
Logika dla informatyków

Andrzej M. Borzyszkowski

Instytut Informatyki
Uniwersytet Gdański

sem. zimowy 2025/26

inf.ug.edu.pl/~amb

w oparciu o tutorial “Practical Alloy” https://practicalalloy.github.io/

Andrzej M. Borzyszkowski (Instytut Informatyki Uniwersytet Gdański)Logika dla informatyków sem. zimowy 2025/26 1 / 23

Practical Alloy

Modelowanie softwar’u – Alloy

Andrzej M. Borzyszkowski (Instytut Informatyki Uniwersytet Gdański)Logika dla informatyków sem. zimowy 2025/26 2 / 23

Practical Alloy Modelowanie softwar’u – Alloy

Modelowanie softwar’u

specyfikacja: zbiór formuł, które określają zakładane okoliczności
użycia softwaru’e
model: zbiór z działaniami spełniający specyfikację chcemy/możemy
sprawdzać własności modeli
czy istnieje model specyfikacji? — niesprzeczność
czy dla każdego modelu specyfikacji zachodzi pewna własność?
rozpatrujemy wyłącznie skończone modele — tylko takie mogą być
reprezentowane w komputerze możemy zbadać tylko skończenie wiele
modeli — np. o rozmiarze �≤ pewna liczba

Andrzej M. Borzyszkowski (Instytut Informatyki Uniwersytet Gdański)Logika dla informatyków sem. zimowy 2025/26 3 / 23

Practical Alloy Modelowanie softwar’u – Alloy

Alloy

system wspomagania modelowania software’u opracowany w MIT
deklaratywny — użytkownik opisuje własności
może generować przykłady/ kontrprzykłady specyfikacji

podstawy matematyczne: naiwna teoria mnogości, relacje (niemal) jak
w SQL: atom to zbiór 1-elementowy, zbiór to tablica 1-kolumnowa,
relacja to dowolna tablica
założenie pragmatyczne: jeśli coś jest źle, mały kontrprzykład to
pokaże
a więc należy wyczerpująco zbadać zbiór małych modeli

Andrzej M. Borzyszkowski (Instytut Informatyki Uniwersytet Gdański)Logika dla informatyków sem. zimowy 2025/26 4 / 23

inf.ug.edu.pl/~amb
https://practicalalloy.github.io/

Practical Alloy Modelowanie softwar’u – Alloy

Przykład wiodący: system plików

pliki umieszczone są w katalogach, katalogi zawierają pliki i katalogi
tzn. relacje „ojciec” i „zawartość”

katalog główny jest jedyny i nie należy nigdzie, pozostałe katalogi
umieszczone są w innych katalogach
w systemie występują wyłącznie pliki i katalogi (oczywiście jest to
uproszczeniem)
plik nigdy nie jest katalogiem i na odwrót
chcemy sprawdzić czy istnieją kontrprzykłady na stwierdzenia

tylko jeden katalog nie ma ojca
system katalogów nie ma cyklu
każdy katalog należy co najwyżej do jednego podkatalogu

Andrzej M. Borzyszkowski (Instytut Informatyki Uniwersytet Gdański)Logika dla informatyków sem. zimowy 2025/26 5 / 23

Practical Alloy Modelowanie softwar’u – Alloy

Specyfikacja systemu plików

abstract sig Object {} //obiekty
sig Dir extends Object { entries : set Entry } //katalog ma zawartosc
sig File extends Object {} //o pliku nic wiecej
one sig Root extends Dir {} //jest jeden Root
sig Entry { object : one Object, name : one Name } // obiekty beda

zwiazane z nazwami
sig Name {}

Andrzej M. Borzyszkowski (Instytut Informatyki Uniwersytet Gdański)Logika dla informatyków sem. zimowy 2025/26 6 / 23

Practical Alloy Modelowanie softwar’u – Alloy

Podstawy matematyczne

abstract sig E { }
sig S extends E { F: one T }
fact { all e:S | e.F in X }

E jest klasą E jest zbiorem
S jest pod podklasą E S jest podzbiorem zbioru E
F jest polem w S typu T F jest relacją binarną, odwzorowuje

elementy S w elementy T, tutaj funkcja
e jest instancją klasy S e jest elementem zbioru S
. (kropka) wybiera pola . jest złączeniem relacji
e.F jest elementem typu T e.F jest złączeniem relacji unarnej e
należącym do X z binarną F, wynik jest relacją unarną w T

zawiera się w X

Andrzej M. Borzyszkowski (Instytut Informatyki Uniwersytet Gdański)Logika dla informatyków sem. zimowy 2025/26 7 / 23

