z s do v.

- 1. D[s] := 0.
- 2. $\bar{V} := V \setminus \{s\}$.
- 3. Dla każdego $v \in \overline{V}$ podstaw $D[v] := w(\{s, v\})$.
- 4. Dopóki $\bar{V} \neq \emptyset$, wykonuj:
 - 4.1 Wybierz wierzchołek $u \in \overline{V}$ taki, że $D[u] = \min_{x \in \overline{V}} D[x]$.
 - $4.2 \ \bar{V} := \bar{V} \setminus \{u\}.$
 - 4.3 Dla każdego $v \in \overline{V}$ podstaw $D[v] := \min(D[v], D[u] + w(\{u, v\}))$.

Przykład 9.59. Wyznacz drzewo najkrótszych dróg w podanym niżej ważonym grafie G =(V, E, w) dla wierzchołka początkowego s.



Rozwiązanie. Poniższa tabela ilustruje jak w kolejnych iteracjach zewnętrznej pętli algorytmu Dijkstry wybierany jest wierzchołek u oraz jak przedstawia się zbiór \overline{V} oraz macierz D.

Iteracja	u	\bar{V}	D[s]	D[a]	D[b]	D[c]	D[d]	D[t]
0		$\{a,b,c,d,t\}$	0	∞	2	2	<u>1</u>	∞
1	d	$\{a,b,c,t\}$	0	4	<u>2</u>	2	1	5
2	b	$\{a,c,t\}$	0	3	2	<u>2</u>	1	5
3	c	$\{a,t\}$	0	<u>3</u>	2	2	1	5
4	a	$ \{t\} $	0	3	2	2	1	$\underline{4}$
5	t	Ø	0	3	2	2	1	4

Zauważmy, że algorytm Dijkstry wyznacza tylko macierz najkrótszych odległości, nie zapamiętując w czasie wykonywania żadnych dodatkowych informacji. Aby wyznaczyć najkrótszą droge z wierzchołka s do wybranego wierzchołka v można albo zmodyfikować algorytm tak, aby za każdym razem, kiedy usuwamy wierzchołek u ze zbioru V, dodawał on odpowiednią krawędź do konstruowanego drzewa najkrótszych dróg, albo też skorzystać bezpośrednio z wyznaczonej macierzy D. A dokładnie, załóżmy, że interesuje nas wyznaczenie najkrótszej ścieżki z wierzchołka s do t w grafie G = (V, E, w) z przykładu 9.59.

Najkrótszą drogę wyznaczamy od końca — najpierw szukamy przedostatniego wierzchołka tej drogi, potem trzeciego od końca i tak dalej.

• Przedostatni wierzchołek x najkrótszej drogi spełnia równość $D[t] = D[x] + w(\{x,t\})$. W naszym przykładzie (tylko) wierzchołek x = a spełnia tą równość:

$$4 = D[t] = D[a] + w(\{a, t\}) = 3 + 1.$$

A zatem przedostatnim wierzchołkiem jest wierzchołek a.

• Trzeci wierzchołek y od końca najkrótszej drogi z s do t — a przedostatni wierzchołek najkrótszej drogi z s do a — spełnia równość $D[a] = D[y] + w(\{y, a\})$. W naszym przykładzie (tylko) wierzchołek y = b spełnia tą równość:

$$3 = D[a] = D[b] + w(\{b, a\}) = 2 + 1.$$

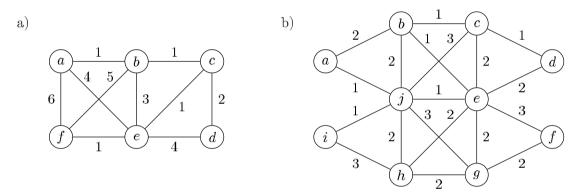
A zatem pozostaje na znaleźć najkrótszą drogę z s do b.

• Czwarty wierzchołek z od końca najkrótszej drogi z s do t — a przedostatni wierzchołek najkrótszej drogi z s do b — spełnia równość $D[b] = D[z] + w(\{z, b\})$. W naszym przykładzie (tylko) wierzchołek y = s spełnia tą równość:

$$2 = D[b] = D[s] + w(\{s, b\}) = 0 + 2.$$

W konsekwencji najkrótsza droga z s do t długości 4 wiedzie przez wierzchołki s, b, a i t.

ZADANIE 9.60. W poniższych grafach znajdź długość najkrótszej drogi z wierzchołka a do f, a następnie wyznacz tę drogę.



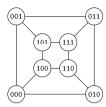
9.9 Rozsyłanie wiadomości w hiperkostce

Graf zwany hiperkostką H_k zdefiniowany jest rekurencyjnie. H_1 składa się z dwóch wierzchołków połączonych krawędzią. Natomiast hiperkostkę H_k wymiaru k budujemy z dwóch kostek H_{k-1} wymiaru k-1. W pierwszej kostce etykietujemy wierzchołki dopisując 0 na początku nazwy każdego wierzchołka, natomiast w drugiej kostce etykietujemy wierzchołki dopisując 1 na początek. Następnie łączymy krawędziami odpowiadające sobie wierzchołki z obu kopii, czyli wierzchołek 0x jest połączony z wierzchołkiem 1x dla każdego x z $\{0,1\}^{k-1}$.

Protokół rozsyłania wiadomości w hiperkostce H_k .

- 1. Na początku wiadomość otrzymuje wierzchołek 0^k .
- 2. Dla każdego i od 1 do k, wykonuj:
 - 2.1 Każdy wierzchołek o etykiecie $x < 2^{i-1}$ przekazuje wiadomość do wierzchołka o etykiecie $x + 2^{i-1}$.

Przykład 9.61. Prześledźmy działanie powyższego algorytmu na hiperkostce H_3 .



Hiperkostka H_3 .

- \bullet W pierwszej iteracji, dla i=1, wierzchołek 000 przekazuje wiadomość do 001.
- ullet W drugiej iteracji, dla i=2, wierzchołek 000 przekazuje wiadomość do 010, a wierzchołek 001 do 011.
- W trzeciej iteracji, dla i=3, wierzchołek 000 przekazuje wiadomość do 100, wierzchołek 001 do 101, wierzchołek 010 do 110, a wierzchołek 011 do 111.

ZADANIE 9.62. Prześledź działanie algorytmu rozsyłania wiadomości na hiperkostkach H₄.

Protokół zbierania wiadomości w hiperkostce H_k .

