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dlaczego projektowanie deklaratywne?

„Dochodzę do wniosku, że istnieją dwa 
sposoby konstruowania projektu 
programistycznego.

Pierwsza polega na zapewnieniu, aby 
był on tak prosty, aby w oczywisty 
sposób nie było w nim błędów, a druga – 
na takim jego skomplikowaniu, aby nie 
było w nim oczywistych błędów.”

 – Tony Hoare [wykład z okazji odbioru 
Nagrody Turinga, 1980]

  

dlaczego zautomatyzowana analiza?

Podstawowa zasada – nie oszukuj sam siebie 
i pamiętaj, że nikogo równie łatwo nie oszukasz.

– Richard P. Feynman

  

najważniejsze hasła …

➢ wszystko jest relacją

➢ niespecjalizowana logika

➢ kontrprzykłady i „zakres”

➢ analiza za pomocą SAT



  

wszystko jest relacją

● Alloy używa relacji do modelowania wszystkiego

– typów danych – nawet zbiorów, skalarów, krotek

– struktur w czasie i przestrzeni :)

● podstawowy operator to „kropka”

– złączenie relacji

– odwoływanie się do „pól”

– zastosowanie funkcji do argumentu

s1

  

niespecjalizowana logika

● Brak dedykowanych konstrukcji do opisu własności 
modeli – wykorzystujemy logikę predykatów

  

kontrprzykłady i zakres

testowanie kilku „losowo 
wybranych” przypadków

analiza wszystkich przypadków 
w ograniczonym zakresie

● obserwacja wynikająca z analizy projektów:

– większość założeń zawiera błędy

– większość błędów ma „małe kontrprzykłady”

  

analiza za pomocą SAT

● SAT

– Problem spełnialności formuły φ rachunku zdań

∃v . v ⊨ φ   ?

– SAT jest NP-zupełny

żaden problem NP-zupełny nie posiada znanego algorytmu 
o wielomianowej złożoności (P != NP ?)

nawet najlepsze algorytmy SAT mają wykładniczą złożoność 
w pesymistycznym przypadku

na szczęście „pesymistyczne przypadki” zdarzają się rzadko

algorytmy SAT radzą sobie z problemami wielkości milionów 
klauzul i setek tysięcy zmiennych zdaniowych w kilka sekund...



  

analiza za pomocą SAT
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● SAT

– Alloy redukuje zadanie weryfikacji modelu do weryfikacji SAT

– może korzystać z różnych weryfikatorów SAT: BerkMin, MiniSat, 
SAT4J, ZChaff, ...

Yakov
Novikov

  

modelujemy „sufity i podłogi”

sig Platform {}

będziemy mówili o „poziomach”

sig Man {ceiling, floor: Platform}

każdy człowiek ma sufit i podłogę

pred Above [m, n: Man] {m.floor = n.ceiling}

m „mieszka nad” n jeśli podłoga m jest sufitem n

fact {all m: Man | some n: Man | Above[n,m] }

„Każdy sufit jest czyjąś podłogą”

  

weryfikujemy „sufity i podłogi”

assert BelowToo {
  all m: Man | some n: Man | Above[m,n]
}

„Każda podłoga jest czyimś sufitem”?

check BelowToo for 2

sprawdzamy, czy „każda podłoga jest czyimś sufitem” - 

szukamy kontrprzykładu z 2 lub mniej ludźmi i poziomami

● kliknięcie „Execute” wykonuje powyższe polecenie

– znajdujemy kontrprzykład... 

  

kontrprzykład dla „BelowToo”



  

Alloy = logika + język + analiza

● logika

– logika pierwszego rzędu + rachunek relacji

● język

– składnia pozwalająca na strukturalizację specyfikacji 
w logice

● analiza

– ograniczone i wyczerpujące poszukiwanie kontrprzykładu 
dla zadanej własności, wykorzystujące weryfikację SAT

  

logika: relacje na atomach

● atomy to byty pierwotne w Alloy-u

– niepodzielne, niezmienne, nieinterpretowane

● relacje łączą atomy

– zbiory krotek – ciągów atomów

● wszystkie wartości w logice Alloy-a to relacje!

