
Revisions as an Essential Tool

to Maintain Mathematical Repositories

Adam Grabowski1 and Christoph Schwarzweller2

1 Institute of Mathematics, University of Bia lystok
ul. Akademicka 2, 15-267 Bia lystok, Poland

adam@math.uwb.edu.pl
2 Department of Computer Science, University of Gdańsk

ul. Wita Stwosza 57, 80-952 Gdańsk, Poland
schwarzw@math.univ.gda.pl

Abstract. One major goal of Mathematical Knowledge Management
is building extensive repositories, in which the mathematical knowledge
has been verified. It appears, however, that maintaining such a reposi-
tory is as hard as building it – especially for an open collection with a
large number of contributors. In this paper we argue that even careful
reviewing of contributions cannot cope with the task of keeping a math-
ematical repository efficient and clearly arranged in the long term. We
discuss reasons for revisions of mathematical repositories accomplished
by the “core implementors” and illustrate our experiences with revisions
of MML, the Mizar Mathematical Library.

1 Introduction

Mathematical knowledge management aims at providing both tools and infra-
structure supporting the organization, development, and teaching of mathemat-
ics using computers. Large repositories of mathematical knowledge are here of
major concern since they provide users with a base of verified mathematical
knowledge. We emphasize the fact that a repository should contain verified
knowledge only: we believe that (machine-checkable) proofs necessarily belong to
each theorem and therefore are an essential part of a repository. For repositories
in the sense of Mathematical Knowledge Management community this implies
even more: proofs should not only be understandable for the machine, but also
– for human users of the repository.

From this follows that mathematical repositories are more than collections of
theorems and proofs accomplished by a prover or proof checker. The overall goal
is not proving a theorem – though this still is an important and challenging part
– but presenting definitions and theorems so that the “natural” mathematical
buildup remains visible. Theories and their interconnections must be available,
so that further development of the repository can be based upon these. Being
not trivial anyway, this becomes even harder to assure for an open repository
with a large number of authors.

So, how to tackle this task? One possibility, of course, is reviewing submis-
sions. Reviewing improves the quality of knowledge and proofs added to the
repository, but we shall illustrate that in the long run reviewing cannot en-
sure that a mathematical repository meets the demands mentioned above. We
therefore claim that revisions are an essential part of maintaining mathematical
repositories: in order to keep it clean and attractive for users, from time to time
a “core team” has to check and improve the organization, quality, and proofs of
a mathematical repository.

In the following section we describe and discuss the goals and benefits of
revisions compared to a straightforward reviewing process. Then, after a brief
introduction to the Mizar system [11], we consider the reviewing process for
submissions to MML in Section 3. We describe reviewing criteria and show which
insufficiencies can be handled by reviewing. In contrast, Section 4, is devoted
to revisions of MML illustrating on the one hand what kind of improvements
reviewing cannot perform, on the other hand the role of revisions in maintaining
MML. This is the process done mainly by human hand as of now, in the next
section we discuss some issues concerned with this activity and describe some
traps the developer could meet when enhancing the library. Then we conclude
showing some related work and drawing some remarks for future.

2 The Need for Revisions

The goal of a revision is to improve the mathematical repository. In contrast to
reviewing submissions, however, here the attention is turned to the repository
as a whole, not to a single, new part of it. Consequently, motives for revisions
can be for example:

– keeping the repository as small as possible,
– preserving a clear organization of the repository in order to attract authors,
– establishing “elegant” mathematics, that is e.g. using short definitions (with-

out unnecessary properties) or better proofs.

Note that all these points characterize a qualitative repository and can hardly
be achieved by reviewing single submissions. Of course there are different possi-
bilities to achieve the points mentioned. Improving the prover e.g. can shorten
proofs and hence – simplify the repository. (Re-)organizing a mathematical
repository probably demands manipulating the whole file structure, not only
the files themselves. Therefore we decided to classify revisions based on their
occasion, that is on which kind of insufficiency we want to address. Based on
our experiences with the Mizar Mathematical Library we distinguish four major
occasions for revisions:

1. improving authors’ contributions;
2. improving the underlying prover or proof checker;
3. reorganizing the repository;
4. changing representation of knowledge.