- 1. Dla każdego i od 1 do k, wykonuj:
 - 1.1 Każdy wierzchołek o etykiecie $x = 0^{i-1}1\sigma$, gdzie $\sigma \in \{0,1\}^{k-i}$, przekazuje zebrane dane do wierzchołka o etykiecie $0^{i-1}0\sigma$.

Przykład 9.63. Prześledźmy działanie powyższego algorytmu na hiperkostce H_3 .

- W pierwszej iteracji, dla i=1, wierzchołek 100 przekazuje dane do 000, wierzchołek 101 do 001, wierzchołek 110 do 010, a wierzchołek 111 do 011.
- W drugiej iteracji, dla i=2, wierzchołek 010 przekazuje wszystkie dane (swoje i otrzymane) do 000, a wierzchołek 011 do 001.
- W trzeciej iteracji, dla i=3, wierzchołek 001 przekazuje zebrane wiadomości do 000. \sharp

Zadanie 9.64. Prześledź działanie algorytmu zbierania wiadomości na hiperkostce H_4 .

9.10 Pytania powtórzeniowe

ZADANIE 9.65. Które z poniższych stwierdzeń jest prawdziwe? (Odpowiedź: TAK/NIE)

- a) Relacja sąsiedztwa grafu prostego jest relacją symetryczną.
- b) Ciąg stopni grafu prostego może być ciągiem rosnącym.
- c) Ciąg stopni multigrafu może być ciągiem rosnącym.
- d) Podgraf indukowany w niepustym grafie jest niepustym grafem.
- e) Suma wyrazów ciągu grafowego musi być parzysta.
- f) Podgraf indukowany w grafie o minimalnym stopniu $\delta > 0$ jest niepustym grafem.
- g) Grafy izomorficzne mają identyczną liczbę krawędzi i wierzchołków.
- h) Grafy izomorficzne mają identyczną liczbę wierzchołków wiszących.

- i) Grafy o identycznej liczbie krawędzi, wierzchołków i wierzchołków wiszących są izomorficzne.
- j) Ciągi stopni grafów izomorficznych są identyczne.
- k) Grafy o identycznych ciągach stopni są izmorficzne.
- l) Grafy o identycznej liczbie krawędzi, wierzchołków, wierzchołków wiszących i ciągach stopni są izomorficzne.
- m) Spójne grafy regularne o identycznej liczbie wierzchołków i krawędzi są izomorficzne.

Odpowiedzi do zadań

9.7.

- a) Tak. b) Tak. c) Nie. d) Tak.
- 9.8. Dowód indukcyjny.
- (1.a). n=1. Wówczas graf G jest pojedyncza krawedzia, ciąg stopni: (1,1).
- (1.b). n=2. Wówczas graf G jest ścieżką P_4 , ciąg stopni: (1,1,2,2).
- (2). Załóżmy, że ciąg stopni $(1, 1, 2, 2, \dots, n', n')$ jest grafowy dla dowolnego n' < n.
- (3). Rozważmy ciąg $(1,1,2,2,\ldots,n,n)$, gdzie n>2. Z założenia indukcyjnego istnieje graf G' realizujący ciąg grafowy $(1,1,2,2,\ldots,n-2,n-2)$. Najpierw dodajmy do G' dwa nowe wierzchołki o stopniach 0 (ciąg $(0,0,1,1,2,2,\ldots,n-2,n-2)$ jest również grafowy), a następnie dodajmy kolejne dwa wierzchołki, połączmy je krawędzią, oraz każdy z nich połączmy z każdym, ale po jednym tylko (i różnym) z wierzchołków stopnia $0,1,2,3,\ldots,n-2$. Stopnie wszystkich wierzchołków należących do G' wzrosły o jeden, dwa dodane na początku wierzchołki stały się liśćmi, a dwa dodane ostatnio wierzchołki są stopnia n. Zatem otrzymany graf G ma ciąg stopni $(1,1,2,2,\ldots,n-1,n-1,n,n)$.
- 9.9. Wystarczy zastosować zasadę szufladkową. Oczywiście w grafie prostym o n wierzchołkach nie może zaistnieć sytuacja, że jakiś wierzchołek jest stopnia 0 (nie jest sąsiedni z żadnym z wierzchołków), a jakiś inny stopnia n-1 (jest sąsiedni ze wszystkimi). Zatem dopuszczalne są albo stopnie $0, 1, \ldots, n-2$ albo $1, \ldots, n-1$. Jako że mamy n wierzchołków i tylko n-1 możliwych wartości stopni (w każdej z dwóch sytuacji), zatem istnieją dwa wierzchołki o tym samym stopniu.

9.10.

- a) n = k oraz $n \ge k + 2$.
- b) k parzyste: $n \ge k$; k = 1: $n \ge 4$; $k \ge 3$ nieparzyste: $n \ge k + 1$.

9.11.

- a) n = k: $\min = \max = 0$. $n \ge k + 2$: $\min = \lceil \frac{n-k}{2} \rceil$, $\max = \frac{(n-k)(n-k-1)}{2}$.
- b) k parzyste: $\min = \frac{k}{2}$, $\max = k + \frac{(n-k)(n-k-1)}{2}$. $k = 1, n \ge 4$: $\min = 4, \max = 1 + \frac{(n-k)(n-k-1)}{2}$. $k \ge 3$ nieparzyste, $n \ge k+1$: $\min = \lceil \frac{k}{2} \rceil + 1, \max = k + \frac{(n-k)(n-k-1)}{2}$.
- **9.14.** Niech $e = \{x, y\}$ będzie rozważaną krawędzią, a $C_1 = (V_1, E_1)$ i $C_2 = (V_2, E_2)$ dowolnymi różnymi cyklami zawierającymi krawędź e. Wówczas zbiór krawędzi $E_3 = E_1 \otimes E_2 = (E_1 \cup E_2) \setminus (E_1 \cap E_2)$ wraz z końcami tych krawędzi tworzy cykl C_3 , który nie zawiera krawędzi e.

