Alloy Analyzer 4

Czes¢ 1: Wprowadzenie i logika

prezentacja oparta na materiatach autorstwa
Grega Dennisa i Roba Seatera
Software Design Group, MIT

dlaczego zautomatyzowana analiza?

Podstawowa zasada — nie oszukuj sam siebie
i pamietaj, ze nikogo réwnie tatwo nie oszukasz.

— Richard P. Feynman

dlaczego projektowanie deklaratywne?

,Dochodze do wniosku, ze istniejg dwa
sposoby konstruowania projektu
programistycznego.

Pierwsza polega na zapewnieniu, aby
byt on tak prosty, aby w oczywisty
Sposob nie byto w nim btedow, a druga —
na takim jego skomplikowaniu, aby nie
byto w nim oczywistych bfedow.”

— Tony Hoare [wyktad z okazji odbioru
Nagrody Turinga, 1980]

najwazniejsze hasta ...

wszystko jest relacjg
niespecjalizowana logika
kontrprzyktady i ,zakres”
analiza za pomocg SAT

&4 SO
b 4.0 2o

" e

3 5
A > N

i

RéER PR, K <K

wszystko jest relacjg niespecjalizowana logika

* Alloy uzywa relacji do modelowania wszystkiego * Brak dedykowanych konstrukcji do opisu wiasnosci
- typow danych — nawet zbioréw, skalaréw, krotek modeli — wykorzystujemy logike predykatow

- struktur w czasie i przestrzeni :)
* podstawowy operator to ,kropka”
- ztgczenie relacji
- odwotlywanie sie do ,pol”
- zastosowanie funkcji do argumentu

S
S0 next |

C c
i S.C I S.C

"I think you should be more
explicit here in step two."

s.next.c s.next.c

kontrprzyktady i zakres analiza za pomocg SAT
» obserwacja wynikajgca z analizy projektow: * SAT
_ WiekSZOéé zalozen zawiera b’fedy - Problem spetnialnosci formuty @ rachunku zdan
- wiekszos¢ btedow ma ,mate kontrprzyktady” Iv.veEe ?

- SAT jest NP-zupeiny

zaden problem NP-zupetny nie posiada znanego algorytmu
o wielomianowej ztozonosci (P != NP ?)

nawet najlepsze algorytmy SAT majg wyktadniczg ztozonos¢
w pesymistycznym przypadku

na szczes$cie ,pesymistyczne przypadki’ zdarzajg sie rzadko

o))] algorytmy SAT radzg sobie z problemami wielkosci milionow
testowanie kilku ,losowo analiza wszystkich przypadkow klauzul i setek tysiecy zmiennych zdaniowych w kilka sekund...
wybranych” przypadkow W ograniczonym zakresie

analiza za pomocg SAT modelujemy ,sufity i podtogi”

* SAT
- Alloy redukuje zadanie weryfikacji modelu do weryfikacji SAT

sig Platform {}

bedziemy méwili o ,poziomach”
- moze korzysta¢ z roznych weryfikatorow SAT: BerkMin, MiniSat,
SAT4J, ZChaff, ...] o
sig Man {ceiling, floor: Platform}

kazdy cztowiek ma sufit i podfoge

pred Above [m, n: Man] {m.floor = n.ceiling}
m ,mieszka nad” n jesli podtoga m jest sufitem n

s ; . g — ."- | fact {all m: Man | some n: Man | Above[n,m] }
ephen ugene enry ara . . - ”

Cook Goldberg Kautz Malik Noé:/il(()(\)/v »Kazdy sufit jest czyjas podioga

weryfikujemy ,sufity i podtogi” kontrprzyktad dla ,BelowToo”

assert BelowToo {
all m: Man | some n: Man | Above[m,n]

}

,Kazda podtoga jest czyims sufitem”?

check BelowToo for 2 /

sprawdzamy, czy ,kazda podfoga jest czyim$ sufitem” - mlw o

Sszukamy kontrprzyktadu z 2 lub mniej ludzmi i poziomami

lloor
-:lailmg
|

* klikniecie ,Execute” wykonuje powyzsze polecenie
- znajdujemy kontrprzyktad...

Alloy = logika + jezyk + analiza logika: relacje na atomach

- logika * atomy to byty pierwotne w Alloy-u
- logika plerwszego rzedu + rachunek relacji - niepodzielne, niezmienne, nieinterpretowane
. jezyk * relacje tgczg atomy
- sktadnia pozwalajgca na strukturalizacje specyfikacji — zbiory krotek — ciggdéw atomow
w logice

» wszystkie wartosci w logice Alloy-a to relacje!