Improving an author’s contribution is the classical task of reviewing and is
of course to be recommended for mathematical repositories too: nomenclature
can be polished up to fit to the yet existing one, definitions can be improved,
that is e.g. generalized if appropriate. Proofs are also a matter of interest here,
especially keeping them as short as possible, yet still understandable is of major
concern. In a large, open repository however, authors sometimes may prove and
submit theorems or lemmas not being aware that those are already part of the
repository. Similarly, special versions of already included theorems can happen
to be “resubmitted”. It is doubtful, that this kind of flaws will be detected by
ordinary reviewing.

Strenghtening the underlying prover or proof checker has also an impact
on the repository. Proofs can be shortened or rewritten in a more clear fashion,
both being fundamental properties of attractive mathematical repositories. Even
more, theorems in such collection may now be superfluous, because the improved
prover accepts and applies them automatically. A typical example here is the
additional inclusion of decision procedures.

Reorganizing the repository deals with the fact that a repository is built up
by a large number of contributors. For their development authors (should) use
already existing theories as a basis. To establish their main results, however,
they often have to prove additional theorems or lemmas just because the theory
used does not provide them yet. So, these additional facts have to be put in
the right place of the repository. Otherwise, it will be hard for other authors to
detect them or at least searching the repository becomes less comfortable. In the
same direction goes the building of monographs: a frequently used theory should
be handled with extra care. Not only should all related theorems be collected in
a distinguished place, but also still lacking theorems be complemented, in order
to ease working for further authors. These tasks can only be accomplished when
considering the repository as whole, that is by revisions.

The last point concerns the development of a repository in the long term.
What if after while it turns out that another definition or representation of math-
ematical objects would serve our purposes better than the one chosen? Should it
be changed? Note that a lot of authors already could have used these objects in
their proofs, that is changing the definition or representation would imply chang-
ing all these proofs – and of course one cannot force authors to redo all their
proofs. On the other hand, including both definitions or representations leads
to an unbalance: the theory of the new prefered version is much less developed
than the one of the old version, so authors hardly will base their developments
on the new one. Again, the solution is a revision: In the best case definitions
and representations are changed by a “core team”, so that ordinary users can
furthermore use all theorems without even noticing they changed.

In the following sections we will illustrate these considerations by examples
taken from the Mizar Mathematical Library and in particular show how revisions
maintain mathematical repositories.

3 Review of MML Submissions

Reviews of submissions to the MML – as reviews of ordinary submissions for
conferences or journals – have the overall goal to check whether a submission
should be accepted (for inclusion into the MML) and simultaneously improve
the quality of a submission. For mathematical repositories, however, the criteria
for acceptance and improvements are somewhat different.

Certainly the contents of a submission for a repository should likewise be
original and interesting. Original here, of course, means that definitions and
theorems presented are not part of the repository, yet. This is easy to check for
the main theorem of a submission. For technical lemmas used to establish this
main result, however, this task is much more difficult. So, for example, a reviewer
will probably neither know nor be willing to check whether a theorem like

theorem

for F,G being FinSequence, k being Nat st

G = F|(Seg k) & len F = k + 1 holds F = G ^ <*F/.(k+1)*>;

is already included in a repository. Even if the textual search via grepping is
no longer the only method to find such repetitions since the MML Query by
Grzegorz Bancerek [3] is available, even after the volunteer will learn how to use
this system, still there is no single automated bunch of tools which removes all
repeated theorems effectively. Furthermore, the motivation to check these things
in detail will be even decreased, because such a point will not decide between
acceptance and rejection.