9.19. Rozważmy następujące etykietowanie grafów $G_1 = (V_1, E_1)$ i $G_2 = (V_2, E_2)$.

Zdefiniujmy funkcję h następująco:

$$h(a) = 1, h(b) = 4, h(c) = 7, h(d) = 3, h(e) = 6, h(f) = 2, h(g) = 5.$$

Zachodzi:

$$\{a,b\} \in E_1 \quad \Leftrightarrow \quad \{h(a),h(b)\} = \{1,4\} \in E_2;$$

$$\{a,c\} \in E_1 \quad \Leftrightarrow \quad \{h(a),h(c)\} = \{1,7\} \in E_2;$$

$$\{a,f\} \in E_1 \quad \Leftrightarrow \quad \{h(a),h(f)\} = \{1,2\} \in E_2;$$

$$\{a,g\} \in E_1 \quad \Leftrightarrow \quad \{h(a),h(g)\} = \{1,5\} \in E_2;$$

$$\{b,c\} \in E_1 \quad \Leftrightarrow \quad \{h(b),h(c)\} = \{4,7\} \in E_2;$$

$$\{b,d\} \in E_1 \quad \Leftrightarrow \quad \{h(b),h(d)\} = \{4,3\} \in E_2;$$

$$\{b,g\} \in E_1 \quad \Leftrightarrow \quad \{h(b),h(g)\} = \{4,5\} \in E_2;$$

$$\{c,d\} \in E_1 \quad \Leftrightarrow \quad \{h(c),h(d)\} = \{7,3\} \in E_2;$$

$$\{c,e\} \in E_1 \quad \Leftrightarrow \quad \{h(c),h(e)\} = \{7,6\} \in E_2;$$

$$\{d,e\} \in E_1 \quad \Leftrightarrow \quad \{h(d),h(e)\} = \{3,6\} \in E_2;$$

$$\{d,f\} \in E_1 \quad \Leftrightarrow \quad \{h(d),h(f)\} = \{3,2\} \in E_2;$$

$$\{e,f\} \in E_1 \quad \Leftrightarrow \quad \{h(e),h(f)\} = \{6,2\} \in E_2;$$

$$\{e,g\} \in E_1 \quad \Leftrightarrow \quad \{h(e),h(g)\} = \{6,5\} \in E_2;$$

$$\{f,g\} \in E_1 \quad \Leftrightarrow \quad \{h(f),h(g)\} = \{2,5\} \in E_2;$$

A tym samym h jest izomorfizmem — grafy te są izomorficzne.

9.20. Załóżmy, że grafy te są izomorficzne. Jako że w każdym z grafów istnieje dokładnie jedna pętla, izomorfizm musi przekształcać odpowiednie te wierzchołki w siebie — oznaczmy je przez a_1 (w grafie pierwszym) oraz a_2 (w grafie drugim). Następnie, skoro wiemy już, że w pierwszym grafie wierzchołek a_1 musi odpowiadać wierzchołkowi a_2 w grafie drugim, to izomorfizm musi zachować własności ich sąsiadów, a w szczególności także ich stopnie. Ale a_1 jest sąsiedni do dwóch wierzchołków stopnia 2 oraz 4, podczas gdy a_2 jest sąsiedni do dwóch wierzchołków stopnia 2 oraz 3. A zatem niemożliwym jest takie przypisanie sobie tych wierzchołków, aby zachować

odpowiedniość pomiędzy ich stopniami. Otrzymujemy tym samym sprzeczność z założeniem, że grafy są izomorficzne.

9.21. (b) i (c) tak; (d) nie, bo graf ten posiada nieparzysty cykl, których brak w (a), a izomorfizm zachowuje długości cykli.

9.22. Z definicji izomorfizmu wynika, że G i \overline{G} mają tyle samo krawędzi — załóżmy, że m. Jako że suma G i \overline{G} jest grafem pełnym, stąd $2m=\frac{n(n-1)}{2}$. Zatem $m=\frac{n(n-1)}{4}$. Ale n i n-1 są kolejnymi liczbami, zatem niemożliwe jest, aby 2 dzieliła każdą z nich, co daje, że albo 4|n albo 4|n+1, czyli n=4k lub n=4k+1.

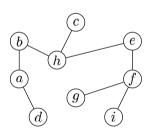
9.27. Z faktu 9.1 otrzymujemy, że $10 \cdot 3 + l \cdot 1 = 2m$, gdzie l jest liczbą liści. Z drugiej strony, jako że T jest drzewem, $2m = 2(n-1) = 2n - 2 = 2 \cdot (10 + l) - 2$. Tym samym otrzymujemy, że l = 12.

9.28. Z treści oraz z faktu 9.1 mamy, że $\frac{1}{n} \sum_{v \in V} \deg(v) = \frac{2(n-1)}{n} = 1.99$. Tym samym, po przekształceniach, otrzymujemy n = 200.

9.29. Z faktu 9.1 otrzymujemy, że liczba wierzchołków nieparzystego stopnia jest parzysta, a zatem n jest parzyste, co daje m = n - 1 nieparzyste.

9.31.

a) Np.:

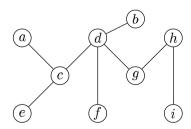


Drzewo spinające T = (V, E), gdzie

$$V = \{a, b, c, d, e, f, g, h, i\}$$
 oraz

$$E = \{\{a,b\}, \{a,d\}, \{b,h\}, \{c,h\}, \{e,h\}, \{e,f\}, \{f,g\}, \{f,i\}\}.$$

b) Np.:



Drzewo spinające T = (V, E), gdzie

$$V = \{a, b, c, d, e, f, g, h, i\}$$
 oraz

$$E = \{\{a,c\},\{b,d\},\{c,e\},\{c,d\},\{d,f\},\{d,g\},\{g,h\},\{h,i\}\}\}.$$

- **9.33.** Dla przykładowych drzew spinających skonstruowanych w rozwiązaniu zadania 31 zbiór cykli wyndamentalnych składa się z:
 - a) czterech cykli C_1, C_2, C_3 oraz C_4 , gdzie

$$\begin{split} C_1 &= (\{a,b,d,h\}, \{\{a,b\}, \{b,h\}, \{d,h\}, \{a,d\}\}), \\ C_2 &= (\{a,b,h\}, \{\{a,b\}, \{b,h\}, \{a,h\}\}), \\ C_3 &= (\{e,f,h\}, \{\{e,f\}, \{f,h\}, \{e,h\}\}), \\ C_4 &= (\{f,g,i\}, \{\{f,g\}, \{g,i\}, \{f,i\}\}). \end{split}$$

b) czterech cykli C_1, C_2, C_3 oraz C_4 , gdzie

$$\begin{split} C_1 &= (\{a,c,e\}, \{\{a,c\}, \{c,e\}, \{a,e\}\}), \\ C_2 &= (\{c,d,f\}, \{\{c,d\}, \{d,f\}, \{c,f\}\}), \\ C_3 &= (\{d,f,g\}, \{\{d,f\}, \{f,g\}, \{d,g\}\}), \\ C_4 &= (\{g,h,i\}, \{\{g,h\}, \{h,i\}, \{g,i\}\}). \end{split}$$

9.36.

a) DFS:

	STOS	zbiór krawędzi drzewa DFS
<u>a</u>	a	Ø
\underline{b}	a, b	$\{\{a,b\}\}$
\underline{h}	a, b, h	$\{\{a,b\},\{b,h\}\}$
<u>c</u>	a,b,h,c	$\{\{a,b\},\{b,h\},\{c,h\}\}$
h	a, b, h	$\{\{a,b\},\{b,h\},\{c,h\}\}$
<u>d</u>	a, b, h, d	$\{\{a,b\},\{b,h\},\{c,h\},\{d,h\}\}$
h	a,b,h	$\{\{a,b\},\{b,h\},\{c,h\},\{d,h\}\}$
<u>e</u>	a,b,h,e	$\{\{a,b\},\{b,h\},\{c,h\},\{d,h\},\{e,h\}\}$
\underline{f}	a,b,h,e,f	$\{\{a,b\},\{b,h\},\{c,h\},\{d,h\},\{e,h\},\{e,f\}\}$
\underline{g}	a,b,h,e,f,g	$\{\{a,b\},\{b,h\},\{c,h\},\{d,h\},\{e,h\},\{e,f\},\{f,g\}\}$
$\overline{\underline{i}}$	a,b,h,e,f,g,i	$\{\{a,b\},\{b,h\},\{c,h\},\{d,h\},\{e,h\}\},\{e,f\},\{f,g\},\{g,i\}\}$
g	a,b,h,e,f,g	$\{\{a,b\},\{b,h\},\{c,h\},\{d,h\},\{e,h\}\},\{e,f\},\{f,g\},\{g,i\}\}$
$_f$	a,b,h,e,f	$\{\{a,b\},\{b,h\},\{c,h\},\{d,h\},\{e,h\}\},\{e,f\},\{f,g\},\{g,i\}\}$
$\underline{}e$	a,b,h,e	$\{\{a,b\},\{b,h\},\{c,h\},\{d,h\},\{e,h\}\},\{e,f\},\{f,g\},\{g,i\}\}$
\underline{h}	a, b, h	$\{\{a,b\},\{b,h\},\{c,h\},\{d,h\},\{e,h\}\},\{e,f\},\{f,g\},\{g,i\}\}$
b	a, b	$\{\{a,b\},\{b,h\},\{c,h\},\{d,h\},\{e,h\}\},\{e,f\},\{f,g\},\{g,i\}\}$
\underline{a}	a	$\{\{a,b\},\{b,h\},\{c,h\},\{d,h\},\{e,h\}\},\{e,f\},\{f,g\},\{g,i\}\}$
_	Ø	$\{\{a,b\},\{b,h\},\{c,h\},\{d,h\},\{e,h\}\},\{e,f\},\{f,g\},\{g,i\}\}$

Zatem wierzchołki były odwiedzane w kolejności a, b, h, c, d, e, f, g, i i otrzymaliśmy drzewo spinające DFS T = (V, E'), gdzie

$$\begin{split} V &= \{a,b,c,d,e,f,g,h,i\} \text{ oraz } \\ E' &= \{\{a,b\},\{b,h\},\{c,h\},\{d,h\},\{e,h\}\},\{e,f\},\{f,g\},\{g,i\}\}. \end{split}$$

BFS:

	odwiedzane wierz.	KOLEJKA	zbiór krawędzi drzewa DFS
\overline{a}	a	a	\emptyset
\overline{a}	b,d,h	b, d, h	$\{\{a,b\},\{a,d\},\{a,h\}\}$
\overline{b}	_	d, h	$\{\{a,b\},\{a,d\},\{a,h\}\}$
\overline{d}		h	$\{\{a,b\},\{a,d\},\{a,h\}\}$
h	c, e, f	c, e, f	$\{\{a,b\},\{a,d\},\{a,h\},\{c,h\},\{e,h\},\{f,h\}\}$
\overline{c}	_	e, f	$\{\{a,b\},\{a,d\},\{a,h\},\{c,h\},\{e,h\},\{f,h\}\}$
\overline{e}	—	f	$\{\{a,b\},\{a,d\},\{a,h\},\{c,h\},\{e,h\},\{f,h\}\}$
\overline{f}	g,i	g, i	$\{\{a,b\},\{a,d\},\{a,h\},\{c,h\},\{e,h\},\{f,h\},\{f,g\},\{f,i\}\}$
\overline{g}		i	$\{\{a,b\},\{a,d\},\{a,h\},\{c,h\},\{e,h\},\{f,h\},\{f,g\},\{f,i\}\}$
i		_	$\{\{a,b\},\{a,d\},\{a,h\},\{c,h\},\{e,h\},\{f,h\},\{f,g\},\{f,i\}\}$

Zatem wierzchołki były odwiedzane w kolejności a,b,d,h,c,e,f,g,i i otrzymaliśmy drzewo spinające BFS T=(V,E'), gdzie

$$\begin{split} V &= \{a,b,c,d,e,f,g,h,i\} \text{ oraz} \\ E' &= \{\{a,b\},\{a,d\},\{a,h\},\{c,h\},\{e,h\},\{f,h\},\{f,g\},\{f,i\}\}. \end{split}$$

b) DFS:

	STOS	zbiór krawędzi drzewa DFS
<u>a</u>	a	\emptyset
<u>c</u>	a, c	$\{\{a,c\}\}$
\underline{d}	a, c, d	$\{\{a,c\},\{c,d\}\}$
\underline{b}	a,c,d,b	$\{\{a,c\},\{c,d\},\{d,b\}\}$
d	a, c, b	$\{\{a,c\},\{c,d\},\{d,b\}\}$
\underline{f}	a,c,d,f	$\{\{a,c\},\{c,d\},\{d,b\},\{d,f\}\}$
\overline{g}	a, c, d, f, g	$\{\{a,c\},\{c,d\},\{d,b\},\{d,f\},\{f,g\}\}$
$\frac{\underline{h}}{\underline{i}}$	a, c, d, f, g, h	$\{\{a,c\},\{c,d\},\{d,b\},\{d,f\},\{f,g\},\{g,h\}\}$
$\overline{\underline{i}}$	a, c, d, f, g, h, i	$\{\{a,c\},\{c,d\},\{d,b\},\{d,f\},\{f,g\},\{g,h\},\{h,i\}\}$
\overline{h}	a, c, d, f, g, h	$\{\{a,c\},\{c,d\},\{d,b\},\{d,f\},\{f,g\},\{g,h\},\{h,i\}\}$
g	a,c,d,f,g	$\{\{a,c\},\{c,d\},\{d,b\},\{d,f\},\{f,g\},\{g,h\},\{h,i\}\}$
f	a,c,d,f	$\{\{a,c\},\{c,d\},\{d,b\},\{d,f\},\{f,g\},\{g,h\},\{h,i\}\}$
d	a, c, d	$\{\{a,c\},\{c,d\},\{d,b\},\{d,f\},\{f,g\},\{g,h\},\{h,i\}\}$
c	a, c	$\{\{a,c\},\{c,d\},\{d,b\},\{d,f\},\{f,g\},\{g,h\},\{h,i\}\}$
\underline{e}	a, c, e	$\{\{a,c\},\{c,d\},\{d,b\},\{d,f\},\{f,g\},\{g,h\},\{h,i\},\{c,e\}\}$
c	a, c	$\{\{a,c\},\{c,d\},\{d,b\},\{d,f\},\{f,g\},\{g,h\},\{h,i\},\{c,e\}\}$
a	a	$\{\{a,c\},\{c,d\},\{d,b\},\{d,f\},\{f,g\},\{g,h\},\{h,i\},\{c,e\}\}$
_	Ø	$\{\{a,c\},\{c,d\},\{d,b\},\{d,f\},\{f,g\},\{g,h\},\{h,i\},\{c,e\}\}$

