
Logika dla informatyków

Andrzej M. Borzyszkowski

Instytut Informatyki
Uniwersytet Gdański

inf.ug.edu.pl/~amb

Andrzej M. Borzyszkowski (Instytut Informatyki Uniwersytet Gdański)Logika dla informatyków 1 / 22

Weryfikacja software’u

Weryfikacja software’u – logika
Hoare’a

Andrzej M. Borzyszkowski (Instytut Informatyki Uniwersytet Gdański)Logika dla informatyków 2 / 22

Weryfikacja software’u

Weryfikacja software’u

specyfikacja R w języku naturalnym
przekształcona w formułę ϕR logiki
program P w języku programowania
taki, że P spełnia ϕR

dowód spełnialności

Język programowania:

wyrażenia arytmetyczne:
E ::= n | x | (−E) | (E + E) | (E − E) | (E ∗ E)
wyrażenia boolowskie:
B ::= true | false | (E < E) | (!B) | (B & B) | (B | B)
programy: C ::= x = E | C ; C | if B then {C} else {C} | while B {C}

Andrzej M. Borzyszkowski (Instytut Informatyki Uniwersytet Gdański)Logika dla informatyków 3 / 22

Logika Hoare’a

Notacja T. Hoare’a

stan programu = wartościowanie zmiennych
znaczenie programu = przekształcanie wartościowania zmiennych
tj. przy danym stanie wyjściowym otrzymujemy stan końcowy
osobno trzeba dyskutować problem czy stan końcowy zostanie
osiągnięty – problem stopu
notacja (|ϕ|) P (|ψ|) znaczy: program P , startując w stanie
spełniającym ϕ, kończy w stanie spełniającym ψ

np. (|x > 0|) P (|(y−1) · (y−1) < x ≤ y · y |) oznacza, że program P
oblicza pierwiastek kwadratowy z liczby dodatniej x zaokrąglony
w górę, pierwiastek zapamiętany jest w zmiennej y

Definicja
Stan ` spełnia formułę ϕ, jeśli M |=` ϕ w modelu M dla liczb
naturalnych z wartościowaniem zmiennych `

Andrzej M. Borzyszkowski (Instytut Informatyki Uniwersytet Gdański)Logika dla informatyków 4 / 22

inf.ug.edu.pl/~amb

Logika Hoare’a

Poprawność częściowa i całkowita

Definicja
Poprawność częściowa: “program P, startując w stanie spełniającym ϕ,
kończy w stanie spełniającym ψ”, o ile osiągnie stan końcowy, oznaczenie
|=par (|ϕ|) P (|ψ|)

program, który się zapętla jest z definicji poprawny – nie wyprodukuje
fałszywego wyniku
np. (||) while true {x=0} (|0 = 1|)

Definicja
Poprawność całkowita: “program P, startując w stanie spełniającym ϕ,
kończy w stanie spełniającym ψ”, a stan końcowy na pewno osiąga,
oznaczenie |=tot (|ϕ|) P (|ψ|)

czyli poprawność częściowa plus warunek stopu
program pętlący się nie spełnia żadnej specyfikacji

Andrzej M. Borzyszkowski (Instytut Informatyki Uniwersytet Gdański)Logika dla informatyków 5 / 22

Logika Hoare’a

Przykład: silnia po raz pierwszy

Poniższy program Sil1 liczy silnię x , odczytujemy wynik w y , liczby są
całkowite
y=1;
z=0;
while (z!=x){

z=z+1;
y=y∗z;

}

ale program ten nie zwróci żadnego wyniku, jeśli x < 0
(||) Sil1 (|y = x !|) jest prawdziwe w semantyce częściowej poprawności
(|x ≥ 0|) Sil1 (|y = x !|) jest prawdziwe w semantyce całkowitej
poprawności
gdyby warunek w pętli był sformułowany z < x , to program kończyłby
działanie zawsze, dla wartości x < 0 kończyłby działanie z y = 1

Andrzej M. Borzyszkowski (Instytut Informatyki Uniwersytet Gdański)Logika dla informatyków 6 / 22