The question whether a submission is interesting should be handled more
liberally. Of course, the usual issues, that is the quality of the main results, ap-
ply here also. There is, however, another kind of submissions to repositories: the
one that deals with the further development of (basic) theories. This concerns
collections of basically simple theorems providing necessary foundations so that
more ambitous developments can be easier accomplished. Usually, these are the-
orems, that easily follow from the definitions, however are so often used, that
repeating the proof over and over again is hardly acceptable. Examples here are
the theories of complex numbers or polynomials, where among other things we
can find the following theorems.

theorem

for a,b,c,d being complex number st

a + b = c - d holds a + d = c - b;

theorem

for n being Ordinal,

L being add-associative right_complementable add-left-cancelable

right_zeroed left-distributive (non empty doubleLoopStr),

p being Series of n,L holds

0_(n,L) *’ p = 0_(n,L);

Though hardly interesting from a mathematical point of view, such theo-
rems are important for the development of a repository and should therefore be
considered as interesting, too.

Improvements of a submission are a more difficult issue. Firstly, we can con-
sider definitions and notations contained in the submission. Can they be arranged
more sparsely, that is can the results be established based on fewer axioms? Is
it possible or reasonable (in the actual repository) to generalize the definitions?
This also applies to theorems. Note that the theorem from above, though appli-
cable to polynomials, in fact is stated for power series. Again to address these
issues a high knowledge of the repository by the reviewers is necessary.

Secondly, when it comes to proofs, there are hardly any guidelines, because
proving in particular is a matter of style. We can hardly force an author to change
his (finished) proof into another one using completely different proof techniques.
What we can do, is to suggest improvements for the presented proof. We can,
for example, propose a more accurate use of the proof language to get more
elegant or better readable proofs. Or we can give pointers to other theorems in
the repository that allow to shorten the proof.

Based on these considerations a reviewing process for Mizar articles, that is
for submissions to the Mizar Mathematical Library, has been introduced. Using
basically the commonly used scheme accept/revise/reject (and apart from its
descriptive grade) the rating of a submission can be3

A. accept
requires editorial changes only, which can be done by the editors

B. accept
requires changes by the author to be approved by the editors

C. revise
substantial author’s revisions necessary, resubmission for another review

D. decision delayed
revision of MML necessary

E. reject
no hope of getting anything valuable

The most important issue here, of course, is the question whether an article
should be included in MML. Note, that there are two grades (A and B) for
acceptance. The reason is that accepted articles should be included in the MML
as soon as possible to avoid duplication of results during the reviewing phase.4

So, while submissions rated B or C need feedback from the authors, submissions
rated A can be added to MML without further delays.

The most interesting point is D. Note that here already the problem of a
revision of the whole repository is addressed. Reviewing can point out that –
though the author has proven his main results – the way Mizar and MML support
establishing the presented results is not optimal and should be improved.

As the most notable example here, we can cite the newly submitted definition
of a kind of a norm for the elements of the real Euclidean plane, which are defined
in the Mizar library just as finite sequences of real numbers.

3 There has been and is still going on an email discussion about these options.
4 There even has been the proposition of making public submissions before reviewing

to avoid this problem, but we are not aware of a definite decision concerning this
point.

definition let n be Nat, f be Element of TOP-REAL n;

func |. f .| -> Real means

ex g being FinSequence of REAL st

g = f & it = |. g .|;

end;

where |. g .| is a usual Euclidean norm which was introduced in the MML
before as

definition let f be FinSequence of REAL;

func |. f .| -> Real equals

:: EUCLID:def 5

sqrt Sum sqr f;

end;

After the change of the loci type (the submission obtained grade D, of course)
from FinSequence of REAL into real-yielding FinSequence in the EUCLID

article the earlier definition was no longer needed which helped to simplify the
structure of notions in this new submission.

The decision is not a typical result of majority voting, because referees giving
C grade point out possible improvements, so usually the lowest grade counts
(luckily, in case of E marks, all three referees agreed).

To summarize the grades for 2006, let us look at Table 1.