Zatem wierzchołki były odwiedzane w kolejności a,c,d,b,f,g,h,i,e i otrzymaliśmy drzewo spinające DFS T=(V,E'), gdzie

$$V = \{a, b, c, d, e, f, g, h, i\} \text{ oraz }$$

$$E' = \{\{a, c\}, \{c, d\}, \{d, b\}, \{d, f\}, \{f, g\}, \{g, h\}, \{h, i\}, \{c, e\}\}.$$

BFS:

	odwiedzane wierz.	KOLEJKA	zbiór krawędzi drzewa DFS
\overline{a}	a	a	\emptyset
\overline{a}	c, e	c, e	$\{\{a,c\},\{a,e\}\}$
\overline{c}	d, f	e, d, f	$\{\{a,c\},\{a,e\},\{c,d\},\{c,f\}\}$
\overline{e}	_	d, f	$\{\{a,c\},\{a,e\},\{c,d\},\{c,f\}\}$
\overline{d}	b,g	f, b, g	$\{\{a,c\},\{a,e\},\{c,d\},\{c,f\},\{b,d\},\{d,g\}\}$
\overline{f}	_	b, g	$\{\{a,c\},\{a,e\},\{c,d\},\{c,f\},\{b,d\},\{d,g\}\}$
\overline{b}	_	g	$\{\{a,c\},\{a,e\},\{c,d\},\{c,f\},\{b,d\},\{d,g\}\}$
\overline{g}	h, i	h, i	$\{\{a,c\},\{a,e\},\{c,d\},\{c,f\},\{b,d\},\{d,g\},\{h,g\},\{h,i\}\}$
h	_	i	$\{\{a,c\},\{a,e\},\{c,d\},\{c,f\},\{b,d\},\{d,g\},\{h,g\},\{h,i\}\}$
i	_	_	$ \{\{a,c\},\{a,e\},\{c,d\},\{c,f\},\{b,d\},\{d,g\},\{h,g\},\{h,i\}\} \} $

Zatem wierzchołki były odwiedzane w kolejności a, c, e, d, f, b, g, h, i i otrzymaliśmy drzewo spinające BFS T = (V, E'), gdzie

$$V = \{a, b, c, d, e, f, g, h, i\} \text{ oraz }$$

$$E' = \{\{a, c\}, \{a, e\}, \{c, d\}, \{c, f\}, \{b, d\}, \{d, g\}, \{h, g\}, \{h, i\}\} \}$$

9.40.

- a) $n \ge 1$ nieparzyste.
- b) $n \ge 3$.

9.41.

- a) Tylko dla n = 1.
- b) $n \ge 1$ nieparzyste oraz n = 4.
- c) $n \ge 4$.
- d) $n \ge 1$.

9.42.

- a) n i m dodatnie i parzyste.
- b) n = m.

NIE. W dowolnym grafie o nieparzystej liczbie wierzchołków cykl Hamiltona, o ile istnieje, jest nieparzystej długości. Natomiast w dowolnym grafie dwudzielnym każdy cykl jest parzystej długości — brak jest cykli nieparzystej długości. Zatem w grafie dwudzielnym o nieparzystej liczbie wierzchołków również brak jest cykli nieparzystej długości, zatem tym bardziej cykli Hamiltona.

9.43.

a) Wszystkie stopnie w grafie G są parzyste, zatem w grafie istnieje cykl Eulera. Zaczynamy np. od wierzchołka a. Kolejno wybierane/trawersowane krawędzie to np.:

$${a,d}, {d,e}, {e,b}, {b,c}, {c,d}, {d,b}, {b,a}, {a,f}, {f,e}, {e,a}.$$

Uwaga. Np. po wyborze krawędzi $\{e,b\}$ nie możemy wybrać krawędzi $\{a,b\}$, gdyż jest to most, a są jeszcze inne krawędzie incydentne z b.

b) W grafie istnieją dwa wierzchołki o nieparzystych stopniach (d i k), zatem w grafie istnieje łańcuch Eulera o początku i końcu w wierzchołkach d i k. Zaczynamy np. od wierzchołka d. Kolejno trawersowane krawędzie to np.:

$$\{d,a\},\{a,b\},\{b,c\},\{c,d\},\{d,b\},\{b,l\},\{l,a\},\{a,m\},\{m,l\},\\ \{l,k\},\{k,j\},\{j,i\},\{i,k\},\{k,h\},\{h,e\},\{e,f\},\{f,h\},\{h,i\},\{i,e\},\{e,d\},\{d,k\}.$$

Uwaga. Np. po wyborze krawędzi $\{b,l\}$ nie możemy wybrać krawędzi $\{l,k\}$, gdyż jest to most, a są jeszcze inne krawędzie incydentne z b; analogicznie, po wyborze krawędzi $\{h,e\}$ nie możemy wybrać krawędzi $\{d,e\}$, gdyż jest to most, a są jeszcze inne krawędzie incydentne z e.

9.44. Podaną sytuację należy utożsamić z grafem G = (V, E) o 5 wierzchołkach (V = 1, 2, 3, 4, 5), w którym istnieje krawędź $\{i, j\}$ wtedy i tylko wtedy, gdy istnieje kostka domina [i, j] bądź [j, i]. Wówczas istnienie wymaganego ułożenia kostek równoważne jest istnieniu cyklu Eulera w tak skonstruowanym grafie G.