* analiza - relacje, zbiory, skalary sg wszystkie tym samym

- ograniczone i wyczerpujgce poszukiwanie kontrprzyktadu
dla zadanej wtasnosci, wykorzystujgce weryfikacje SAT

logika: wszystko jest relacjg logika: relacje
* zbiory to relacje unarne (1 argumentowe) addrs = { (B0, NO, A0), (BO, N1, Al),
(B1, N1, A2), (Bl, N2, A2)}
Name = { (NO), Addr = {(AO0), Book = {(BO),
(N1), (A1), (B1)}
(N2) } (A2)} BO| NO | AQ |
BO| N1 | a1 '
. . o
 skalary to zbiory jednoelementowe B1| N1 | a2| M
myName = {(N1)} Bl| N2 | A2 ’
yourName = { (N2)} ; —
myBook = {(BO)} . . arity = 3
o * wiersze sg nieuporzgdkowane
« relacje binarne * relacje tréjargumentowe - kolumny sg uporzadkowane
names = { (B0, NO) addrs = { (B0, NO, AQ),
=0, N1 (B0, N1, Al), » wszystkie relacjg sg relacjami pierwszego rzedu
’ : (B1, N1, A2), : . L ,
(Bl, N2)} (B1, N2, A2)} - nie mogqg zawierac innych relacji; nie ma rodzin

zbioréw (zbiorow zbiorow), itd.

logika: przyktad - ksigzka adresowa logika: state

Name = {(NO), (N1), (N2)}
Addr = {(A0), (Al), (A2)} i
Target = {(NO), (N1), (N2), (AO0), (Al), (A2)} none Zbkj;msw ,
address = {(NO, Al), (N1, N2), (N2, Al), (N2, AO0)} univ L, uniwersum’
iden relacja identycznosciowa
Target \\
Addr Name = {(NO), (N1), (N2)}
Name <§§> address (a1 Addr = {(A0), (Al)}
address none = {}
univ = {(NO), (N1), (N2), (A0), (Al)}
iden = {(NO), (N1, N1), (N2, N2),
address N2 address =<§§> (A0, AO0), (A1, Al)}
\ J

logika: operatory mnogosciowe logika: operator produktu

e T g o
.. = ’ Name = {(NO), (N1)}
& przeciecie Group = {(NO)} Addr = {(A0), (Al))
- roznica RecentlyUsed = {(NO), (N2)} Book = {(BO)}
in podzbior . -> produkt kartezjanski
= rownos¢ Alias + Group = {(NO), (Nl) (N2) } Name->Addr = {(NO, A0),
Alias & RecentlyUsed = {(N2)} (N1, RO0),
Name - RecentlyUsed = {()} Book->Name->Addr =
greg = {(NO)} RecentlyUsed }n Alias i false {(BO, NO, A0), (BO, NO,
rob = {(N1)} RecentlyUsed in Ngme = true (BO, N1, A0), (BO, N1
Name = Group + Alias = true
greg + rob = {(NO), (NI1)} b = {(BO)}
greg = rob = false b' = {(B1)}
rob in none = false address = {(NO, AO), (N1, Al)}
address' = { (N2, A2)}
cacheAddr = {(NO, AO), (N1, Al)}
diskAddr = {(NO, AO0), (N1, A2)} b->b' =
cacheAddr + diskAddr = b->address + b'->address' =
cacheAddr & diskAddr =
cacheAddr = diskAddr =

logika: ztgczenie relacii

logika: operatory ztgczenia

IS q
(a, b))~ (a, d, c) —(a, ¢, c)
P.g = (a, c)\\\(b, c, c)/%/(a, a, d)
(b, @) ~c, o o —
S, a, d)7]

dot join elle2] = e2.el
[boxjoin a.b.c[d] = d. (a.b.c)
Book {(BO) }
Name {(NO), (N1), (N2)}
Addr = {(A0), (Al), (A2)}
Host = {(HO), (H1)}
myName = (N1) }

address = {(BO, NO, AO), (BO, N1, AO), (BO, N2, A2)}
host = { (A0, HO), (Al, H1), (A2, H1)}

Book.address = {(NO, AQ), (N1, AQ), (N2, A2)}
Book.address [myName] = { (AOQ)}

Book.address.myName = {}

host [myAddr] = {(HO)}

address.host = {(BO, NO, HO), (BO, N1, HO), (BO, N2, H1l)}

logika: restrykcje i przestoniecia

X
x.f = ()~ = - (a)
logika: operatory unarne
~ transpozycja
~ domkniecie przechodnie "t =r 4+ r.r +Tr.r.T + ..
* domkniecie zwrotne i przechodnie *r = iden + “r
stosowane tylko do relacji binarnvch
Node = {(NO), (N1), (N2), (N3)}
next = {(NO, N1), (N1, N2), (N2, N3)}
~next {(N1, NO), (N2, NI1), (N3, N2)}
~next = {(NO, N1), (NO, N2), (NO, N3),
(N1, N2), (N1, N3),
(N2, N3)}
*next = {(NO, NO), (NO, N1), (NO, N2), (NO, N3),
(N1, N1), (N1, N2), (N1, N3),
(N2, N2), (N2, N3), (N3, N3)}
first = {(NO)}
rest = {(N1), (N2), (N3)}
first.”next = rest
first.*next = Node