Practical Alloy Modelowanie softwar’u – Alloy

Język specyfikacji

extends — nowa klasa, rozłączna z dotychczasowymi
in — niekoniecznie rozłączna

fact restrict_object { Object in Dir + File }
fact no_shared_entries {

all disj x, y : Dir | no (x.entries & y.entries)
all e : Entry | lone entries.e }

fact one_directory_per_entry {
all e : Entry | one entries.e }

fact unique_names {
all d : Dir, disj x, y : d.entries | x.name != y.name
all d : Dir, n : Name | lone (d.entries & name.n) }

fact no_dangling_objects {
Entry.object = Object − Root }

one x (dokładnie jeden), lone x (zero lub jeden), no x (nie ma)

Andrzej M. Borzyszkowski (Instytut Informatyki Uniwersytet Gdański)Logika dla informatyków sem. zimowy 2025/26 8 / 23

Practical Alloy Modelowanie softwar’u – Alloy

Asercje

fact jest przesłanką, narzuceniem warunku na modele, tylko takie
rozpatrujemy
assert jest warunkiem, chcielibyśmy by był implikacją semantyczną
wszystkich faktów
Alloy szuka kontrprzykładów dla niewielkich modeli

fact no_self_containment {
all d : Dir | d not in d.entries.object }

fun descendants [o : Object] : set Object {
o.^(entries.object) }

assert no_indirect_containment {
all d : Dir | d not in descendants [d] }

check no_indirect_containment

zabezpieczyliśmy się przed krótką pętlą ale nie przed dłuższym cyklem

Andrzej M. Borzyszkowski (Instytut Informatyki Uniwersytet Gdański)Logika dla informatyków sem. zimowy 2025/26 9 / 23

Practical Alloy Modelowanie softwar’u – Alloy

Asercje – dalszy przykład

assert AllBro {
all o1, o2: (Object − Root)
| (o1.parent = o2.parent) }
// kazde dwa obiekty maja wspólnego

ojca
check AllBro for 4

system wyprodukuje kilka
kontrprzykładów już dla
3 elementów,
dla większej liczby też

Andrzej M. Borzyszkowski (Instytut Informatyki Uniwersytet Gdański)Logika dla informatyków sem. zimowy 2025/26 10 / 23

Practical Alloy Modelowanie softwar’u – Alloy

Fantazyjny kontrprzykład

Andrzej M. Borzyszkowski (Instytut Informatyki Uniwersytet Gdański)Logika dla informatyków sem. zimowy 2025/26 11 / 23

Practical Alloy Modelowanie softwar’u – Alloy

System plików – dalsza rozbudowa

chcemy teraz opisać możliwość dokonywania zmian
w przykładzie pliki będą umieszczane w repozytorium, będą mogły
być udostępniane innym użytkownikom, którzy będą mogli je
pobierać, będą mogły być usuwane, tzn. umieszczane w koszu
i z niego usuwane lub odtwarzane

sig Token {}
sig File { var shared : set Token }
var sig uploaded in File {}
var sig trashed in uploaded {}
fact init { //init is just a label assigned to the fact,

no uploaded
no shared }

słowo kluczowe var oznacza, że zawartość tych klas/zbiorów będzie się
zmieniać

Andrzej M. Borzyszkowski (Instytut Informatyki Uniwersytet Gdański)Logika dla informatyków sem. zimowy 2025/26 12 / 23

Practical Alloy Modelowanie softwar’u – Alloy

Specyfikacja repozytorium plików

możliwe akcje
wstaw plik do repozytorium
usuń plik (czyli wstaw do kosza)
odtwórz plik z kosza
opróżnij kosz (cały)
nadaj plikowi token (jednorazowy, przeznaczony dla jednego
użytkownika w celu jednorazowego pobrania pliku)
pobierz plik w/g danego tokena

akcje będą opisane poprzez predykaty mówiące w jakich warunkach
mogą być wywołane i jakie skutki spowodują
będą to jedyne możliwe akcje

