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Algorytmy grafowe
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Algorytmy grafowe Reprezentacja grafów

Reprezentacja grafów

Macierz incydencji:
graf G “ pV , Eq, V “ t0, . . . , n ´ 1u, E Ď P2pV q, E “ t0, . . . , k ´ 1u

macierz dwuwymiarowa n ˆ k: Gpi , jq “ 1 jeśli wierzchołek i jest
końcem krawędzi j
duża rozrzutność, każda kolumna ma tylko dwie jedynki
Macierz sąsiedztwa: graf G “ pV , Eq, V “ t0, . . . , n ´ 1u, E Ď P2pV q

macierz dwuwymiarowa n ˆ n: Gpi , jq “ 1 jeśli wierzchołki i oraz j są
połączone krawędzią
(musi być symetryczna lub czytamy tylko indeksy i ă j)
zajmuje n2 komórek nawet jeśli krawędzi jest b. mało
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Algorytmy grafowe Reprezentacja grafów

Reprezentacja grafów c.d.

Listy incydencji:
dla każdego wierzchołka v lista Lpvq jego sąsiadów

zajętość miejsca jest proporcjonalna do liczby krawędzi
i wierzchołków
fakt: każda krawędź występuje dwa razy
czyli algorytm usuwania krawędzi musi usunąć obie kopie, można
utrzymywać powiązanie między kopiami
lista może być dwukierunkowa
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Algorytmy grafowe Przeszukiwanie grafu

Przeszukiwanie grafu wgłąb

przeszukaj (G,v)
begin odwiedź v; odwiedzony(v)=true;

for u in L(v) if not odwiedzony(u) przeszukaj(G,u);
end
dla całego grafu trzeba przejrzeć wszystkie wierzchołki:

for v in V if not odwiedzony(v) przeszukaj(G,v);
(na początku wszystkie są zaznaczone jako nieodwiedzone)
każdy wierzchołek będzie odwiedzony, ale tylko raz
(sprawdzanie może nastąpić wiele razy)
przy okazji zaznaczane są składowe spójności – zaczynają się od
wierzchołków, które są nieodwiedzone w głównej pętli
jeśli kolejność przeglądania wierzchołków nie jest z góry ustalona, to
algorytm jest niedeterministyczny
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Algorytmy grafowe Przeszukiwanie grafu

Przeszukiwanie grafu wgłąb – wersja ze stosem

przeszukaj (G,v)
begin stos=H; połóż(stos,v); odwiedź v; odwiedzony(v)=true;

while stos‰H

begin u=wierzch(stos);
szukamy na liście L(u) wierzchołka nieodwiedzonego
if t jest takim wierzchołkiem

begin połóż(stos,t); odwiedź t; odwiedzony(t)=true;
end

else zdejmij(stos,u);
end

zawartość stosu w każdym momencie wskazuje na drogę od wierzchołka v
do wierzchołka na stosie
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Algorytmy grafowe Przeszukiwanie grafu

Przeszukiwanie grafu wgłąb – przykład

a

b c d

e f g

u t stos
a a

a b a, b
b c a, b, c
c d a, b, c, d
d a, b, c
c g a, b, c, g
g f a, b, c, g , f
f a, b, c, g
g a, b, c
c a, b
b e a, b, e
e a, b
b a
a H

a

b c d

e f g
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Algorytmy grafowe Przeszukiwanie grafu

Przeszukiwanie grafu wszerz – kolejka

przeszukaj (G,v)
begin kolejka=H; dodaj(kolejka,v); zaznaczony(v)=true;

while kolejka‰H

begin u=pobierz(kolejka); odwiedź(u)
for t P L(u)
if zaznaczony(t)=false

begin dodaj(kolejka,t); zaznaczony(t)=true;
end

end
end

jeśli chcemy zapamiętać drogę od wierzchołka v do innych odwiedzanych,
musimy utrzymywać tablicę poprzed(t)=u przy zaznaczaniu wierzchołka
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Algorytmy grafowe Przeszukiwanie grafu

Przeszukiwanie grafu wszerz – przykład

a

b c d

e f g

u t kolejka
a a

a b b
c b, c
d b, c, d
e b, c, d , e

b f c, d , e, f
c g d , e, f , g
d e, f , g
e f , g
f g
g H

a

b c d

e f g
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Algorytmy grafowe Drzewa rozpinające

Drzewa rozpinające

def: drzewo rozpinające graf pV , Eq jest to podgraf o tym samym
zbiorze wierzchołków, pV , T q jest drzewem i T Ď E .
budowa drzewa/lasu rozpinającego

z dowodu twierdzenia o istnieniu, dodawanie krawędzi
z dowodu twierdzenia o istnieniu, usuwanie krawędzi
przeszukiwanie wgłąb
przeszukiwanie wszerz

tw.: przeszukiwanie wszerz znajduje najkrótszą drogę pomiędzy
wierzchołkami
(nie ma tej własności przeszukiwanie wgłąb)
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Algorytmy grafowe Drzewa rozpinające