Logika Hoare’a

Reguły dla częściowej i całkowitej poprawności

Celem będzie zdefiniowanie reguł takich, by wyprowadzalne były
zdania o częściowej i całkowitej poprawności:
`par (|ϕ|) P (|ψ|)
`tot (|ϕ|) P (|ψ|)
Pożądane własności:

zdrowość (poprawność reguł):
jeśli `par (|ϕ|) P (|ψ|), to |=par (|ϕ|) P (|ψ|)
jeśli `tot (|ϕ|) P (|ψ|), to |=tot (|ϕ|) P (|ψ|)
pełność: przeciwne implikacje
dowód poprawności reguł polega na sprawdzeniu każdej reguły
(i jest łatwy)
dowód pełności reguł jest o wiele trudniejszy

Andrzej M. Borzyszkowski (Instytut Informatyki Uniwersytet Gdański)Logika dla informatyków 7 / 22

Logika Hoare’a

Problem ze zmiennymi

Program Sil2 też liczy silnię x , odczytujemy wynik w y
y=1;
while (x!=0){

y=y∗x;
x=x−1

}

ale na zakończenie zmienna x będzie miała wartość 0
(|x ≥ 0|) Sil2 (|y = x !|) jest po prostu fałszem – y jest silnią
oryginalnej wartości x , a tymczasem x = 0.
trzeba oryginalną wartość x zapamiętać:
|=tot (|x ≥ 0 ∧ x = x0|) Sil2 (|y = x0!|)
def.: zmienna logiczna: zmienna występująca w formule Hoare’a, nie
związana kwantyfikatorem, i nie występująca w programie.

Andrzej M. Borzyszkowski (Instytut Informatyki Uniwersytet Gdański)Logika dla informatyków 8 / 22

Reguły logiki Hoare’a

Reguły logiki Hoare’a dla częściowej poprawności

złożenie:
(|ϕ|) P1 (|η|) (|η|) P2 (|ψ|)

(|ϕ|) P1; P2 (|ψ|)
przypisanie:

(|ψ[E/x]|) x = E (|ψ|)

w formułach nie powinno się używać kwantyfikatora wiążącego
zmienne inne niż logiczne
wówczas podstawienie w formule jest bezproblemowe
|=tot (|2 = 2|) x = 2 (|x = 2|)
|=tot (|2 = y |) x = 2 (|x = y |)
|=tot (|2 = 3|) x = 2 (|x = 3|) dla każdego stanu, że 2 = 3 program
kończy działanie itd. Implikacja spełniona jest w próżni.

Andrzej M. Borzyszkowski (Instytut Informatyki Uniwersytet Gdański)Logika dla informatyków 9 / 22

Reguły logiki Hoare’a

Reguły logiki Hoare’a c.d.

instrukcja warunkowa:

(|ϕ ∧ B|) P1 (|ψ|) (|ϕ ∧ ¬B|) P2 (|ψ|)
(|ϕ|) if B then {P1} else {P2} (|ψ|)

pętla:
(|ϕ ∧ B|) P (|ϕ|)

(|ϕ|) while B {P} (|ϕ ∧ ¬B|)

częściowa poprawność: jeśli program while B {P} zakończy działanie,
to będzie spełniony warunek ¬B
nie możemy zagwarantować całkowitej poprawności, warunek wyjścia
z pętli nie musi zostać osiągnięty
ϕ jest niezmiennikiem pętli (tzn. jeśli doszło do wykonania ciała pętli,
to warunek się nie zmienił)

Andrzej M. Borzyszkowski (Instytut Informatyki Uniwersytet Gdański)Logika dla informatyków 10 / 22

Reguły logiki Hoare’a

Reguła wiążąca logiki predykatów i Hoare’a

`A ϕ
′ → ϕ (|ϕ|) P (|ψ|) `A ψ → ψ′

(|ϕ′|) P (|ψ′|)

gdzie `A oznacza wyprowadzalność w logice predykatów dotyczącej
arytmetyki.

Andrzej M. Borzyszkowski (Instytut Informatyki Uniwersytet Gdański)Logika dla informatyków 11 / 22

Reguły logiki Hoare’a

Zapis dowodów w logice Hoare’a

każdy dowód logiki można zapisać jako drzewo
można zapisać w postaci linearnej
ale nawet wówczas fragmenty programu byłyby wielkrotnie kopiowane
– w każdej regule przesłanki i konkluzja zawierają te same elementy
idea: nie kopiować elementów programistycznych, a formuły logiczne
wstawiać do środka programu, program traktuje je jako komentarze
np. reguła dla złożenia
pozwala na zapis:

(|ϕ|)
P1;
(|η|)
P2
(|ψ|)

reguła dla wiążąca z logiką
predykatów pozwala na zapis

(|ϕ′|)
(|ϕ|)
P
(|ψ|)
(|ψ′|)

Andrzej M. Borzyszkowski (Instytut Informatyki Uniwersytet Gdański)Logika dla informatyków 12 / 22

Reguły logiki Hoare’a

Zapis dowodów w logice Hoare’a c.d.