W naszym przypadku rozważany graf G jest grafem pełnym, w którym każdy wierzchołek jest stopnia 4, a zatem istnieje cykl Eulera — np.

$$\{1,2\},\{2,3\},\{3,4\},\{4,5\},\{5,1\},\{1,3\},\{3,5\},\{5,2\},\{2,4\},\{4,1\},$$

co wyznacza jednoznacznie ułożenie kostek domina:

$$[1, 2], [2, 3], [3, 4], [4, 5], [5, 1], [1, 3], [3, 5], [5, 2], [2, 4], [4, 1].$$

9.46.

a) Startując z wierzchołka 5:

	aktualny wierzchołek	STOS
1	5	5
2	2	5,2
3	1	5, 2, 1
4	10	5, 2, 1, 10
5	3	5, 2, 1, 10, 3
6	4	5, 2, 1, 10, 3, 4
7	3	5, 2, 1, 10, 3
8	10	5, 2, 1, 10
9	7	5, 2, 1, 10, 7
10	6	5, 2, 1, 10, 7, 6
11	7	5, 2, 1, 10, 7
12	8	5, 2, 1, 10, 7, 8
13	9	5, 2, 1, 10, 7, 8, 9
14	8	5, 2, 1, 10, 7, 8
15	7	5, 2, 1, 10, 7

Algorytm z nawrotami zwróci drogę Hamiltona postaci 5, 4, 3, 2, 1, 10, 9, 8, 7, 6.

b) Startując z wierzchołka a:

	aktualny wierzchołek	STOS
1	a	a
2	b	a, b
3	c	a, b, c
4	d	a, b, c, d
5	e	a, b, c, d, e
6	d	a, b, c, d
7	f	a, b, c, d, f
8	g	a,b,c,d,f,g
9	h	a,b,c,d,f,g,h
10	g	a,b,c,d,f,g
11	f	a,b,c,d,f
12	d	a, b, c, d
13	c	a, b, c
14	e	a,b,c,e
15	d	a,b,c,e,d

Algorytm z nawrotami zwróci drogę Hamiltona postaci a, b, c, e, d, f, g, h.

9.48. Relacja równoważności $g_1 \circ g_2$:

- (1) $g_1 \circ g_1$ (zwrotna)
- (2) $g_1 \circ g_2$ to $g_2 \circ g_1$ (symetryczna)
- (3) $g_1 \circ g_2$ i $g_2 \circ g_3$ to $g_1 \circ g_3$ (przechodnia)

Wykażemy, że izomorfizm jest relacją równoważności.

- (1) Z definicji: dowolny graf G jest izomorficzny z samym sobą, a szukana funkcja h to identyczność.
- (2) Jeśli $G_1 \cong G_2$, to istnieje izomorfizm h przekształcający graf $G_1 = (V_1, E_1)$ w graf $G_2 = (V_2, E_2)$ taki, że

$$\{u,v\} \in E_1 \quad \Leftrightarrow \quad \{h(u),h(v)\} \in E_2.$$

Niech h^{-1} będzie funkcją odwrotną do h; oczywiście h^{-1} jest izomorfizmem. Niech x, y dowolnymi wierzchołkami grafu G_2 . Jako że $G_1 \cong G_2$, wówczas istnieją wierzchołki u i v w G_1 takie, że h(u) = x i h(v) = y. Należy wykazać, że

$$\{x,y\} \in E_2 \quad \Leftrightarrow \quad \{h^{-1}(x), h^{-1}(y)\} \in E_1.$$

Ale warunek $\{x,y\} \in E_2$ równoważny jest $\{h(u),h(v)\} \in E_2$, a to (z założenia) zachodzi wtedy i tylko wtedy, gdy $\{u,v\} \in E_1$, co równoważne jest $\{h^{-1}(x),h^{-1}(y)\} \in E_1$.

(3) Jeśli $G_1 \cong G_2$, to istnieje izomorfizm h przekształcający graf $G_1 = (V_1, E_1)$ w graf $G_2 = (V_2, E_2)$ taki, że

$$\{u,v\} \in E_1 \quad \Leftrightarrow \quad \{h(u),h(v)\} \in E_2.$$

Jeśli $G_2 \cong G_3$, to istnieje izomorfizm g przekształcający graf $G_2 = (V_2, E_2)$ w graf $G_3 = (V_3, E_3)$ taki, że

$$\{x,y\} \in E_2 \quad \Leftrightarrow \quad \{g(x),g(y)\} \in E_3.$$

Wówczas niech f będzie złożeniem $g \cdot h$. Oczywiście f jest izomorfizmem i pozostaje jedynie wykazać, że

$$\{u,v\} \in E_1 \quad \Leftrightarrow \quad \{f(u),f(v)\} \in E_3.$$

Ale z założenia zachodzi

$$\{u,v\} \in E_1 \quad \Leftrightarrow \quad \{h(u),h(v)\} \in E_2 \quad \Leftrightarrow \quad \{g(h(u)),g(h(u))\} \in E_3 \quad \Leftrightarrow \quad \{f(u),f(v)\} \in E_3,$$
co należało wykazać.

9.49.
$$r = \frac{2m}{n}$$
.

9.51.
$$p^{|V|}$$
 oraz $2 \cdot {p \choose 2} \cdot p^{|V|-2} = (p-1) \cdot p^{|V|-1}$.

9.52.
$$\frac{(k+1)!}{(k+1)^{k+1}}$$
.

Rozwiązanie. 53 a) Niech n i m oznaczają odpowiednio liczbę wierzchołków i krawędzi grafu spójnego G=(V,E). Wówczas z treści mamy, że $\frac{1}{n}\sum_{v\in V}\deg(v)>2$. Tym samym z Faktu 9.1 otrzymujemy, że $\frac{m}{n}>2$, a stąd m>n. Zatem z Twierdzenia 9.24 otrzymujemy, że w G istnieje cykl. Jednakże usunięcie dowolnej krawędzi tego cyklu nie rozspaja grafu, co więcej, otrzymana liczba krawędzi wynosi $m'=m-1\geq n$, a zatem znowu z Twierdzenia 9.24 wynika istnienie kolejnego cyklu. Stąd graf G posiada przynajmniej dwa różne cykle.

W przypadku b) rozumowanie analogiczne do powyższego prowadzi do wniosku, że nie będzie będzie istniał żaden cykl, gdyż otrzymamy $m \leq n-1$, czyli graf G jest drzewem (jest spójny z założenia). Natomiast w przypadku c) graf G posiada jeden cykl.