Table 1. Number of submissions to the MML and their grades in 2006

all A B C D E

items 39 6 4 20 6 3

% of total 100 15.4 10.2 51.3 15.4 7.7

Basically, all ten submissions graded A and B were included into the MML,
and among C and D candidate articles, which were returned to authors, other
15 were accepted; in total there were 25 Mizar articles accepted in 2006, the first
year the reviewing procedure as described above was introduced.

All in all we have seen that reviewing MML submissions indeed addresses
only the first point mentioned in Section 2. Of course a thorough reviewing
process will improve the quality of MML articles and may even pilot authors
into the direction of a good style of “Mizar writing”. As we can conclude from
Table 1, this is the case of the majority of submissions because the authors should
enhance the articles according to the referees’ suggestions. However there remain
situations in which the MML as a whole should be improved; in the long term
mere reviewing of submissions cannot avoid this. Here even carefully reviewing
of Mizar articles – as already indicated by rate D above – can only help to detect
the need for such revisions.

4 MML Enhancing

The Library Committee has been established on November 11, 1989. Its main
aim is to collect Mizar articles and to organize them into a repository – the MML.
Recently, from this agenda a new additional one was created – the Development
Committee, which takes care of the quality of the library as a whole.

4.1 Types of Revisions

For the reasons we tried to point out before, the Mizar Mathematical Library is
continuously revised. Roughly speaking, there are different kinds of revisions:

– an authored revision – consists of small changes in some articles in the library
when somebody writing a new article notices a theorem or a definition in
an old article that can be generalized. This is also the case of D grade
as described above. To do this generalization, sometimes it is necessary to
change (improve) some older articles that depend on the change. As a rule,
a small part of the library is affected.

– an automatic revision – takes place frequently whenever either a new revision
software is developed (e.g. software for checking equivalence of theorems,
which enables to remove one or two equivalent theorems) or the Mizar verifier
is strengthened and existing revision programs can use it to simplify articles.

– a reorganization of the library – although was very rare before, as of now
it happens rather frequently. It consists in changing the order of processing
articles when the Mizar data base is created. Its main steering force is the
division of the MML into concrete and abstract parts.

4.2 MML Versions

Apart of the Mizar version numbering, the MML has also separate indexing
scheme. As of the end of 2006, the latest official distribution of the MML has
number 4.76.959.

As a rule, the last number, currently 959 shows how many articles are there
in the library (this number can be sometimes different because 26 items were
removed so far from the MML, but some additional items such as EMM articles,
and “Addenda” which do not count as regular submissions, were added). The
second number (76) changes if a bigger revision is finished and the version is made
official. Although it is relatively small comparing with the age of the library, the
changes are much more frequent.

4.3 Some Statistics

The policy of the head of Library Committee – to accept virtually all submis-
sions from the developers and, if needed, enhance it by himself, was then very
liberal. For these nearly twenty years there were only three persons taking a chair

of a head of the Committee (Edmund Woronowicz, Czes law Byliński, and cur-
rently Adam Grabowski); their decisions were usually consulted with the other
members of the committee, though.

Such an openness of the repository was justified: in the early years of the
Mizar project the policy “to travel to Bia lystok and to get acquaintance with
the system straight from its designer” resulted in the situation all authors knew
each other personally, now the situation changed.

The MML evolved from the project, frankly speaking, considered rather an
experiment of how to model mathematics to allow many users benefit from a
kind of parallel development. Now, when the role of the library is to be much
closer to the reality and the MML itself is just one among many mathematical
repositories, the situation is significantly different.

Table 2. Submissions to the MML by year

Year Add. 1989 90 91 92 93 94 95 96 97 98 99 2000 01 02 03 04 05 06

Articles 19 65 136 46 48 33 33 35 57 39 47 65 54 33 42 54 80 48 25

As it can be seen, the first two years were extremely fruitful. No doubt, the
first one was most influential, when the fundamentals, such as basic properties of
sets, relations, and functions, the arithmetics, and vector spaces were established
– to enumerate among many these most important. Some articles from that time
were more or less straight translation from those written in older dialect of the
Mizar language (Mizar PC, Mizar-2 etc., see [9]). Especially the subsequent year
– 1990, when many authors could benefit from introducing the basics, hence
they were able to work on various topics in parallel, brought into the Mizar
Mathematical Library the bigest number of submissions so far (136 by year),
then the number stabilized.

