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Grafy skierowane

Graf skierowany

Andrzej M.

graf skierowany G = (V,A) gdzie A {(v,w)e V x V | v #w}

tym razem krawedzie (tuki) maja kierunek ,od v do w"
poczatek i koniec krawedzi

krawedz skierowana (v, w) to co innego niz (w, v), moga istnie¢ obie
niezaleznie

podstawowa definicja zaktada, ze nie ma petelek (v, v)
w razie potrzeby mozna tez rozpatrywaé grafy z petelkami

mozna tez rozpatrywac grafy z etykietowanymi tukami i/lub
wierzchotkami ¢, : V. — L,, £, : A — L,

no$nikiem grafu skierowanego (V, A) jest graf nieskierowany (V/, E)
gdzie E = {{v,w} | (v,w) e A}
krawedzie bez zwracania uwagi na zwrot
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Grafy skierowane

Grafy skierowane
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Grafy skierowane

Sciezki i cykle

© © o0 o

Andrzej M.

Sciezka jest cigg réznych wierzchotkéw vy, . .., v, takich, ze
(V,',V,'+1) €A, i=0,...,n—1
cyklem jest ciag v, ..., Vn, v taki, ze vy, v1,..., Vv, jest Sciezka

i (vp,v0) €A

cykl moze by¢ bardzo krétki, v,w,v jedli (v,w) e Ai (w,v) € A,
zaangazowane s3 tylko dwa wierzchotki

(dla graféw nieskierowanych cykl musi zawiera¢ co najmniej trzy
wierzchotki)

graf jest silnie spdjny jesli kazde wierzchotki taczy Sciezka
graf jest acykliczny jesli nie ma cykli
graf silnie spdjny ma cykle (od v do w i z powrotem)

w nosniku grafu moga istnie¢ Sciezki i cykle nieobecne w grafie
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Grafy skierowane  Grafy acykliczne

Drzewa jako grafy skierowane

Andrzej M.

drzewo jest grafem (nieskierowanym) spdjnym i acyklicznym,

dla kazdych dwdéch wierzchotkéw istnieje jednoznaczna $ciezka
taczaca te wierzchotki,

wybranie jednego wierzchotka jako korzenia umozliwia skierowanie
wszystkich krawedzi,

jesli vp € V jest wybranym korzeniem, to (v, w) € A jedli {v,w}e T
oraz jedyna $ciezka od vy do w ma {v, w} jako ostatni krok,
powstaty graf bedzie acykliczny

ale bedzie b. daleki od silnej spdjnosci, jesli bedzie istnie¢ $ciezka od v
do w, to znaczy, ze v lezy po drodze na Sciezce od korzenia vy do w,
na pewno nie bedzie wéwczas istnie¢ $ciezka od w do v.
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Grafy acykliczne

Andrzej M.

DAG (directed acyclic graph)

Tw.: dla graféw skonczonych istnieje co najmniej jedno zrédto i co
najmniej jeden zlew

dw.: jesli wierzchotek nie jest zrédtem, mozemy sie cofnaé o krok
jest skonczona liczba wierzchotkéw

na pewno nie wrécimy do juz odwiedzonych wierzchotkéw,
podobnie dla zlewu

Tw. mozna ponumerowac¢ wierzchotki zgodnie z kierunkiem tukéw
f:V — N tak by (v,w) € A implikowato f(v) < f(w)

dw.: zrédfom dajemy poczatkowe numery, po ich usunieciu
numerujemy reszte grafu dalszymi numerami
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Grafy skierowane  Grafy acykliczne

Stopnie wierzchotkéw, zrédta i zlewy

o dwa pojecia stopnia wierzchotka dla graféw skierowanych,

o deg(v) = |{w | (w,v) € A}|, stopien wejéciowy, liczba tukdéw
wchodzacych do danego wierzchotka,
deg®(v) = |{w | (v,w) € A}|, stopien wyjsciowy, liczba tukéw
wychodzacych z danego wierzchotka,

o zrédto (source): deg™(v) = 0i deg™(v) > 0, do wierzchotka nie
dochodza zadne tuki, tylko wychodza,
zlew (sink): deg™(v) = 0i deg~(v) > 0, z wierzchotka nie wychodza
zadne tuki, tylko dochodza,
wierzchotek izolowany: nie ma zadnych sasiadéw,
deg~(v) = deg™(v) =0,
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Grafy skierowane  Grafy acykliczne

Grafy acykliczne — przyktad: wyrazenia arytmetyczne czy logiczne

@ np. logika zdaniowa
o zdanie atomowe jest wyrazeniem
o (—w), (w1 A wa), (wg v wy) s3 wyrazeniami

o kazde wyrazenie definiuje drzewo rozbioru gramatycznego
o m.in.: zdanie atomowe jest liSciem

o ale czasami jest wazne, ze to jest to samo zdanie atomowe
powtarzajace sie w wyrazeniu

o pv —p ma w korzeniu ° °
v, lewym synem jest p,
prawym bardziej 0 e ‘
skomplikowane

wyrazenie, —p, Q G
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Grafy acykliczne — przyktfad: opis algorytmu

Qo
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np. definicja rekursywna

W wersji naiwnej

int newton(int n, int k) if

(k ==0) return 1;

else if (k == n) return 1;

else return newton

(n—1, k)+newton(n—1,k —1);
sugeruje powtarzajace sie
rozgatezienie na dwa
podzadania (drzewo binarne)
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Grafy skierowane  Najkrétsze Sciezki