9.54. Załóżmy, że graf G spełniający warunek $m > \binom{n-1}{2}$ jest niespójny. Rozważmy jego składową spójność o minimalnej liczbie wierzchołków k. Wówczas graf G ma co najwyżej

$$\frac{k(k-1)}{2} + \frac{(n-k)(n-k-1)}{2}$$

krawędzi: odpowiada to optymistycznej sytuacji, gdy są tylko dwie składowe spójności, każda będąca grafem pełnym. Tym samym otrzymujemy, że

$$\frac{k(k-1)}{2} + \frac{(n-k)(n-k-1)}{2} \ge m > \binom{n-1}{2},$$

$$k(k-1) + (n-k)(n-k-1) > (n-1)(n-2),$$

$$k^2 - k + n^2 - kn - n - nk + k^2 + k > n^2 - 3n + 2,$$

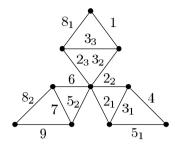
$$k^2 - 1 > n(k-1).$$

Zauważmy jednak, że skoro są przynajmniej dwie składowe spójności, to $n \geq k+1$, co prowadzi do

$$k^2 - 1 > n(k - 1) \ge k^2 - 1,$$

czyli do sprzeczności.

9.55.



Posortowany ciąg krawędzi: $1, 2_1, 2_2, 2_3, 3_1, 3_2, 3_3, 4, 5_1, 5_2, 6, 7, 8_1, 8_1, 9$. Dla ułatwienia ilustracji działania algorytmu utożsamiamy wagi krawędzi z samymi krawędziami. Przebieg algorytmu jest następujący.

rozpatrywana krawędź	cykl?	krawędzie drzewa
1	_	1
2_1	_	$1, 2_1$
2_2	_	$1, 2_1, 2_2$
2_3	-	$1, 2_1, 2_2, 2_3$
3_1	+	$1, 2_1, 2_2, 2_3$
3_2	_	$1, 2_1, 2_2, 2_3, 3_2$
3_3	+	$1, 2_1, 2_2, 2_3, 3_2$
4	_	$1, 2_1, 2_2, 2_3, 3_2, 4$
5_1	+	$1, 2_1, 2_2, 2_3, 3_2, 4$
5_2	-	$1, 2_1, 2_2, 2_3, 3_2, 4, 5_2$
6	_	$1, 2_1, 2_2, 2_3, 3_2, 4, 5_2, 6$
7	+	$1, 2_1, 2_2, 2_3, 3_2, 4, 5_2, 6$
8_1	+	$1, 2_1, 2_2, 2_3, 3_2, 4, 5_2, 6$
8_2	-	$1, 2_1, 2_2, 2_3, 3_2, 4, 5_2, 6, 8$
9	+	$1, 2_1, 2_2, 2_3, 3_2, 4, 5_2, 6, 8$

9.57. Zauważmy, że rozwiązanie problemu równoważne jest minimalnemu drzewu spinającemu w ważonym grafie pełnym G=(V,E,w), w którym wierzchołki odpowiadają miastom, a wagi krawędzi odległościom pomiędzy tymi miastami. Aby wyznaczyć to drzewo korzystamy z algorytmu Kruskala — koszt otrzymanego rozwiązania/drzewa wynosi 17000000 PLN.

9.60.

a)

Iteracja	u	V	D[a]	D[b]	D[c]	D[d]	D[e]	D[f]
0		$\{b,c,d,e,f\}$	0	<u>1</u>	∞	∞	4	6
1	b	$\{c,d,e,f\}$	0	1	<u>2</u>	∞	4	6
2	c	$\{d,e,f\}$	0	1	2	4	<u>3</u>	6
3	e	$\{d,f\}$	0	1	2	$\underline{4}$	3	4
4	d	$\{f\}$	0	1	2	4	3	$\underline{4}$
5	f	Ø	0	1	2	4	3	4

A zatem najkrótsza ścieżka z a do f ma długość D[f] = 4. Wyznaczenie tej ścieżki:

$$\begin{array}{lcl} 4 & = & D[f] & = & D[e]+1=(D[c]+1)+1=((D[b]+1)+1)+1=\\ & = & (((D[a]+1)+1)+1)+1=(((0+1)+1)+1)+1=4. \end{array}$$

Tym samym ścieżka ta wiedzie przez wierzchołki a, b, c, e, f.

b)

	u	$ ar{V} $	D[a]	D[b]	D[c]	D[d]	D[e]	D[f]	D[g]	D[h]	D[i]	D[j]
0		$\{b,c,d,e,f,g,h,i,j\}$	0	2	∞	∞	∞	∞	∞	∞	∞	<u>1</u>
1	j	$ \left\{ b,c,d,e,f,g,h,i \right\} $	0	<u>2</u>	4	∞	2	∞	4	3	2	1
2	b	$\{c,d,e,f,g,h,i\}$	0	2	3	∞	<u>2</u>	∞	4	3	2	1
3	e	$\{c,d,f,g,h,i\}$	0	2	3	4	2	5	4	3	<u>2</u>	1
4	i	$\{c,d,f,g,h\}$	0	2	<u>3</u>	4	2	5	4	3	2	1
5	c	$\{d,f,g,h\}$	0	2	3	4	2	5	4	<u>3</u>	2	1
6	h	$\{d,f,g\}$	0	2	3	4	2	5	4	<u>3</u>	2	1
7	d	$\{f,g\}$	0	2	3	$\underline{4}$	2	5	4	3	2	1
8	g	$\mid \{g\} \mid$	0	2	3	<u>4</u>	2	5	4	3	2	1
9	f	Ø	0	2	3	4	2	<u>5</u>	4	3	2	1

A zatem najkrótsza ścieżka z a do f ma długość D[f] = 5. Wyznaczenie tej ścieżki:

$$5 = D[f] = D[e] + 3 = (D[j] + 1) + 3 = ((D[a] + 1) + 1) + 3 = (((0 + 1) + 1) + 1) + 1 = 5.$$

Tym samym ścieżka ta wiedzie przez wierzchołki a, j, e, f.

9.62.

- 1. $0000 \longrightarrow 0001$
- - $0010 \longrightarrow 0110$
 - $0011 \longrightarrow 0111$
- $4.0000 \longrightarrow 1000$
 - $0001 \longrightarrow 1001$
 - $0010 \longrightarrow 1010$
 - $0011 \longrightarrow 1011$
 - $0100 \longrightarrow 1100$
 - 0101 ---> 1101
 - 0110 ---- 1110
 - $0111 \, \longrightarrow \, 1111$

9.64.