Andrzej M. Borzyszkowski (Instytut Informatyki Uniwersytet Gdański)Logika dla informatyków sem. zimowy 2025/26 13 / 23

Practical Alloy Modelowanie softwar’u – Alloy

Specyfikacja repozytorium plików, c.d.

fact transitions { always (
(some f: File | upload [f] or delete [f] or restore [f]) or
(some f: File, t :Token | share [f,t]) or
(some t: Token | download [t]) or
empty

) }

pred upload [f: File] {
f not in uploaded // guard
uploaded' = uploaded + f // effect on uploaded
trashed' = trashed // no effect on trashed
shared' = shared // no effect on shared

}
pred delete [f: File] {

f in uploaded − trashed // guard
trashed' = trashed + f // effect on trashed
shared' = shared − f−>Token // effect on shared
uploaded' = uploaded // no effect on uploaded

}
Andrzej M. Borzyszkowski (Instytut Informatyki Uniwersytet Gdański)Logika dla informatyków sem. zimowy 2025/26 14 / 23

Practical Alloy Modelowanie softwar’u – Alloy

Specyfikacja repozytorium plików, c.d.

pred restore [f: File] {
f in trashed // guard
trashed' = trashed − f // effect on trashed
uploaded' = uploaded // no effect on uploaded
shared' = shared // no effect on shared

}
pred share [f: File, t: Token] {

f in uploaded − trashed // guard
historically t not in File.shared // guard
shared' = shared + f−>t // effect on shared
uploaded' = uploaded // no effect on uploaded
trashed' = trashed // no effect on trashed

}
pred download [t: Token] {

some shared.t // guard
shared' = shared − File−>t // effect on shared
uploaded' = uploaded // no effect on uploaded
trashed' = trashed // no effect on trashed

}
pred empty {

no trashed' // effect on trashed
uploaded' = uploaded − trashed // effect on uploaded
shared' = shared // no effect on shared

}

Andrzej M. Borzyszkowski (Instytut Informatyki Uniwersytet Gdański)Logika dla informatyków sem. zimowy 2025/26 15 / 23

Practical Alloy Modelowanie softwar’u – Alloy

Specyfikacja repozytorium plików, c.d.

pred empty {
no trashed' // effect on trashed
uploaded' = uploaded − trashed // effect on uploaded
shared' = shared // no effect on shared

}

to jeszcze nie jest dobra specyfikacja, bo nie zakłada możliwości, że
nic się nie dzieje
trzeba taką możliwość przewidzieć i dodać do specyfikacji tranzycji

pred stutter {
uploaded' = uploaded // no effect on uploaded
trashed' = trashed // no effect on trashed
shared' = shared // no effect on trashed

}
run example {}

Andrzej M. Borzyszkowski (Instytut Informatyki Uniwersytet Gdański)Logika dla informatyków sem. zimowy 2025/26 16 / 23

Practical Alloy Modelowanie softwar’u – Alloy

Logika temporalna czasu liniowego, również przeszłości

słowa kluczowe logiki temporalnej (liniowej):
always, eventually, after, releases
historically, once, before, triggers

assert shared_are_accessible {
always shared.Token in uploaded − trashed }

//check shared_are_accessible
assert restore_undoes_delete {

all f : File | always (
delete [f] and after restore [f] implies
uploaded'' = uploaded and trashed'' = trashed and shared'' = shared

) }
//check restore_undoes_delete

pierwsza asercja jest prawdziwa, druga nie, Alloy znajduje
kontrprzykład

Andrzej M. Borzyszkowski (Instytut Informatyki Uniwersytet Gdański)Logika dla informatyków sem. zimowy 2025/26 17 / 23

Practical Alloy Modelowanie softwar’u – Alloy

Dalsze przykłady spójników temporalnych

assert one_download_per_token {
all t : Token | always (download [t] implies after always not download [t]

)
all t : Token | always lone downloaded [t]

}
fun downloaded [t : Token] : set File {

{ f : File | once (t in f.shared and download[t]) }
}
//check one_download_per_token

asercja jest prawdziwa, są dwa sposoby jej zapisu

Andrzej M. Borzyszkowski (Instytut Informatyki Uniwersytet Gdański)Logika dla informatyków sem. zimowy 2025/26 18 / 23