– relacje, zbiory, skalary są wszystkie tym samym

  

logika: wszystko jest relacją

● zbiory to relacje unarne (1 argumentowe)

   Name = {(N0),     Addr = {(A0),     Book = {(B0),

           (N1),             (A1),             (B1)}

           (N2)}             (A2)}

● skalary to zbiory jednoelementowe

   myName   = {(N1)}

   yourName = {(N2)}

   myBook   = {(B0)}

● relacje binarne

   names = {(B0, N0),

            (B0, N1),

            (B1, N2)}

● relacje trójargumentowe

   addrs = {(B0, N0, A0),

            (B0, N1, A1),

            (B1, N1, A2),

            (B1, N2, A2)}

  

logika: relacje

● wiersze są nieuporządkowane

● kolumny są uporządkowane

● wszystkie relacją są relacjami pierwszego rzędu

– nie mogą zawierać innych relacji; nie ma rodzin 
zbiorów (zbiorów zbiorów), itd.

addrs = {(B0, N0, A0), (B0, N1, A1),

         (B1, N1, A2), (B1, N2, A2)}

B0  N0  A0 

B0  N1  A1

B1  N1  A2

B1  N2  A2

arity = 3
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logika: przykład - książka adresowa

Name = {(N0), (N1), (N2)}

Addr = {(A0), (A1), (A2)}

Target = {(N0), (N1), (N2), (A0), (A1), (A2)}

address = {(N0, A1), (N1, N2), (N2, A1), (N2, A0)}

Target

Name

N2

N0

N1

Addr

A0

A2

A1
address

address
address

address

  

logika: stałe

none zbiór pusty

univ „uniwersum”

iden relacja identycznościowa

Name = {(N0), (N1), (N2)}

Addr = {(A0), (A1)}

none = {}

univ = {(N0), (N1), (N2), (A0), (A1)}

iden = {(N0, N0), (N1, N1), (N2, N2),

        (A0, A0), (A1, A1)}

  

logika: operatory mnogościowe

+   suma

&   przecięcie

-   różnica

in   podzbiór

=   równość

Name  = {(N0), (N1), (N2)}

Alias = {(N1), (N2)}

Group = {(N0)}

RecentlyUsed = {(N0), (N2)}

Alias + Group = {(N0), (N1), (N2)}

Alias & RecentlyUsed  = {(N2)}

Name – RecentlyUsed   = {(N1)}

RecentlyUsed in Alias = false

RecentlyUsed in Name  = true

Name = Group + Alias  = true

greg = {(N0)}

rob = {(N1)}

greg + rob   = {(N0), (N1)}

greg = rob   = false

rob in none  = false

cacheAddr = {(N0, A0), (N1, A1)}

diskAddr = {(N0, A0), (N1, A2)}

cacheAddr + diskAddr = {(N0, A0), (N1, A1), (N1, A2)}

cacheAddr & diskAddr = {(N0, A0)}

cacheAddr = diskAddr = false   

logika: operator produktu

->  produkt kartezjański

Name = {(N0), (N1)}

Addr = {(A0), (A1)}

Book = {(B0)}

Name->Addr = {(N0, A0), (N0, A1),

              (N1, A0), (N1, A1)}

Book->Name->Addr =

  {(B0, N0, A0), (B0, N0, A1),

   (B0, N1, A0), (B0, N1, A1)}

b  = {(B0)}

b' = {(B1)}

address  = {(N0, A0), (N1, A1)}

address' = {(N2, A2)}

b->b' = {(B0, B1)}

b->address + b'->address' =

  {(B0, N0, A0), (B0, N1, A1), (B1, N2, A2)}



  

logika: złączenie relacji

(a, b)