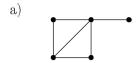
- 1. $1000 \longrightarrow 0000$
 - 1001 --- 0001
 - 1010 ---> 0010
 - 1011 --- 0011
 - 1100 ---- 0100
 - 1101 --- 0101
 - 1110 ---- 0110
 - 1111 --- 0111
- $2. 0100 \longrightarrow 0000$
 - $0101 \longrightarrow 0001$
 - $0110 \longrightarrow 0010$
 - $0111 \longrightarrow 0011$
- $3.0010 \longrightarrow 0000$
 - $0011 \longrightarrow 0001$
- $4.0001 \longrightarrow 0000$

9.65.

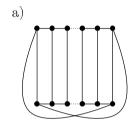
- a) TAK
- b) NIE
- c) TAK
- d) NIE
- e) TAK
- f) NIE
- g) TAK
- h) TAK
- i) NIE
- j) TAK
- k) NIE
- l) NIE
- m) NIE

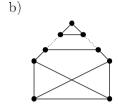
Wskazówki dla Prowadzących

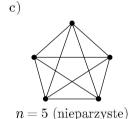
9.2.

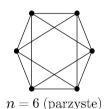


9.3.









9.10.

a) $n = k \text{ oraz } n \ge k + 2$.

Przypadek n = k: po prostu k izolowanych wierzchołków.

Przypadek n=k+1 niemożliwy, bo ten "dodatkowy" jeden wierzchołek też byłby izolowany — sprzeczność z liczbą izolowanych wierzchołków równą k.

Przypadek $n \ge k+2$: k izolowanych wierzchołków i np. graf pełny $K_{n-k\ge 2}$ na pozostałych.

b) k parzyste: $n \ge k$;

k=1: $n \geq 4$ oraz $k \geq 3$ nieparzyste: $n \geq k+1$.

Przypadek k parzyste: po prostu k/2 izolowanych krawędzi, a pozostałe wierzchołki izolowane.

Przypadek k nieparzyste: n = k niemożliwe, bo wtedy suma stopni nieparzysta.

Przypadek k = 1 oraz n = 2,3: niemożliwe — sprzeczność z liczbą wiszących wierzchołków.

Przypadek k=1 oraz $n \ge 4$: liść podpięty do wierzchołka grafu pełnego $K_{n-1>3}$.

Przypadek k=3 oraz $n\geq k+1$: k liści podpiętych do jednego wierzchołka, pozostałe wierzchołki izolowane.

9.11.

a) n = k: min = max = 0.

n > k + 2:

• $\min = \lceil \frac{n-k}{2} \rceil$.

W zależności od parzystości n-k, mamy albo $\frac{n-k}{2}=\lceil\frac{n-k}{2}\rceil$ krawędzi izolowanych, albo $\frac{n-k-3}{2}$ krawędzie izolowane, a pozostałe 3 wierzchołki tworzą 3-wierzchołkową ścieżkę, co daje $\frac{n-k-3}{2}+2=\lceil\frac{n-k}{2}\rceil$.

- max = $\frac{(n-k)(n-k-1)}{2}$. k izolowanych wierzchołków i graf pełny $K_{n-k\geq 2}$ na pozostałych.
- b) k parzyste, $n \ge k$:
 - \bullet min = $\frac{k}{2}$: bo $\frac{k}{2}$ izolowanych krawędzi, pozostałe wierzchołki izolowane.
 - n = k: max = $\frac{k}{2}$ bo możliwe tylko $\frac{k}{2}$ izolowanych krawędzi.

$$n \ge k+1$$
: $\max = k + \frac{(n-k)(n-k-1)}{2}$.

Jeśli n = k + 1, to gwiazda o k liściach i k krawędziach.

Jeśli $n \geq k+2$, to dzielimy liście na dwie dowolne grupy i podpinamy je do dwóch różnych wierzchołków pełnego grafu na n-k wierzchołkach, otrzymując liczbą krawędzi $k+\frac{(n-k)(n-k-1)}{2}$.

W obu przypadkach $m=k+\frac{(n-k)(n-k-1)}{2}$

 $k = 1, n \ge 4$:

- \bullet min = 4: trójkąt K_3 z dołączonym liściem, pozostałe wierzchołki izolowane.
- max = $1 + \frac{(n-k)(n-k-1)}{2}$: graf pełny $K_{n-1 \ge 3}$ z dołączonym liściem.

 $k \geq 3$ nieparzyste, $n \geq k + 1$:

• $\min = \lceil \frac{k}{2} \rceil + 1$.

Podpinamy 3 liście do pojedynczego wierzchołka, pozostałe k-3 liście parujemy, a reszta n-k wierzchołków jest izolowanych. Otrzymujemy $3+\frac{k-3}{2}=\lceil\frac{k}{2}\rceil+1$ krawędzi.

 $\bullet \ \max = k + \frac{(n-k)(n-k-1)}{2}.$ (Analogicznie jak w przypadku parzystego k.)

Jeśli n = k + 1, to gwiazda o k liściach i k krawędziach.

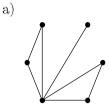
Jeśli $n \ge k+2$, to dzielimy liście na dwie dowolne grupy i podpinamy je do dwóch różnych wierzchołków pełnego grafu na n-k wierzchołkach, otrzymując liczbą krawędzi $k+\frac{(n-k)(n-k-1)}{2}$.

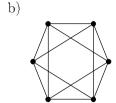
W obu przypadkach $m = k + \frac{(n-k)(n-k-1)}{2}$

9.13.

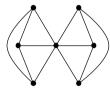
- a) Cykl C_5 .
- b) Cykl C_5 z jedną cięciwą/przekątną.
- c) Graf pełny K_4 z dołączonym liściem.

9.15.

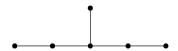




9.22.



9.25. Np. długie ścieżki z dołączonym w "zasadniczo różnym" miejscu dodatkowym liściem — w obu przypadkach ciąg stopni $(3, 2, 2, \dots, 2, 1, 1, 1)$, a drzewa nie są izomorficzne.



9.47. Np. graf pełny K_{n-1} , gdzie wierzchołki mają etykiety $1, 2, \ldots, n-1$, z dołączonym n-tym wierzchołkiem o etykiecie n do wierzchołka o etykiecie 1 oraz 2. Czas działania: musimy na pewno przeglądnąć wszystkie permutacje zbioru $\{2, \ldots, n-1\}$ zanim algorytm rozpatrzy kolejność $1, n, \ldots$ i chwilę potem znajdzie drogę Hamiltona.