I. Graph compositions - Basic enumeration
proofs follow  [1]
Notation:

G = (E(G), V(G)(  denotes a labelled graph.     A composition of  G  is a partition of  the vertex set  V(G)  into vertex subsets of  connected induced subgraphs  of  G  i.e.  partition of  G  provides a set of connected  subgraphs  of  G  (  (G1, G2, ...,Gm( , Gi = (E(Gi), V(Gi)(  , i = 1,...,m .

Note:  
Because the same vertex subset may be spanned   by different edge subsets – therefore to  the same composition of  G which is a partition of  vertex set V(G)  there may correspond   different  families (G1, G2, ...,Gm( ( ( G~1, G~2, ..., G~m(    of connected subgraphs.
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Biparite complete  graph    K2,3   compositions` example:
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C(G) = the number of distinct  compositions of  a graph  G.

Why the name: composition of  G ?

                                          (
Exercise  1.

Let Pn be the path  with  n  vertices.  Prove that C(Pn)  =  2n-1  ,  n> 0,  C(Po) ( 1.

Exercise  2.

Let   Kn   be the complete graph  on  n  vertices.  Prove that    C(Kn)  = Bn,  n> 0, C(K0) ( 1.

Bn = Bell numbers = exponential numbers.

Note:  the same composition of  G which is a partition of  vertex set V(G)  - may give rise to  different  families (G1, G2, ...,Gm( ( ( G~1, G~2, ..., G~m(    of connected subgraphs.

Comment      These above  are two extreme cases: 

no connected graph  G  with   n  vertices can have  fewer than   C(Pn)   and no connected graph  G  with   n  vertices can have  more than    C(Kn)    compositions.   i.e.

2n-1 (  C(Fn)  (  Bn,  where    Fn    is any connected graph  with  n  vertices.

Exercise  3.

Let G  =  G1 ( G2   and there are no edges  from vertices  of    G1  to  vertices  of  G2. Then  C(G)  =  C(G1) C(G2) .  The same holds for  G1  and  G2  having exactly one vertex in common. Prove or rather see this.

Note:   one obtains compositions of  G   by  pairing  compositions of  G1  and  G2   in all possible ways.

Exercise  4.

Let G  =  G1 ( G2   and there is exactly one  edge  from  a vertex  of    G1  to a  vertex  of  G2 whose removal  disconnects  G . Then  C(G)  = 2 C(G1) C(G2) .  Prove or rather see this.  

Note:  Let   e   be the distinguished edge between vertices  vj   and  vj . Any composition of  G  can be obtained in exactly two ways.: either  e   is included  to supply the component  vi  in   G1 and the component  vj  in   G2   or not.  Thus the count from Exercise 3.  is now doubled.

                                          (
Exercise  5.

Let  Tn  be any tree  with  n  vertices.  Prove that C(Tn)  =  2n-1  ,  n> 0.

Proof:   Use induction.   Consider   Tn+1. Remove one edge. This disconnects  Tn+1 into two parts for which   the formula holds. By the result of  Exercise 4. the proof is accomplished.

Exercise  6.

Let  K-n  be the complete graph on   n  vertices  with  one  edge removed..  Prove that C(K-n)  =  Bn - Bn-2    ,  n > 1.

Proof:   Let   e  be the deleted   edge between vertices  vj   and  vj.   Its deletion affects a composition counted by C(Kn)  = Bn  only when the component containing vertices  vj   and  vj consists of   exactly  these  two  vertices  vj   and  vj. Otherwise there is a by-pass  in  Kn  connecting these two  vertices  vj   and  vj. Therefore from the number of composition counted by C(Kn)  = Bn  one must substract  those compositions for which one of the partition component is  {vj , vj}.  This restriction rules out  exactly   C(Kn-2)  = Bn-2  compositions of Kn.  

Exercise  7.

Let  Cn  be  the cycle graph   with  n  vertices.  Prove that C(Cn)  =  2n  – n  ,  n> 0.

Proof:   Delete any  edge. The resulting graph becomes  Pn   with C(Pn)  =  2n-1. Any composition of  Pn is also a composition of  Cn . The deleted  edge may be   reinserted , providing a new  composition of  Cn  - previously not counted  unless  the composition of  Pn had been obtained by deleting  from  Pn   either no edge  or  exactly one   edge.

In these cases , reinserting the original deleted edge  gives the same composition of  Cn: namely the composition   consisting of all   n  vertices.  Therefore  the total number of 

of distinct compositions of  Cn is equal to   C(Cn)  =  2 2n-1  – n    =  2n  – n. 

II. Compositions  with parts constrained by the leading summand
we follow  [2];  here now  composition ( ordered partition of a natural number
 ordered partition of a natural number (  constrained composition of a natural number
constrained?  yes !  constrained by...
Of course:                              

               Compositions constrained by  the requirement 
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Note  that  parts of compositions  might be  zero  if a = 0 .                              According to:

Clark Kimberling. Enumeration of paths, compositions of integers, and
Fibonacci numbers. The Fibonacci Quarterly, 39(5):430-435, 2001
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The  composition  of the natural number  n     is   the vector     (
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C(n,k,a,b) = the number of the vector solutions of the Diophantic (*) equation  (D*)     

for example  for C (n,k,0,(),  C (n,k,1,()   one has 
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Exercise  8.

Consider the number  fn (k)  of compositions  of a natural number n into  k  parts with the strictly largest part in the first position i.e.

(>)                
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Observe-show that the following formula gives  the  ordinary generating  function for these numbers : 
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Proof:         k(2           
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,  where higher order Fibonacci  sequences are defined   
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 ...  (HEY-ou!  what are the initial values?)

Exercise  9.

Consider the number  f*n (k)  of compositions  of a natural number n into  k  parts with the largest part in the first position  i.e.

(()                
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Observe-show that the following formula gives  the  ordinary generating  function for these numbers : 
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Proof:         k(2           
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,  where higher order Fibonacci  sequences are defined   
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Exercise  10.

Let  Ck(n) be  the  number of compositions of   n   in which at least one   k  occurs.  Prove then that                        
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Proof:      Consider    C*k(n)  to be  the  number of compositions of   n   in which no part equals to k.     Consider    C*k(n,m) to be  the  number of compositions of   n   inito m parts  with no part equal to k.    

Note:  by the product law  od generating functions
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sum    the above over   m     via      
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Observe that                   
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That is all  ...   as of course             
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                                                                                         and here now come 

Foot-Notes:

(*)      Diophantic equations are equations with integer solutions. A well-known example is the problem of integer solutions for the equation  of Pythagoras a2=b2+c2.

A notorious example is the last theorem of Fermat (recently solved), an=bn+cn for n>2.
see: 

GREEK MATHEMATICS
Maria Fragoulopoulou
University of Athens
 http://www.indianshm.com/articles/pdf/Greek%20Mathematics.pdf
Antal E. Fekete    <---  see it!

\bibitem {4}

Antal E. Fekete {\it Apropos Bell and Stirling Numbers } Crux Mathematicorum with Mathematical Mayhem {\bf 25} No. 5 (1999), 274-281
http://www.journals.cms.math.ca/cgi-bin/vault/crux.pl?Volume=25&Issue=5&Year=1999
acha!  ad Exercise 10...             q =?
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the same compositions of K2,3





Kn,m  complete biparite graph  has  nm  edges  linking  the first row  n  dots in such a way that each  dot  of  this row is linked to every one of the second row of m dots   (dots = vertices).
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