4.4 Towards Concrete and Abstract Mathematics

As it was announced in 2001 [15], the MML will be gradually divided into two
parts. As the library is based on the Tarski-Grothendieck set theory, the part
devoted to the set theory (and related objects, as relations, functions, etc.) is
indispensable. There is, however, huge amount of knowledge for which set theory
is essential, but basing on the notion of structure by means of the Mizar language.

There are three parts of the Mizar Mathematical Library:

– concrete, which does not use the notion of structure (here of course comes
standard set theory, relations, functions, arithmetic and so on);

– abstract, i.e. STRUCT_0 and its descendants, operating on the level of Mizar
structures; both parts are not completely independent – here the concrete
part is also reused (abstract algebra, general topology including the proof of
the Jordan Curve Theorem, etc.);

– SCM, the part Random Access Turing Machines are modelled, i.e. mathe-
matical model of a computer is described.

This division is reflected in the file mml.lar in the distribution in which is
the order of processing of articles when creating Mizar data base is given – the
“concrete” articles go first, at the end are those devoted to the SCM series. The
process of separating these three parts is very stimulating for the quality of the
Mizar library – many lemmas are better clustered as a result of this activity.

As of the beginning of 2007, the division can be summarized in Table 3.

Table 3. Three parts of the MML

Part Number of articles % of total

concrete 266 27.70
abstract 640 66.67

SCM 54 5.63

Total 960 100.00

Note that apart of the revisions suggested by the referees when giving D-
grades, any user can via TWiki mechanism suggest the change; he may of course
also send improved version via email to the Library Committee; as an exam-
ple, lemmas needed for the Gödel Completeness Theorem were reformulated to
provide its better understanding as a result of the external call.

4.5 Library Management

As a first tool of collaborative work on the library we can enumerate Mizar TWiki
(wiki.mizar.org) which gradually changes its profile from an experimental –
and rarely used – forum into the place where suggestions/experiences with the
MML can be described.

As the most important, and probably one of the better known MML tools,
we can point out MML Query [3]. It has proven its feasibility when subsequent
EMM items were created. Also researchers, when writing their Mizar articles,
can find it useful. But usually, typical author does not care too much if his
lemma which takes some ten lines of Mizar code is already present in the library.
Actually, searching for such auxiliary fact can take much more time than just
proving it. This results in many repetitions in the library MML Query cannot
cope with. And although the author can feel uncomfortable with multiple hits of
the same fact, annotating such situations and reporting it to the MML developers
is usually out of his focus.

This is the area where another tool comes in handy. Potentially very useful
for the enhancement of the MML as a whole, MoMM (Most of Mizar Matches)
developed by Josef Urban was primarily developed to serve as assistant during
authoring Mizar articles [18]. It is a fast tool for fetching matching theorems,

hence existing duplications can be detected and deleted from the MML (accord-
ing to [18], more than two percent of main Mizar theorems is subsumed by the
others). The work with the elimination of these lemmas is still to be done –
many of detected repetitions are useful special cases so their automatic removal
is at least questionable.

Another popular software, MML CVS – the usual concurrent version system
for the MML was active for quite some time, but then was postponed because
the changes were too cryptic for the reader due to the lack of proper marking of
items. Actually, one of the most general problems is that there are no absolute
names for MML items and the changes are usually too massive to find out what
really matters.

5 Traps for the Developer

Usually, the revision process via generalization of notions improves the MML.
There are some dangerous issues, however; we address some of them in this
section.