(a, c)

(b, d)

(a, d, c)

(b, c, c)

(c, c, c)

(b, a, d)

(a, c, c)

(a, a, d)

(c)x.f  ≡          ·          =(a, b)

(b, d)

(c, a)

(d, a)

(a)

p.q  ≡          ·           =

p          q

x          f

  

logika: operatory złączenia

. dot join

[] box join

Book = {(B0)}

Name = {(N0), (N1), (N2)}

Addr = {(A0), (A1), (A2)}

Host = {(H0), (H1)}

myName = {(N1)}

myAddr = {(A0)}

address = {(B0, N0, A0), (B0, N1, A0), (B0, N2, A2)}

host = {(A0, H0), (A1, H1), (A2, H1)}

Book.address = {(N0, A0), (N1, A0), (N2, A2)}

Book.address[myName] = {(A0)}

Book.address.myName = {}

host[myAddr] = {(H0)}

address.host = {(B0, N0, H0), (B0, N1, H0), (B0, N2, H1)}

  e1[e2] = e2.e1

a.b.c[d] = d.(a.b.c)

  

logika: operatory unarne

~ transpozycja

^ domknięcie przechodnie

* domknięcie zwrotne i przechodnie

stosowane tylko do relacji binarnych

Node = {(N0), (N1), (N2), (N3)}

next = {(N0, N1), (N1, N2), (N2, N3)}

~next = {(N1, N0), (N2, N1), (N3, N2)}

^next = {(N0, N1), (N0, N2), (N0, N3),

         (N1, N2), (N1, N3),

         (N2, N3)}

*next = {(N0, N0), (N0, N1), (N0, N2), (N0, N3),

         (N1, N1), (N1, N2), (N1, N3),

         (N2, N2), (N2, N3), (N3, N3)} 

^r = r + r.r + r.r.r + …

*r = iden + ^r

first = {(N0)}

rest = {(N1), (N2), (N3)}

first.^next = rest

first.*next = Node
  

logika: restrykcje i przesłonięcia

<:   restrykcja dziedziny

:>   restrykcja obrazu

++   przesłonięcie

Name    = {(N0), (N1), (N2)}

Alias   = {(N0), (N1)}

Addr    = {(A0)}

address = {(N0, N1), (N1, N2), (N2, A0)}

address :> Addr  = {(N2, A0)}

Alias <: address = address :> Name  = {(N0, N1), (N1, N2)}

address :> Alias = {(N0, N1)}

workAddress = {(N0, N1), (N1, A0)}

address ++ workAddress = {(N0, N1), (N1, A0), (N2, A0)}

p ++ q =

p – (domain[q] <: p) + q

m' = m ++ (k -> v)

unacześnienie odwzorowania m przez parę klucz-wartość (k, v)



  

logika: operatory boolowskie

! not  negacja

&& and  koniunkcja

|| or  dyzjunkcja

=> implies  implikacja

else     alternatywa

<=>   iff  równoważność

cztery równoważne stwierdzenia:

F => G else H

F implies G else H

(F && G) || ((!F) && H)

(F and G) or ((not F) and H)

  

logika: kwantyfikatory

all  zachodzi dla każdego

some  zachodzi dla co najmniej jednego

no   nie zachodzi dla żadnego

lone  zachodzi dla co najwyżej jednego

one  zachodzi dla dokładnie jednego

all x: e | F

all x: e1, y: e2 | F

all x, y: e | F

all disj x, y: e | F

some n: Name, a: Address | a in n.address

pewnej nazwie przypisany jest pewien adres — książka adresowa jest niepusta 

no n: Name | n in n.^address

do żadnej nazwy nie możemy dojść od niej samej — książka jest acykliczna

all n: Name | lone a: Address | a in n.address

każdej nazwie przypisany jest co najwyżej jeden adres — „funkcyjność”