Definicja
Dla danego programu P i formuły ψ najsłabszym warunkiem wstępnym
(weakest precondition) jest takie ϕ, że

(|ϕ|) P (|ψ|), oraz
jeśli (|ϕ′|) P (|ψ|), to ϕ′ → ϕ

podstawowym składnikiem programu jest przypisanie, reguła dla
przypisania ”działa wstecz”
np. dla przypisania x = E wp(ψ) = ψ[E/x]
aby udowodnić (|ϕ|) P (|ψ|) wystarczy udowodnić ϕ → wp(ψ)

Andrzej M. Borzyszkowski (Instytut Informatyki Uniwersytet Gdański)Logika dla informatyków 13 / 22

Reguły logiki Hoare’a

Przykłady z przypisaniem

(|y < 3|)
(|y + 1 < 4|)
y = y + 1
(|y < 4|)

(||)
(|x + y = x + y |)
z = x ;
(|z + y = x + y |)
z = z + y ;
(|z = x + y |)
u = z;
(|u = x + y |)

Andrzej M. Borzyszkowski (Instytut Informatyki Uniwersytet Gdański)Logika dla informatyków 14 / 22

Reguły logiki Hoare’a

Instrukcja warunkowa

szukamy nasłabszego ϕ tak by (|ϕ|) if B then {P1} else {P2} (|ψ|)
załóżmy, że (|ϕ1|) P1 (|ψ|) oraz (|ϕ2|) P2 (|ψ|)
wówczas ϕ = (B → ϕ1) ∧ (¬B → ϕ2) jest najsłabszym warunkiem
dla instrukcji warunkowej
odpowiada do dokładniej regule pochodnej dla instrukcji warunkowej

(|ϕ1|) P1 (|ψ|) (|ϕ2|) P2 (|ψ|)
(|(B → ϕ1) ∧ (¬B → ϕ2)|) if B then {P1} else {P2} (|ψ|)

Andrzej M. Borzyszkowski (Instytut Informatyki Uniwersytet Gdański)Logika dla informatyków 15 / 22

Reguły logiki Hoare’a

Pętla

jest to jedyne miejsce, w którym trzeba dokonać wysiłku umysłowego
– nie ma automatycznego wyliczenia jednej formuły logicznej z innej
celem jest dowód (|ϕ|) while B {P} (|ψ|)
trzeba znaleźć niezmiennik η taki, że

ϕ → η
(|η ∧ B|) P (|η|)
η ∧ ¬B → ψ

Andrzej M. Borzyszkowski (Instytut Informatyki Uniwersytet Gdański)Logika dla informatyków 16 / 22

Reguły logiki Hoare’a

Dowód poprawności programu liczącego silnię

(|x ≥ 0|) Sil1 (|y = x !|)
ciałem pętli jest

z = z + 1;
y = y ∗ z;

niezmiennikiem pętli jest formuła y = z! (nie potrzebujemy nawet
dodatkowe warunku wejścia do pętli)
jedną konieczną implikacją jest by w połączeniu z warunkiem wyjścia
z pętli otrzymać y = x !
z drugiej strony niezmiennik musi być być prawdziwy w stanie przed
wejściem do pętli

Andrzej M. Borzyszkowski (Instytut Informatyki Uniwersytet Gdański)Logika dla informatyków 17 / 22

Reguły logiki Hoare’a

Dowód dla silni c.d.