<: restrykcja dziedziny .
. p q=
> restrykq.ao.brazu b - (domainlql] <: p) + g
++ przestoniecie
Name {(N0), (N1), (N2)}
Alias = {(NO), (N1)}
Addr = {(AO0)}
address = {(NO, N1), (N1, N2), (N2, AO0)}
address :> Addr = { (N2, AO0)}
Alias <: address = address :> Name = {(NO, N1), (N1, N2)}

address :> Alias = {(NO, N1)}

N1, A0)}

workAddress = {(NO, N1), (
= {(NO, N1), (N1, AO), (N2, AO)}

address ++ workAddress

m' =m ++ (k -> v)
unaczesnienie odwzorowania m przez pare klucz-wartosé (k, v)

logika: operatory boolowskie logika: kwantyfikatory

! not negacja all x: o | F all zachodzi dla kazdego
&& and koniunkcja all x ol ce2 | F some zachodzi dla co najmniej jednego
'l or dyzjunkcja all x. v ’ eyi F no nie zachodzi dla jadnego
. . . 4 ' . . . s
= implies implikacja all disj x, y: e | F lone zachodZ{ dla co najw_){ze{jednego
else alternatywa one zachodzi dla dokladnie jednego
<=> iff roWnowaznos¢
some n: Name, a: Address a in n.address
cztery réwnowazne stwierdzenia: pewnej nazwie przypisany jest pewien adres — ksigzka adresowa jest niepusta
F => G else H no n: Name | n in n.”address
F implies G else H all n: Name | lone a: Address | a in n.address
(F && G) || ((!'F) && H)
all n: Name | no disj a, a': Address | (a + a') in n.address
(F and G) or ((not F) and H)

logika: deklaracje zbiorow logika: deklaracje relacji

. | r: Am->n2B r: A -> B <=>
set dowolna liczba elementow Or:Am->nB r: A set -> set B

one dokladnie jeden element
lone co najwyzej jeden element
some co najmniej jeden element

‘x:meHQx:me‘

‘x:e<:>x:onee‘ (r: Am->n B) <=>

((@all a: A | n a.r) and (all b: B | m r.b))

RecentlyUsed: set Name workAddress: Name -> lone Addr
RecentlyUsed jest podzbiorem zbioru Name kazdy alias odwoluje sie do co najwyzej jednego adresu stuzbowego
senderAddress: Addr homeAddress: Name -> one Addr
senderAddress jest jednoelementowym podzbiorem Addr kazdy alias odwotuje si¢ do dokiadnie jednego adresu domowego
senderName: lone Name members: Name lone -> some Addr
senderName jest pustym albo jednoelementowym podzbiorem Name adres nalezy do co najwyzej jednej grupy,
a grupa zawiera co najmniej jeden adres
receiverAddresses: some Addr
receiverAddresses jest niepustym podzbiorem Addr fiA > (B> nC) <> f (A > nB) > C <>

all a: A | a.r: Bm->ncC all c: C | r.c: Am->nB

logika: wyrazenia kwantyfikowane

some e e zawiera co najmniej jedng krotke
no e e nie zawiera Zadnej krotki

lone e e zawiera co najwyzej jedng krotke
one e e zawiera doktadnie jedng krotke

some Name
zbior nazw jest niepusty

some address
ksigzka adresowa jest niepusta — zawiera jakgs krotke

no (address.Addr - Name)
w ksigzce adresowej adresom przypisane sq jedynie nazwy

all n: Name | lone n.address

w ksigzce adresowej kazdej nazwie przypisany jest co najwyzej jeden adres

logika: wyrazenia warunkowe i let

f implies el else €2
let x = e | formuta
let x = e | wyrazenie

logika: wyszczegolnienia

‘ {x1: el, x2: e2, ..., Xn: en | F}

{n: Name | no n."address & Addr}
zbior nazw, ktorym nie odpowiada Zaden adres

{n: Name, a: Address | n -> a in "“address}
relacja binarna tgczqca nazwy i ,,0siggalne” adresy

logika: liczby i kardynalnosci

cztery rownowazne stwierdzenia:

all n: Name |
(some n.workAddress
implies n.address = n.workAddress
else n.address = n.homeAddress)

all n: Name |
let w = n.workAddress, a = n.address |
(some w implies a = w else a = n.homeAddress)

all n: Name |
let w = n.workAddress |

all n: Name |
n.address = (let w = n.workAddress |
(some w implies w else n.homeAddress))

n.address = (some w implies w else n.homeAddress)

#r liczba krotek w r - row{n.e
0,1,... literaly catkowite < mniejsze
n.plus[..] plus g wze.ks'ze ,
nominus] minus =< mniejsze lub rowne
>= wigksze lub rowne
sum x: e | ie

suma wartoSci wyrazenia catkowitego ie dla x pochodzgcych z e

all d: Dir | #d.files =< 3
wszystkie katalogi majq po nie wigcej niz 3 pliki

#File = sum d: Dir | #d.files
liczba wszystkich plikow jest rowna sumie liczb plikow
we wszystkich katalogach

dwie logiki w jednej
,Wszyscy kochajg zwyciezcoéw”

logika predykatow

- Vw | Winner(w) = Vp | Person(p)

rachunek relacyjny

~ Person X Winner C loves

Logika Alloy-a — obie mozliwosci

= loves (p,

- all w: Winner, p: Person | p -> w in loves

- Person -> Winner in loves

- all p: Person | Winner in p.loves

w)

