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Practical Alloy

Modelowanie softwar’u – Alloy
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Practical Alloy Modelowanie softwar’u – Alloy

Modelowanie softwar’u

specyfikacja: zbiór formuł, które określają zakładane okoliczności
użycia softwaru’e
model: zbiór z działaniami spełniający specyfikację chcemy/możemy
sprawdzać własności modeli
czy istnieje model specyfikacji? — niesprzeczność
czy dla każdego modelu specyfikacji zachodzi pewna własność?
rozpatrujemy wyłącznie skończone modele — tylko takie mogą być
reprezentowane w komputerze możemy zbadać tylko skończenie wiele
modeli — np. o rozmiarze �≤ pewna liczba
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Alloy

system wspomagania modelowania software’u opracowany w MIT
deklaratywny — użytkownik opisuje własności
może generować przykłady/ kontrprzykłady specyfikacji

podstawy matematyczne: naiwna teoria mnogości, relacje (niemal) jak
w SQL: atom to zbiór 1-elementowy, zbiór to tablica 1-kolumnowa,
relacja to dowolna tablica
założenie pragmatyczne: jeśli coś jest źle, mały kontrprzykład to
pokaże
a więc należy wyczerpująco zbadać zbiór małych modeli
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Practical Alloy Modelowanie softwar’u – Alloy

Przykład wiodący: system plików

pliki umieszczone są w katalogach, katalogi zawierają pliki i katalogi
tzn. relacje „ojciec” i „zawartość”

katalog główny jest jedyny i nie należy nigdzie, pozostałe katalogi
umieszczone są w innych katalogach
w systemie występują wyłącznie pliki i katalogi (oczywiście jest to
uproszczeniem)
plik nigdy nie jest katalogiem i na odwrót
chcemy sprawdzić czy istnieją kontrprzykłady na stwierdzenia

tylko jeden katalog nie ma ojca
system katalogów nie ma cyklu
każdy katalog należy co najwyżej do jednego podkatalogu
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Practical Alloy Modelowanie softwar’u – Alloy

Specyfikacja systemu plików

abstract sig Object {} //obiekty
sig Dir extends Object { entries : set Entry } //katalog ma zawartosc
sig File extends Object {} //o pliku nic wiecej
one sig Root extends Dir {} //jest jeden Root
sig Entry { object : one Object, name : one Name } // obiekty beda

zwiazane z nazwami
sig Name {}
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Podstawy matematyczne

abstract sig E { }
sig S extends E { F: one T }
fact { all e:S | e.F in X }

E jest klasą E jest zbiorem
S jest pod podklasą E S jest podzbiorem zbioru E
F jest polem w S typu T F jest relacją binarną, odwzorowuje

elementy S w elementy T, tutaj funkcja
e jest instancją klasy S e jest elementem zbioru S
. (kropka) wybiera pola . jest złączeniem relacji
e.F jest elementem typu T e.F jest złączeniem relacji unarnej e
należącym do X z binarną F, wynik jest relacją unarną w T

zawiera się w X
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Practical Alloy Modelowanie softwar’u – Alloy

Język specyfikacji

extends — nowa klasa, rozłączna z dotychczasowymi
in — niekoniecznie rozłączna

fact restrict_object { Object in Dir + File }
fact no_shared_entries {

all disj x, y : Dir | no (x.entries & y.entries)
all e : Entry | lone entries.e }

fact one_directory_per_entry {
all e : Entry | one entries.e }

fact unique_names {
all d : Dir, disj x, y : d.entries | x.name != y.name
all d : Dir, n : Name | lone (d.entries & name.n) }

fact no_dangling_objects {
Entry.object = Object − Root }

one x (dokładnie jeden), lone x (zero lub jeden), no x (nie ma)
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Asercje

fact jest przesłanką, narzuceniem warunku na modele, tylko takie
rozpatrujemy
assert jest warunkiem, chcielibyśmy by był implikacją semantyczną
wszystkich faktów
Alloy szuka kontrprzykładów dla niewielkich modeli