5.1 Mind the Gap!

Let us cite an example from the article ABIAN [14]:

definition let i be Integer;

attr i is even means

:: ABIAN:def 1

ex j being Integer st i = 2*j;

end;

These are usual definitions of odd and even integer numbers.

definition let i be Integer;

attr i is odd means

ex j being Integer st i = 2*j+1;

end;

Then, among the others, the theorem stating that all integer numbers are ei-
ther odd or even, was proven; the proof was very simple, but there was something
in it to do, at least both definitions were involved.

theorem LEM:

for i being Integer holds i is odd or i is even;

However, after the revision (which was done by the author of ABIAN, after
all), the second definition got simplified as follows:

notation let i be Integer;

antonym i is odd for i is even;

end;

Still, it seems perfectly correct, introducing antonym we obtain the law of
excluded middle automatically, in a sense, and the proof of the above lemma
labeled LEM was no longer necessary.

But we made a step too far, as it seems. Because in the definition of even
number, the integerwas not needed (remember the type Integer is a shorthand
for integer number), it was dropped in both – definition of an attribute and its
antonym, and the latter got simplified into the form:

notation let i be number;

antonym i is odd for i is even;

end;

Unfortunately, e.g. number Pi (the Mizar symbol for the usual constant π)
can be proven to be odd which can be considered really odd. Observe that any
automation of the process of dropping assumption about the types of used loci
in the definition of attributes, however possible, could be dangerous.

5.2 Permissive Definitions

There are two unities for vector spaces defined in the MML – with symbol 1.
and 1_, and the following definitions:

definition let FS be multLoopStr;

func 1.FS -> Element of FS equals

:: VECTSP_1:def 9

the unity of FS;

end;

definition let G be non empty HGrStr such that G is unital;

func 1_G -> Element of G means

:: GROUP_1:def 5

for h being Element of G holds h * it = h & it * h = h;

end;

where multLoopStr is HGrStr enriched by an additional selector, namely unity

and the adjective unital in the permissive assumption (after such that) assures
that the proper neutral element exists.

At first glance, the earlier approach is better – the less complicated a type
in a locus, the less problems we have to assure the required type. In the second
definition however, the underlying structure has only two selectors instead of
three.

5.3 Meaningless Predicates

Suppose we have the following:

definition let a,b be natural number;

assume a <> 0;

pred a divides b means

ex x being natural number st b = a * x;

end;

Well, we can freely delete the assumption, in Mizar predicate definitions do
not require any correctness conditions proven. But, if we forget for a while that
within the MML division by zero is defined, does it make any mathematical
sense for any pair of natural numbers? According to the current policy of the
Library Committee, we allow for any such underspecification.

5.4 Apparent Generalizations

There are sometimes cases the price for the revision is too high comparing to
gains or the enhancing is apparent. If we remind that pathwise connectedness of
the topological space T denotes the existence of a function from the unit interval
into T which has the values a and b in 0 and 1, respectively, for any pair of points
a, b of T , a path between two points is just an underlying mapping, if it exists.
It is enough however to have an assumption about the existence of appropriate
function for just the pair of points currently under considerations.

definition let T be TopStruct; let a, b be Point of T;

assume a, b are_connected;

mode Path of a, b -> Function of I[01], T means

:: BORSUK_2:def 2

it is continuous & it.0 = a & it.1 = b;

end;

With no doubt, the assumption of the existence of a path not for arbitrary,
but just for these two fixed points is more general, the gains from stating every
now and then that considered two points can be connected by a path, are at least
doubtful. Similarly, we often write Abelian add-associative right_zeroed

right_complementable RealLinearSpace-like (non empty RLSStruct) drop-
ping an attribute or two to have slightly more general setting instead of using the
mode RealLinearSpace which is equivalent to that complicated string above.

6 Related Work

Contemporary standards of the publishing process open some new possibilities –
there are many journals online, Springer also announces his books/proceedings at
their webpage. Paper-printed editions have some obvious limitations, vanishing
for electronically stored and managed repositories of knowledge. We can notice,
as an example, new functionalities of [10] in comparison to (even online) version
of Abramowitz and Stegun [1].