(|1 = 0!|)
y = 1;
(|y = 0!|)
z = 0;
(|y = z!|) niezmiennik pętli trzeba wymysleć
while(z != x){
(|y = z! ∧ z 6= x |)
(|y · (z + 1) = (z + 1)!|)
z = z + 1;
(|y · z = z!|)
y = y ∗ z;
(|y = z!|) i musi zachodzić na końcu ciała pętli
}
(|y = z! ∧ ¬(z 6= x)|)
(|y = x !|)

Andrzej M. Borzyszkowski (Instytut Informatyki Uniwersytet Gdański)Logika dla informatyków 18 / 22

Reguły logiki Hoare’a

Największy wspólny dzielnik

obliczamy NWD(a, b)
while b : a, b = b, a%b; return a
wszystkie liczby są naturalne
niezmiennikiem pętli jest
N = NWD(a, b)
implikacja na początku pętli
zachodzi ponieważ dla b > 0
NWD(a, b) = NWD(b, a%b)
końcowa implikacja zachodzi
ponieważ NWD(a, 0) = a

(|N = NWD(a, b)|)
while(b){
(|N = NWD(a, b) ∧ b > 0|)
(|N = NWD(b, a%b)|)
c = a;
(|N = NWD(b, c%b)|)
a = b;
(|N = NWD(a, c%b)|)
b = c%b;
(|N = NWD(a, b)|)
}
(|N = NWD(a, b) ∧ b = 0|)
(|N = a|)

Andrzej M. Borzyszkowski (Instytut Informatyki Uniwersytet Gdański)Logika dla informatyków 19 / 22

Reguły logiki Hoare’a

Szybkie potęgowanie

obliczamy bn, wynik w r
r = 1; while(n){

if (n%2){n − −; r = b ∗ r ; }
else {n = n/2; b = b ∗ b; }

}
warunek if jest niekonieczny,
dla liczb parzystych ten wzór
też działa
warunek else jest istotny,
parzystość n gwarantuje, że
n = 2 · (n/2) i zachodzi
implikacja
niezmiennikiem jest
Pow = r · bn

(|Pow = bn|)
r = 1;
(|Pow = r · bn|)
while(n){ (|Pow = r · bn ∧ n 6= 0|)
if (n%2) (|Pow = r · bn ∧ n%2 6= 0|)
(|Pow = (b · r) · bn−1|)
{n − −; (|Pow = (b · r) · bn|)
r = b ∗ r ; } (|Pow = r · bn|)
else (|Pow = r · bn ∧ n%2 = 0|)
(|Pow = r · (b2)n/2|)
{n = n/2; (|Pow = r · (b · b)n|)
b = b ∗ b; } (|Pow = r · bn|)
(|Pow = r · bn|)
}
(|Pow = r · bn ∧ n = 0|)
(|Pow = r |)

Andrzej M. Borzyszkowski (Instytut Informatyki Uniwersytet Gdański)Logika dla informatyków 20 / 22

Reguły logiki Hoare’a

Całkowita poprawność

jedynym problemem jest pętla i możliwość nieskończonych obliczeń
bez wyjścia z pętli
dowód, że pętla musi się skończyć polega na wprowadzeniu
licznika/ogranicznika
czyli taka wielkość, że maleje z każdym wykonaniem ciała pętli i ma
tylko skończenie wiele możliwych wartości
w konkretnych przykładach nie muszą to być liczby ale np. podrzewa,
podformuły i wiele innych sytuacji, w których działa dowód przez
indukcję

(|η ∧ B ∧ 0 ≤ E = E0|) P (|η ∧ 0 ≤ E < E0|)
(|η ∧ 0 ≤ E |) while B {P} (|η ∧ ¬B|)

Andrzej M. Borzyszkowski (Instytut Informatyki Uniwersytet Gdański)Logika dla informatyków 21 / 22

Reguły logiki Hoare’a

Całkowita poprawność c.d.

w przykładzie Sil1 wielkością zmieniającą się jest x − z
program Sil1 nie zapętla sie jedynie przy założeniu, że x ≥ 0
dla NWD zmniejsza się max(a, b) jeśli liczby były dodatnie
dla potęgowania zmniejsza się n jeśli na początku n ≥ 0
nie istnieje automatyczny sposób sprawdzania, czy program
gwarantuje zakończenie działań (problem stopu)
np. program Collatza
c=x;
while (c!=1){

if (c%2==0) {c=c/2;}
else {c=3∗c+1;}

}

nie wiadomo, czy |=tot (|x > 0|) Collatz (||)

Andrzej M. Borzyszkowski (Instytut Informatyki Uniwersytet Gdański)Logika dla informatyków 22 / 22

	Weryfikacja software'u
	Logika Hoare'a
	Reguły logiki Hoare'a