fact no_self_containment {
all d : Dir | d not in d.entries.object }

fun descendants [o : Object] : set Object {
o.^(entries.object) }

assert no_indirect_containment {
all d : Dir | d not in descendants [d] }

check no_indirect_containment

zabezpieczyliśmy się przed krótką pętlą ale nie przed dłuższym cyklem
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Asercje – dalszy przykład

assert AllBro {
all o1, o2: (Object − Root)
| (o1.parent = o2.parent) }
// kazde dwa obiekty maja wspólnego

ojca
check AllBro for 4

system wyprodukuje kilka
kontrprzykładów już dla
3 elementów,
dla większej liczby też
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Practical Alloy Modelowanie softwar’u – Alloy

Fantazyjny kontrprzykład
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System plików – dalsza rozbudowa

chcemy teraz opisać możliwość dokonywania zmian
w przykładzie pliki będą umieszczane w repozytorium, będą mogły
być udostępniane innym użytkownikom, którzy będą mogli je
pobierać, będą mogły być usuwane, tzn. umieszczane w koszu
i z niego usuwane lub odtwarzane

sig Token {}
sig File { var shared : set Token }
var sig uploaded in File {}
var sig trashed in uploaded {}
fact init { //init is just a label assigned to the fact,

no uploaded
no shared }

słowo kluczowe var oznacza, że zawartość tych klas/zbiorów będzie się
zmieniać
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Specyfikacja repozytorium plików

możliwe akcje
wstaw plik do repozytorium
usuń plik (czyli wstaw do kosza)
odtwórz plik z kosza
opróżnij kosz (cały)
nadaj plikowi token (jednorazowy, przeznaczony dla jednego
użytkownika w celu jednorazowego pobrania pliku)
pobierz plik w/g danego tokena

akcje będą opisane poprzez predykaty mówiące w jakich warunkach
mogą być wywołane i jakie skutki spowodują
będą to jedyne możliwe akcje
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Specyfikacja repozytorium plików, c.d.

fact transitions { always (
(some f: File | upload [f] or delete [f] or restore [f]) or
(some f: File, t :Token | share [f,t]) or
(some t: Token | download [t]) or
empty

) }

pred upload [f: File] {
f not in uploaded // guard
uploaded' = uploaded + f // effect on uploaded
trashed' = trashed // no effect on trashed
shared' = shared // no effect on shared

}
pred delete [f: File] {

f in uploaded − trashed // guard
trashed' = trashed + f // effect on trashed
shared' = shared − f−>Token // effect on shared
uploaded' = uploaded // no effect on uploaded

}
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Specyfikacja repozytorium plików, c.d.

pred restore [f: File] {
f in trashed // guard
trashed' = trashed − f // effect on trashed
uploaded' = uploaded // no effect on uploaded
shared' = shared // no effect on shared

}
pred share [f: File, t: Token] {

f in uploaded − trashed // guard
historically t not in File.shared // guard
shared' = shared + f−>t // effect on shared
uploaded' = uploaded // no effect on uploaded
trashed' = trashed // no effect on trashed

}
pred download [t: Token] {

some shared.t // guard
shared' = shared − File−>t // effect on shared
uploaded' = uploaded // no effect on uploaded
trashed' = trashed // no effect on trashed

}
pred empty {

no trashed' // effect on trashed
uploaded' = uploaded − trashed // effect on uploaded
shared' = shared // no effect on shared

}
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Specyfikacja repozytorium plików, c.d.

pred empty {
no trashed' // effect on trashed
uploaded' = uploaded − trashed // effect on uploaded
shared' = shared // no effect on shared

}

to jeszcze nie jest dobra specyfikacja, bo nie zakłada możliwości, że
nic się nie dzieje
trzeba taką możliwość przewidzieć i dodać do specyfikacji tranzycji

pred stutter {
uploaded' = uploaded // no effect on uploaded
trashed' = trashed // no effect on trashed
shared' = shared // no effect on trashed