Of course, what is published on paper, is fixed. We can mind some real-
life situations – rough sets as an example of obtaining new results via a kind of
revision process (originally considered to be classes of abstraction with respect to
some equivalnce relation, then some of its attributes were dropped to generalize
the notion – see [6], [7]); also Robbins algebras and related axiomatizations
of algebras are a good example, when a classical problem could be rewritten
and reused when solved. In the aforementioned examples these were subjects
for another papers, within the computerized repository the enhancement (the
generalization of results) can be obtained via revision process.

As a rule, building an extensive encyclopedia of knowledge needs some in-
vestment; on the one hand, it can be considered by purely financial means as
“information wants to be free, people want to be paid” [2]. That is the way
Wolfram MathWorld [19] has been raised, as a collection closed in style, in fact
authored by one person, Eric Weisstein.

But right after this service has been closed due to the court injunction, it
soon appeared that the need to bridge this gap is that strong – many volunteers
were working to develop a concurrent service to that of Wolfram’s, but of the
more open type, based on the mechanism similar to Wiki.

The effort of PlanetMath is now a kind of Wikipedia for mathematics (in fact
they even cooperate closely); with its content somewhat questionable because
virtually anyone can contribute, but frankly speaking, also nobody really asks
about the verification of other, even commercial resources. Although we believe
the use of proof checkers could enable the automatic verification of the proofs;
still the correctness of the definitions, i.e. how the encoded version reflect real
mathematical objects, is under question only human can answer to a full extent.

But even in the projects of GNU type, people want to get their payment
in another form: at least the added annotation such as “This article is owned
by...”, as in PlanetMath, which can also be considered a kind of motivation
to keep higher standards of the encyclopedia since the authorship is not fully
anonymous.

In the MML the authorship is somewhat fixed, there were however, espe-
cially recently, cases when the parts of submissions moved between them so that
the authorship actually exchanged (as for example, with the formalization of
the Zorn Lemma, originally created by Grzegorz Bancerek, and now, after the
changes concerned with the move of this article to the concrete part, attributed
to Wojciech Trybulec). In a sense, the Mizar library is much closer to Planet-
Math, but the official distributions are created by the Library Committee which
decides about the acceptance of revisions.

7 Conclusions

To meet the expectations of researchers being potential users of repositories of
mathematical knowledge, such collections cannot be frozen. The availability of
the contemporary electronic media open new directions of the development of
the new encyclopedias yet unavailable for their paper counterparts. The need of

the enhancement stems not only of the fact there may be some obvious mistakes
in the source; the reasons are far more complex.

In the paper, we tried to point out some of the issues connected with the
mechanism of revisions performed on the Mizar Mathematical Library, large
repository of computer-verified mathematical knowledge. The dependencies be-
tween its items and the environment declaration (notation and especially, con-
structors) are as of now too complex to freely move a single definition or a
theorem between separate articles.

In our opinion, the current itemization of the MML into articles does not
fit the needs we expect from the feasible repository of mathematical facts; if we
try to keep authors’ rights unchanged, there is an emerging need to have some
other, smaller items which guarantee the developer’s authorship rights, a kind
of ownership similar to that used in the PlanetMath project.

Also the better automation of the MML revision process is strongly desirable.
However possible, at least to some extent, but due to some difficulties which can
be met as we pointed out, the human supervision of such automatic changes will
probably always be needed.

Acknowledgments

We are grateful to Andrzej Trybulec and Artur Korni lowicz for their continuous
cooperation on the enhancement of the MML. The first author acknowledges the
support of the EU FP6 IST grant TYPES (Types for Proofs and Programs) No.
510996. We acknowledge also anonymous referees for their useful suggestions,
unfortunately due to space constraints not all of them were reflected in this final
version.