all n: Name | no disj a, a': Address | (a + a') in n.address

inny sposób powiedzenia powyższego

  

logika: deklaracje zbiorów

set dowolna liczba elementów

one dokładnie jeden element

lone co najwyżej jeden element

some co najmniej jeden element

x: m e

x: e <=> x: one e

RecentlyUsed: set Name
RecentlyUsed jest podzbiorem zbioru Name

senderAddress: Addr
senderAddress jest jednoelementowym podzbiorem Addr

senderName: lone Name
senderName jest pustym albo jednoelementowym podzbiorem Name

receiverAddresses: some Addr
receiverAddresses jest niepustym podzbiorem Addr

Q x: m e

  

logika: deklaracje relacji

r: A m -> n B

Q r: A m -> n B

r: A -> B <=>

r: A set -> set B

workAddress: Name -> lone Addr
każdy alias odwołuje się do co najwyżej jednego adresu służbowego

homeAddress: Name -> one Addr
każdy alias odwołuje się do dokładnie jednego adresu domowego

members: Name lone -> some Addr
adres należy do co najwyżej jednej grupy, 
  a grupa zawiera co najmniej jeden adres

(r: A m -> n B) <=>

   ((all a: A | n a.r) and (all b: B | m r.b))

r: A -> (B m -> n C) <=>
all a: A | a.r: B m -> n C

r: (A m -> n B) -> C <=>
all c: C | r.c: A m -> n B



  

logika: wyrażenia kwantyfikowane

some Name

zbiór nazw jest niepusty

some address

książka adresowa jest niepusta – zawiera jakąś krotkę

no (address.Addr – Name)

w książce adresowej adresom przypisane są jedynie nazwy

all n: Name | lone n.address

w książce adresowej każdej nazwie przypisany jest co najwyżej jeden adres

some e  e zawiera co najmniej jedną krotkę

no e    e nie zawiera żadnej krotki

lone e  e zawiera co najwyżej jedną krotkę

one e   e zawiera dokładnie jedną krotkę

  

logika: wyszczególnienia

{x1: e1, x2: e2, ..., xn: en | F}

{n: Name | no n.^address & Addr}

zbiór nazw, którym nie odpowiada żaden adres

{n: Name, a: Address | n -> a in ^address}

relacja binarna łącząca nazwy i „osiągalne” adresy

  

logika: wyrażenia warunkowe i let

f implies e1 else e2

let x = e | formuła

let x = e | wyrażenie

cztery równoważne stwierdzenia:

all n: Name |

  (some n.workAddress

implies n.address = n.workAddress

else n.address = n.homeAddress)

all n: Name |

  let w = n.workAddress, a = n.address |

    (some w implies a = w else a = n.homeAddress)

all n: Name |

  let w = n.workAddress |

    n.address = (some w implies w else n.homeAddress)

all n: Name |

  n.address = (let w = n.workAddress |

    (some w implies w else n.homeAddress))
  

logika: liczby i kardynalności

#r         liczba krotek w r

0,1,...    literały całkowite

n.plus[…]  plus

n.minus[…] minus

all d: Dir | #d.files =< 3

wszystkie katalogi mają po nie więcej niż 3 pliki

#File = sum d: Dir | #d.files

liczba wszystkich plików jest równa sumie liczb plików
we wszystkich katalogach

 = równe

 < mniejsze

 > większe

 =<   mniejsze lub równe

 >=   większe lub równe

sum x: e | ie

suma wartości wyrażenia całkowitego ie dla x pochodzących z e



  

dwie logiki w jednej

● „wszyscy kochają zwycięzców”

● logika predykatów

– w | Winner(w)   p | Person(p)   loves(p, w)

● rachunek relacyjny

– Person  Winner  loves

● Logika Alloy-a – obie możliwości
– all w: Winner, p: Person | p -> w in loves

– Person -> Winner in loves

– all p: Person | Winner in p.loves