Najkrotsze Sciezki

© © o o
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zatozenie: graf (V/, A) ma przypisane wagi (dtugosci) tukéw f : A —» R
czasami zadamy, zeby byty dodatnie (albo nieujemne)

dtugoé¢ éciezki/cyklu vo, ..., v, d = T} F(vi, vig1)

jesli istnieje cykl o ujemnej dtugosci, to nie ma najkrétszej Sciezki:
iterowanie cyklu zmniejsza dtugos$c

zadanie: znalez¢ najkrétsza Sciezke z v do w, o ile istnieje (jesli nie
ma zadnej, to odlegto$¢ = o)

Tw: jesli w grafie nie ma cykli o ujemnej dtugosci, to dla kazdej pary
wierzchotkéw istnieje najkrétsza Sciezka
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Grafy acykliczne — przyktfad: opis algorytmu

o ale w rzeczywistosci obliczenia
beda sie powtarza¢, DAG lepiej
oddaje idee tych obliczen niz
drzewo

o strzatka oznacza ,,aby obliczy¢
v trzeba obliczy¢ w"

z tego wniosek: ,obliczamy w
i wynik wykorzystujemy dla v"

o petla for (n = 1;;n++)
for (k = 1;k < mk++)
newton[n][k]=newton[n —
1][k]-+newton[n — 1][k — 1];
wykorzystuje zapisane
wczesniejsze wyniki i likwiduje
wyktadnicza ztozonos¢ obliczen
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Algorytmy szukania najkrotszej Sciezki

o dany graf (V,A,f: A— N) i wierzchotki v,w € V
o dwa etapy:
@ budowa tablicy D najkrétszych drég z v
@ znalezienie Sciezki z v do w o odlegtosci D(w)
o etap 2: ostatnim tuk w najkrétszej Sciezce v, ..., t, w spetnia
D(w) = D(t) + f(t,w)
po przejrzeniu tablicy D mozna znalez¢ przedostatni wierzchotek
Sciezki ujawniajacy skad warto$¢ D(w)
o etap 1: rézne algorytmy o réznych ztozonosciach w zaleznosci od
kontekstu
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Algorytm Dijkstry
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zatozenie: dtugosci s nieujemne
tablica D oraz M zbiér wierzchotkéw nieodwiedzonych
iteracje algorytmu dopdki M jest niepusty
D(v) =0, dlainnych w e V: D(w) = f(v,w), oo jedli (v,w) ¢ A,
M = V\{v}
dopdki M #
szukamy t € M taki, ze D(t) = min{D(w) | w e M}
M = M\ {t};
dla ue M: D(u) = min(D(u), D(t) + f(t,u))
czyli moze sie okazac, ze $ciezka od v do u przez t jest krétsza niz
dotychczas znana

ztozonos¢: O(|V|)? — podwéjna petla po zbiorze wierzchotkéw

Borzyszkowski (Instytut Informaty Matematyka dyskretna sem. zimowy 2025/26 13/17

Grafy skierowane  Algorytm dla grafu acyklicznego

Algorytm dla grafu acyklicznego

Qo
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dany graf (V,A,f : A— N) z numeracja wierzchotkéw g : V — N
zgodna kierunkiem tukéw

budujemy tablice D odlegtosci od ustalonego v, D(v) = 0 pozostate
o0
dla kazdego wierzchotka u po kolei wg numeracji g przegladamy

{te V| g(t) <g(u)} w kolejnosci numeracji

D(u) = min(D(u), D(t) + f(t, u))

kazda éciezka od v do u przebiega w kolejnosci numeracji wiec
najkrétsza musi by¢ znaleziona w tym algorytmie

ztozonos¢: O(|V|)? — podwéjna petla po zbiorze wierzchotkéw
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Grafy skierowane

Algorytm Dijkstry

Algorytm Dijkstry — przyktad

t M D
vi {va,v3,va, v5, V6, vy, vg} Vv1—0,vo—1, v3—>7, vj—>0
vo  {v3, va, vs, v, vz, vg} va—3
va {v3, vs, e, v7, vg} vs—4, vgr—11, vo7
vs {v3, ve, v7, vg} v3, v5 bez zmian
v {v3, ve, vg} ve—10, vg—8
v {ve, vg} Vo, V5 bez zmian
Vg {V@}
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Algorytm Forda Bellmana
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zatozenie: w grafie nie ma cykli o ujemnej dtugosci, moga by¢ cykle,
moga by¢ ujemne dtugosci poszczegdlnych tukéw

tablica D, na poczatku D(v) = 0, dla innych we V D(w) = f(v, w)
(by¢ moze o0)

dla wszystkich u, dla wszystkich t: D(u) = min(D(u), D(t) + f(t, u))
powyzsza podwdjna petla jest powtarzana | V| krotnie

po k iteracji tablica D zawiera najkrotsze Sciezki dtugosci k,
najkrétsza $ciezka ma dtugoé¢ < |V/| wiec algorytm poprawnie ja
znajdzie

ztozonoéé: O(|V|)® — potréjna petla dtugoéci |V/| kazda
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Algorytm Forda Bellmana — przyktad

nr D

1 vi—0,vu—2, v3—0, vg—2, vg—1, vg—>0
2 vi—0,v—2,v3—-3, vp— — 1, vg—1, vg—4
3 vi—0,wn—0,v3—1 v— — 1 vg—1 vg—2
4 bez zmian
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