Practical Alloy Modelowanie softwar’u – Alloy

Dalsze przykłady spójników temporalnych c.d.

assert empty_after_restore {
all f: File | always (

delete [f] implies
after ((restore [f] or upload [f]) releases not delete [f])

)
}
//check empty_after_restore

wszystkie przykłady dotyczyły własności bezpieczeństwa –
gwarantujemy, że zawsze zachodzi pożądana własność, czyli nigdy nie
zdarzy się niepożądana

Andrzej M. Borzyszkowski (Instytut Informatyki Uniwersytet Gdański)Logika dla informatyków sem. zimowy 2025/26 19 / 23

Practical Alloy Modelowanie softwar’u – Alloy

Przykład działania

run behavioral_modeling_instance {
some f0 : File, disj t0, t1 : Token {

File = f0
Token = t0 + t1
upload[f0];share[f0, t1];share[f0, t0];download[t1];delete[f0];restore[f0]
after after after after after always (delete[f0] implies after restore[f0])
after after after after after always (restore[f0] implies after delete[f0])

}}

zostanie wygenerowany system tranzycji z kilkoma akcjami,
w końcówce jest pętla, która wykonuje naprzemian usunięcie pliku
i jego odtworzenie

Andrzej M. Borzyszkowski (Instytut Informatyki Uniwersytet Gdański)Logika dla informatyków sem. zimowy 2025/26 20 / 23

Practical Alloy Modelowanie softwar’u – Alloy

Sprawdzanie żywotności liveness

assert non_restored_files_will_disappear {
all f : File | always (delete [f] and after always not restore [f] implies

eventually f not in uploaded
) }

//check non_restored_files_will_disappear

ta asercja nie jest prawdziwa, plik po usunięciu może pozostać
w koszu na zawsze
specyfikacja może żądać aktywnie, by pewne akcje wystąpiły

fact fairness_on_empty { always eventually empty }

akcja empty jest zawsze możliwa, fairness mówi, że akcja, która jest
zawsze możliwa, kiedyś powinna być wykonana
czyli przebieg, który systematycznie jej nie wykonuje jest
niedopuszczalny

Andrzej M. Borzyszkowski (Instytut Informatyki Uniwersytet Gdański)Logika dla informatyków sem. zimowy 2025/26 21 / 23

Practical Alloy Modelowanie softwar’u – Alloy

Rodzaje fairness

pred fairness_on_empty { always eventually empty
}
pred strong_fairness_on_empty {

(always eventually some trashed) implies always eventually empty
}
pred weak_fairness_on_empty {

always (always (some trashed) implies always eventually empty)
}

pierwszy warunek może być zbyt ograniczający – żąda bezwględnie
opróżniania kosza, nawet gdy nic w nim nie ma
gdyby akcja empty wymagała czegoś w koszu, byłoby to po prostu
niewykonalne
drugi warunek też może nie być praktyczny, żąda, że jeśli coś się
w koszu pojawi to kosz powinien być opróżniony
ale użytkownik mógłby bez przerwy coś do kosza wrzucać i wyjmować
bez opróżniania

Andrzej M. Borzyszkowski (Instytut Informatyki Uniwersytet Gdański)Logika dla informatyków sem. zimowy 2025/26 22 / 23

Practical Alloy Modelowanie softwar’u – Alloy

Rodzaje fairness c.d.

sprawdzenie, czy warunki fairness gwarantują żądany wynik

check { non_restored_files_will_disappear }
check {

fairness_on_empty implies non_restored_files_will_disappear
}
check {

strong_fairness_on_empty implies non_restored_files_will_disappear
}
check {

weak_fairness_on_empty implies non_restored_files_will_disappear
}

uwaga: warunki fairness ograniczają system tranzycji, wpływa to na
wydajność systemu, lepiej nie narzucać tych warunków tylko
sprawdzać implikacje j.w.

Andrzej M. Borzyszkowski (Instytut Informatyki Uniwersytet Gdański)Logika dla informatyków sem. zimowy 2025/26 23 / 23

	Practical Alloy
	Modelowanie softwar'u – Alloy