Minimalne drzewo rozpinające

założenie: krawędzie grafu mają wagi ` : E Ñ R`

cel: zbudować drzewo (las) rozpinający o minimalnej sumie wag
Σ t`peq | e P T u

algorytm: uporządkować krawędzie w/g wag zaczynając od
najmniejszej
w pętli rozważać kolejne krawędzie i dodawać do zbioru, o ile nie
tworzy się cykl
graf będzie na pewno acykliczny (tego pilnujemy)
i będzie łączyć każde wierzchołki, które mają połączenie w grafie
(bo nie dodajemy krawędzi jedynie, gdy końce już są połączone)
i będzie miał najmniejszą możliwą sumę wag (bo rezygnacja
z krawędzi o mniejszym koszcie wymagałaby zastąpienia ich
krawędziami o większym koszcie)
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Algorytmy grafowe Drzewa rozpinające

Minimalne drzewo rozpinające – przykład

2 3 4 5 6 Omaha
1 Denver 512 422 513 102 301 540
2 Salt Lake City 611 894 462 682 955
3 Albuquerque 525 522 425 895
4 Oklahoma City 706 212 454
5 Cheyenne 355 493
6 Dodge City 336

Cheyenne Omaha

Salt Lake City
Denver Dodge City

Albuquerque Oklahoma City

462
102

301
422

336

212
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Algorytmy grafowe Cykle i ścieżki

Cykle i ścieżki Eulera

cykl/ścieżka zawierająca wszystkie krawędzie grafu (odwiedzając
wierzchołki wielokrotnie)
szukamy cyklu Eulera dla grafu bez wierzchołków stopnia
nieparzystego zaczynając od wierzchołka v

CE=H;
while L(v)‰H

if L(v)=tuu

begin V=Vzv ; E=Ez tuvu; CE=CE
Ť

tuvu; v=u;
end

else if |L(v)| ą 1
begin wybieramy takiego sąsiada u, że operacja E=Ez tuvu; zostawi

graf spójny
E=Ez tuvu; CE=CE

Ť

tuvu; v=u;
end
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Algorytmy grafowe Cykle i ścieżki

Ścieżki i cykle Eulera – przykład

a b c

d e f

g h i

v u |Lpvq|

a b 2
b c 3
c e 1
e g 3 ea niemożliwe
g h 1
h f 3 hi niemożliwe
f b 1
b d 1
d h 1
h i 1
i e 1
e a 1
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Algorytmy grafowe Cykle i ścieżki

Cykle i ścieżki Hamiltona

cykl/ścieżka odwiedzająca wszystkie wierzchołki grafu (raczej nie
korzysta z wszystkich krawędzi),
problem komiwojażera: j.w. plus jeszcze zminimalizować długość
ścieżki mając dane długości łuków,
nie ma algorytmów znajdowania ścieżek Hamiltona o rozsądnej
złożoności, tzn. gwarantującej w czasie wielomianowym znalezienie
ścieżki,
problem ten należy do klasy problemów NP-zupełnych, które są
równoważne pod względem złożoności i dla żadnego z nich nie znamy
algorytmu wielomianowego,
nie przeszkadza to w opracowywaniu algorytmów, które prawie
w każdym przypadku mogą być wykonane i przynieść szukany rezultat.
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Algorytmy grafowe Cykle i ścieżki

Cykle i ścieżki Hamiltona - algorytm z nawrotami

szukamy ścieżki Hamiltona w grafie pV , Eq zaczynając od wierzchołka
v
algorytm na pewno rozwiąże problem i ma b. dużą złożoność

stos=tvu;
while stos ‰ H

begin u=wierzch(stos);
szukamy sąsiada u, którego nie ma stosie i ma numer większy od

ostatnio zdjętego
if t jest takim wierzchołkiem

begin połóż(stos,t);
if na stosie leżą wszystkie wierzchołki – jest ścieżka

end
else zdejmij(stos,u);

end
nie ma ścieżki Hamiltona (a stos “ H)
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Algorytmy grafowe Cykle i ścieżki

Cykle i ścieżki Hamiltona – przykład

a

b c d

f g

u t stos
a

a b a, b
b c a, b, c
c d a, b, c, d
d a, b, c
c g a, b, c, g cd już było
g f a, b, c, g , f
f a, b, c, g
g a, b, c gf już było
c a, b cd i cg już było
b f a, b, f
f g a, b, f , g
g c a, b, f , g , c
c d a, b, f , g , c, d cykl Hamiltona
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Algorytmy grafowe Cykle i ścieżki

Cykle i ścieżki Hamiltona – kontrprzykład

a

b c d

f g

stos “ H i nie ma cyklu
Hamiltona

u t stos
a

a b a, b
b f a, b, f
f g a, b, f , g
g c a, b, f , g , c
c a, b, f , g
g a, b, f , g , d
d a, b, f , g
g a, b, f gc już było
f a, b
b a
a c a, c
po kilku próbach wersja ac upadnie
a d a, d
po kilku próbach wersja ad upadnie
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Algorytmy grafowe Cykle i ścieżki

Hiperkostka – ciągi bitów

Qn “ t0, 1u
n – ciągi bitów długości n

E “ ttu, vu | u ‘ v ma jedną jedynkęu

|Qn| “ 2n, |E | “ n ¨ 2n´1

dla n “ 1 jest jedna krawędź, która jest ścieżką Hamiltona, byłaby
cyklem, gdyby pozwolić na powrót
dla n “ 2 cyklem jest 00, 01, 11, 11, 00
jeśli v1, . . . , v2n , v1 jest cyklem Hamiltona w Qn, to
0v1, . . . , 0v2n , 1v2n , . . . , 1v1, 0v1 jest cyklem Hamiltona w Qn`1 (kod
Graya)
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