}
run example {}
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Logika temporalna czasu liniowego, również przeszłości

słowa kluczowe logiki temporalnej (liniowej):
always, eventually, after, releases
historically, once, before, triggers

assert shared_are_accessible {
always shared.Token in uploaded − trashed }

//check shared_are_accessible
assert restore_undoes_delete {

all f : File | always (
delete [f] and after restore [f] implies
uploaded'' = uploaded and trashed'' = trashed and shared'' = shared

) }
//check restore_undoes_delete

pierwsza asercja jest prawdziwa, druga nie, Alloy znajduje
kontrprzykład
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Dalsze przykłady spójników temporalnych

assert one_download_per_token {
all t : Token | always ( download [t] implies after always not download [t]

)
all t : Token | always lone downloaded [t]

}
fun downloaded [t : Token] : set File {

{ f : File | once (t in f.shared and download[t]) }
}
//check one_download_per_token

asercja jest prawdziwa, są dwa sposoby jej zapisu
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Dalsze przykłady spójników temporalnych c.d.

assert empty_after_restore {
all f: File | always (

delete [f] implies
after ((restore [f] or upload [f]) releases not delete [f])

)
}
//check empty_after_restore

wszystkie przykłady dotyczyły własności bezpieczeństwa –
gwarantujemy, że zawsze zachodzi pożądana własność, czyli nigdy nie
zdarzy się niepożądana

Andrzej M. Borzyszkowski (Instytut Informatyki Uniwersytet Gdański)Logika dla informatyków sem. zimowy 2025/26 19 / 23

Practical Alloy Modelowanie softwar’u – Alloy

Przykład działania

run behavioral_modeling_instance {
some f0 : File, disj t0, t1 : Token {

File = f0
Token = t0 + t1
upload[f0];share[f0, t1];share[f0, t0];download[t1];delete[f0];restore[f0]
after after after after after always (delete[f0] implies after restore[f0])
after after after after after always (restore[f0] implies after delete[f0])

}}

zostanie wygenerowany system tranzycji z kilkoma akcjami,
w końcówce jest pętla, która wykonuje naprzemian usunięcie pliku
i jego odtworzenie
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Sprawdzanie żywotności liveness

assert non_restored_files_will_disappear {
all f : File | always ( delete [f] and after always not restore [f] implies

eventually f not in uploaded
) }

//check non_restored_files_will_disappear

ta asercja nie jest prawdziwa, plik po usunięciu może pozostać
w koszu na zawsze
specyfikacja może żądać aktywnie, by pewne akcje wystąpiły

fact fairness_on_empty { always eventually empty }

akcja empty jest zawsze możliwa, fairness mówi, że akcja, która jest
zawsze możliwa, kiedyś powinna być wykonana
czyli przebieg, który systematycznie jej nie wykonuje jest
niedopuszczalny
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Rodzaje fairness

pred fairness_on_empty { always eventually empty
}
pred strong_fairness_on_empty {

(always eventually some trashed) implies always eventually empty
}
pred weak_fairness_on_empty {

always ( always ( some trashed ) implies always eventually empty )
}

pierwszy warunek może być zbyt ograniczający – żąda bezwględnie
opróżniania kosza, nawet gdy nic w nim nie ma
gdyby akcja empty wymagała czegoś w koszu, byłoby to po prostu
niewykonalne
drugi warunek też może nie być praktyczny, żąda, że jeśli coś się
w koszu pojawi to kosz powinien być opróżniony
ale użytkownik mógłby bez przerwy coś do kosza wrzucać i wyjmować
bez opróżniania
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Rodzaje fairness c.d.

sprawdzenie, czy warunki fairness gwarantują żądany wynik

check { non_restored_files_will_disappear }
check {

fairness_on_empty implies non_restored_files_will_disappear
}
check {

strong_fairness_on_empty implies non_restored_files_will_disappear
}
check {

weak_fairness_on_empty implies non_restored_files_will_disappear
}

uwaga: warunki fairness ograniczają system tranzycji, wpływa to na
wydajność systemu, lepiej nie narzucać tych warunków tylko
sprawdzać implikacje j.w.
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