References

1. M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions; National
Bureau of Standards, Applied Mathematics Series No. 55, U.S. Government
Printing Office, Washington, DC, 1964, see also http://www.convertit.com/Go/

ConvertIt/Reference/AMS55.ASP.

2. A.A. Adams and J.H. Davenport, Copyright issues for MKM, in: A. Asperti, G.
Bancerek, and A. Trybulec (eds.), Proc. of MKM 2004, Lecture Notes in Computer
Science 3119, pp. 1–16, 2004.

3. G. Bancerek, Information retrieval and rendering with MML Query; in: J.M. Bor-
wein and W.M. Farmer (eds.), Proc. of MKM 2006, Lecture Notes in Artificial
Intelligence 4108, pp. 65–80, 2006.

4. N.G. de Bruijn, The Mathematical Vernacular, A Language for Mathematics with

typed sets; in: P. Dybjer et al. (eds.), Proc. of the Workshop on Programming
Languages, Marstrand, Sweden, 1987.

5. J. H. Davenport, MKM from book to computer: A case study; in: A. Asperti,
B. Buchberger, and J. Davenport (eds.), Proc. of MKM 2003, Lecture Notes in
Computer Science 2594, pp. 17–29, 2003.

6. A. Grabowski, On the computer-assisted reasoning about rough sets; in: B. Dunin-
Kȩplicz et al. (eds.), Monitoring, Security, and Rescue Techniques in Multiagent
Systems, Advances in Soft Computing, Springer, pp. 215–226, 2005.

7. A. Grabowski and Ch. Schwarzweller, Rough Concept Analysis – theory develop-

ment in the Mizar system; in: A. Asperti, G. Bancerek, and A. Trybulec (eds.),
Proc. of MKM 2004, Lecture Notes in Computer Science 3119, pp. 130–144, 2004.

8. F. Kamareddine and R. Nederpelt, A Refinement of de Bruijn’s Formal Language

of Mathematics; Journal of Logic, Language and Information, 13(3), pp. 287–340,
2004.

9. R. Matuszewski and P. Rudnicki, Mizar: the first 30 years; Mechanized Mathe-
matics and Its Applications, 4(1), pp. 3–24, 2005.

10. B.R. Miller and A. Youssef, Technical aspects of the Digital Library of Mathemati-

cal Functions; Annals of Mathematics and Artificial Intelligence, 38, pp. 121–136,
2003.

11. The Mizar Homepage; http://www.mizar.org/.
12. A. Naumowicz and Cz. Byliński, Improving Mizar texts with properties and re-

quirements; in: A. Asperti, G. Bancerek, and A. Trybulec (eds.), Proc. of MKM
2004, Lecture Notes in Computer Science 3119, pp. 190–301, 2004.

13. PlanetMath web page; http://planetmath.org/.
14. P. Rudnicki and A. Trybulec, Abian’s fixed point theorem, Formalized Mathemat-

ics, 6(3), pp. 335–338, 1997.
15. P. Rudnicki and A. Trybulec, Mathematical Knowledge Management in Mizar; in:

B. Buchberger and O. Caprotti (eds.), Proc. of MKM 2001, Linz, Austria, 2001.
16. P. Rudnicki and A. Trybulec, On the integrity of a repository of formalized math-

ematics; in: A. Asperti, B. Buchberger, and J. Davenport (eds.), Proc. of MKM
2003, Lecture Notes in Computer Science 2594, pp. 162–174, 2003.

17. C. Sacerdoti Coen, From proof-asistants to distributed knowledge repositories: tips

and pitfalls; in: A. Asperti, B. Buchberger, and J. Davenport (eds.), Proc. of MKM
2003, Lecture Notes in Computer Science 2594, pp. 30–44, 2003.

18. J. Urban, MoMM – fast interreduction and retrieval in large libraries of formalized

mathematics, International Journal on Artificial Intelligence Tools, 15(1), pp. 109–
130, 2006.

19. Wolfram Mathworld web page; http://mathworld.wolfram.com/.

